高中数学公式快速记忆口诀:不等式

合集下载

数学高考复习公式记忆口诀大全

数学高考复习公式记忆口诀大全

数学高考复习公式记忆口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。

?nbsp;变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

高中数学公式口诀

高中数学公式口诀

高中数学公式口诀1、 《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。

?nbsp;变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

高中数学口诀(知识记忆顺口溜)

高中数学口诀(知识记忆顺口溜)
四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。
复数实数很密切,须注意本质区别。
排列、组合、二次项定律
加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,
简单三角的方程,化为最简求解集。
不等式
解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
还有数学归纳法,证明步骤程序化:
首先验证再假定,从 K向着K加1,
推论过程须详尽,归纳原理来肯定。
复数
虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。
代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。
其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;
图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;
反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;
函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;
图象第一象限内,函数增减看正负。

【高中数学】 高中数学公式记不住?掌握这些记忆方法

【高中数学】 高中数学公式记不住?掌握这些记忆方法

【高中数学】高中数学公式记不住?掌握这些记忆方法定义、定理、公式是学好数学的基础,一些常见的题型的解答方法和技巧也需要牢记于心。

今天给大家介绍19种数学记忆方法,会让你学习数学变得轻松!口诀记忆法高中数学中,有些方法如果能编成顺口溜或歌诀,可以帮助记忆。

例如,根据一元二次不等式ax2+bx+c>0(a>0,△>0)与ax2+bx+c<0(a>0,△>0)的解法,可编成乘积或分式不等式的解法口诀:“两大写两旁,两小写中间”。

即两个一次因式之积(或商)大于0,解答在两根之外;两个一次因式之积(或商)小于0,解答在两根之内。

当然,使用口诀时,必先将各个一次因式中X的系数化为正数。

利用口诀时,必先将各个一次因式中X的系数化为正数。

利用这一口诀,我们就很容易写出乘积不形象记忆法有些知识,如果能借助图形,可以加强记忆。

例如,化函数y=asinx+bcosx (a>0,b>0)为一个角的三角函数,可以用a、b为直角边作数和对数函数的图象,可帮助记忆其性质、定义域和值域;利用三角函数的图象,可帮助记忆三角函数的性质、符号、定义、值域、增减性、周期性、被值;利用二次函数的图象,可帮助记忆抛物线的性质——开口、顶点、对称轴和极值。

表格记忆法有些知识借助表格也能帮助记忆。

例如,0°、30°、45°、60°、90°等特殊角的三角函数值;等差与等比数列的定义、一般形式、通项公式an、前n项的和sn性质及注意事项;指数与对数函数的定义、图象、定义域、值域及性质;反三角函数的定义、图象、定义域、主值区间、增减性及有关公式;最简三角方程的通值公式等等,都可以用表格帮助记忆。

有些数学题的解题方法,也可以用表格化难为易、驭繁为简。

例如,用列表法解乘积或分式不等式,解含绝对值符号的方程或不等式,计算多项式的乘法,求整系数方程的有理根等等,都是很好的方法,这种记忆法在复习中尤其应该提倡。

高中数学知识点顺口溜速记口诀

高中数学知识点顺口溜速记口诀

高中数学知识点顺口溜速记口诀做数学题的时候你会不会有时就把公式定理忘了呢?其实将这些公式定理编为顺口溜可能会更好记!下面是小编整理的高中数学知识点顺口溜速记口诀,希望大家喜欢。

函数学习口诀正比例函数是直线,图象一定过原点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。

反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线,x、y的顺序可交换。

二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边,抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。

