(完整版)高中数学公式口诀大全

合集下载

高中数学公式口诀

高中数学公式口诀

高中数学公式口诀一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

高三重点知识点口诀

高三重点知识点口诀

高三重点知识点口诀一、数学1. 二次函数口诀:顶点公式求自变量,y轴对称走一个倒。

开口向上a正号,向下则正变成负。

2. 数列知识点:首何值可用通项求,末何等于首加上组。

公差为固定差,首项和公差求。

3. 圆的公式口诀:圆心套观点,方程不再恐。

半径直接r,圆心化中常。

圆心距离求,弧长由角通。

弦长全靠定值,通用求切线。

4. 概率公式口诀:事件概率求容斥,条件概率转全概。

乘法放心用相乘,和事件加起来。

独立等价于加和,概率算得到。

二、物理1. 运动学口诀:初速加末速,除以二就是等。

路程等于速度乘,时间常乘在身边。

加速时间缩一倍,路程是原来的四倍。

自由落体往上取,加速度取十。

2. 电路知识点:并联电阻分,倒数加加。

串联电阻求,直接相加。

3. 光学易混淆:反射镜分虚实,凸镜物和像同方向。

凹镜物与像反,焦点看曲率。

4. 动能定律口诀:物体的动能请用半mv平方。

流速公式大导就,液体密度常加乘。

机械能守恒教导,损失等于劳动得。

三、化学1. 酸碱反应口诀:酸加碱,盐和水;氧化还原,电子转。

2. 元素周期表:期见封新鲜,近似保持共价;希求氧和氮,硒硫班要放弃。

3. 合成反应口诀:氧亏别添氧,氢亏赶快加,盐分明记号,尤其要涨记真。

4. 动力学口诀:起速和末速同朝向,功与热看方向。

端看平衡,大也小也平衡。

四、英语1. 时态口诀:一般现在时,现在的事情。

一般过去时,过去的事情。

一般将来时,未来的事情。

现在完成时,先过后现在。

过去进行时,两个过去事情。

将来进行时,要未来进行。

2. 名词复数规则:普通的加‘s’,以o结尾加‘es’。

以y结尾变‘y’为‘i’,复数不变加‘s’。

特殊单词见的少,没有规定按常用。

3. 冠词使用口诀:特指用定冠词,前边有只用不定。

泛指不用冠词,具体加定冠词。

用数词的一定要,非复数不用冠。

4. 宾语从句口诀:特殊用法不丢弃,陈述可连引语。

一般疑问句脱引,此时动词提升。

特殊疑问提前放,语序默认陈述。

以上口诀总结了高三阶段数学、物理、化学和英语的重点知识点,希望对你的学习有所帮助。

高中数学口诀(知识记忆顺口溜)

高中数学口诀(知识记忆顺口溜)
四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。
复数实数很密切,须注意本质区别。
排列、组合、二次项定律
加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,
简单三角的方程,化为最简求解集。
不等式
解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
还有数学归纳法,证明步骤程序化:
首先验证再假定,从 K向着K加1,
推论过程须详尽,归纳原理来肯定。
复数
虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。
代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。
其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;
图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;
反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;
函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;
图象第一象限内,函数增减看正负。

高三数学知识点背诵口诀

高三数学知识点背诵口诀

高三数学知识点背诵口诀一、整式的运算口诀:
同号相加,并提取,不同号相减;
乘法法则,项项乘,合并同类项,加减殊;
平方差,二次和,一正一负,中间差。

二、因式分解口诀:
提公因式,见括号,互补因子,先认清;
差平方根,要分解,平方差形式,很明显;
配方法,交替变,一正一负,巧分解。

三、分式运算口诀:
通分加减,分母要相同;
乘除法则,颠倒来;
分式方程,消分母,去括号,整体得。

四、二次函数口诀:
a大于零,开口向上;
a小于零,开口向下;
a等于零,函数退化。

五、数列运算口诀:
等差数列,公差找,通项公式,敲一遍;
等比数列,首项给,公比公式,照着来;
等比求和,分数积,首项与公比,不用求。

六、三角函数口诀:
正弦对边比斜边,余弦邻边比斜边;
正切对边比邻边,余切邻边比对边;
正切值等于余切倒数。

七、解方程口诀:
一元一次,三步走,去括号,移常数,化简求解;一元二次,四步走,齐次,二辅一常,配方解方程;
一元高次,逐次啄,先异号,再相同,整除出头。

八、概率统计口诀:
全概率,分类得,乘法定理,概率才有;
加法定理,排列组合,互斥独立,条件概率。

九、解几何题口诀:
相似关系,边比设,等角关系,角度等;
平行关系,对应等,垂直关系,互为负。

十、微积分口诀:
函数求导,一力行,乘幂规则,加减现;
不连续,左右极,左右导数,判断存在;
定积分,上下限,原函数定理,计算估。

以上是高三数学知识点背诵口诀,希望能够帮助你掌握数学知识,顺利应对考试。

记住口诀,学好数学!。

高中数学各知识点公式定理记忆的口诀

高中数学各知识点公式定理记忆的口诀

高中数学各知识点公式定理记忆的口诀一、三角函数口诀1. 正弦函数(sin)•角分离原则,短边对斜边;•万有离心率,正弦值相等。

2. 余弦函数(cos)•角分离原则,长边对斜边;•单位圆上右边集,余弦值相等。

3. 正切函数(tan)•角相并原则,短边对长边;•弧度制好好记,切线值很特殊。

4. 余切函数(cot)•角相并原则,长边对短边;•弧度制不可忽,余切值最驰名。

二、平面几何口诀1. 直角三角形•勾股定理,斜边平方等于两腰平方和;•斜边夸腰秀,腰夸斜边薄。

2. 三角形中位线•三位一体,合力使须知;•三位相等时,心中纳须满。

3. 三角形中心•重心离散,重集于一点;•垂心成直角,位于最尖处;•内心心独特,切离连接点;•外接圆集中,交于三点。

4. 计算面积•一斜两底求三角,半底乘上高;•相乘除以二,恰是三角面