正多边形诀窍歌份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前。

经过分点做切线,切线相交n个点。

n个交点做顶点,外切正n边形便出现。

正n边形很美观,它有内接、外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便。

正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单。

圆中比例线段遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。

函数与数列数列函数子母胎,等差等比自成排。

数列求和几多法?通项递推思路开;变量分离无好坏,函数复合有内外。

同增异减定单调,区间挖隐最值来。

二项式定理二项乘方知多少,万里源头通项找;展开三定项指系,组合系数杨辉角。

整除证明底变妙,二项求和特值巧;两端对称谁最大?主峰一览众山小。

立体几何多点共线两面交,多线共面一法巧;空间三垂优弦大,球面两点劣弧小。

线线关系线面找,面面成角线线表;等积转化连射影,能割善补架通桥。

高中数学127个快速解题公式

高中数学127个快速解题公式

高中数学127个快速解题公式。

高中数学127个快速解题公式随着科学技术的不断发展,数学作为人类发展进程中不可或缺的重要科目,在学生考试中扮演着越来越重要的角色,这也使得学习数学变得十分重要。

高中数学中有许多解题公式,掌握这些公式是解决高中数学问题的关键。

本文将总结出127个常见的高中数学快速解题公式,按照其实际应用的频率由高到低排列,便于学生更容易掌握:1、抛物线方程的解法:y=ax2+bx+c。

2、一元二次不等式的解法:ax2+bx+c ≥0或≤0,其解集为[-b-√(b2-4ac)/2a, -b+√(b2-4ac)/2a]。

3、椭圆方程的解法:x2/a2+y2/b2=1。

4、三角形内角和的解法:a+b+c=180°。

5、极坐标系中抛物线方程的解法:r=2a cos(θ-α)。

6、双曲线方程的解法:x2/a2-y2/b2=1。

7、圆的标准方程的解法:(x-x0)2+(y-y0)2=r2,其中,x0,y0为圆心坐标,r为半径。

8、一元二次方程的解法:ax2+bx+c=0,其解为:x1=-b+√(b2-4ac)/2a,x2=-b-√(b2-4ac)/2a。

9、二次函数极值点的解法:f'(x)=2ax+b=0,极值点为-b/2a。

10、二次函数零点的解法:f(x)=ax2+bx+c,其零点为x1=-b-√(b2-4ac)/2a,x2=-b+√(b2-4ac)/2a。

以上就是高中数学中127个快速解题公式,把这些公式掌握熟练,在考试时就可以快速解决数学问题,提高效率,节省时间,拿到不错的成绩。

此外,还要借助实际操作,不断的练习,增强解题能力,取得更好的数学成绩。

不等式基本公式

不等式基本公式

不等式基本公式不等式基本公式是解决不等式问题的重要工具,它建立在不等式的基本性质和数学推理的基础上,用于推导和解决各种类型的不等式问题。

下面是不等式基本公式的相关参考内容。

一、不等式基本性质:1. 不等式的传递性:如果a>b且b>c,则a>c。

这个性质可以用于推导和比较不等式的大小关系。

2. 不等式的加法性:如果a>b,则a+c>b+c。

这个性质可以用于将不等式中的常数项相加或相减,推导不等式的等价关系。

3. 不等式的乘法性:如果a>b且c>0,则ac>bc;如果a>b且c<0,则ac<bc。

这个性质可以用于将不等式中的变量进行乘法运算,推导不等式的大小关系。

二、一元一次不等式:1. 加减法不等式解法:对于不等式ax+b>c,可以将不等式中的常数项移项,得到ax>c-b。

然后比较a的正负性和c-b的大小关系,确定不等式的解集。

2. 乘除法不等式解法:对于不等式ax>b,可以将不等式中的常数项移项,得到ax-b>0。

然后比较a的正负性和ax-b的大小关系,确定不等式的解集。

三、一元二次不等式:1. 零点判别法:对于一元二次不等式ax^2+bx+c>0,可先求解对应的一元二次方程ax^2+bx+c=0。

然后根据一元二次方程的求解公式,判断二次函数的图像与x轴的位置关系,确定不等式的解集。

2. 符号判别法:对于一元二次不等式ax^2+bx+c>0,也可以利用一元二次方程ax^2+bx+c=0的零点判别式Δ=b^2-4ac,来判断二次函数的图像与x轴的位置关系,确定不等式的解集。

四、一元绝对值不等式:1. 绝对值的定义:对于任意的实数x,|x|表示x的绝对值,定义为:|x|=x,如果x≥0;|x|=-x,如果x<0。

2. 绝对值不等式的性质:对于任意的实数a和b,有以下两个性质:a) |a|>b等价于a>b或a<-b;b) |a|<b等价于-b<a<b。

高考不等式公式大全

高考不等式公式大全

高考不等式公式大全高考数学中常常涉及到不等式的解题,下面是一些常见的不等式公式:1. 两边加上或减去相同的数:若a > b,则a + c > b + c;若a< b,则a + c < b + c。

(c为任意实数)2. 两边乘以或除以相同的正数:若a > b,则ac > bc;若a < b,则ac < bc。

(c为正实数)3. 两边乘以或除以相同的负数:若a > b,则ac < bc;若a < b,则ac > bc。

(c为负实数)4. 两个不等式相加或相减:若a > b 且 c > d,则a + c > b + d;若a < b 且 c < d,则a + c < b + d。

5. 两个不等式相乘:若a > b 且 c > d,则ac > bd;若a < b 且c < d,则ac > bd。

6. 平方的不等式:若a > b,则a² > b²;若a < b 且 a与b都是非负数,则a² < b²。

7. 绝对值的不等式:若|a| > |b|,则a² > b²;若|a| < |b|,则a² <b²。

8. 倒数的不等式:若a > b 且 a与b都是正实数,则1/a < 1/b。

9. 二次函数不等式:若ax² + bx + c > 0,则当a > 0时,有D < 0且x ∈ R;当a < 0时,有D > 0且x ∈ R。

这些是一些常见的不等式公式,希望对你有帮助!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档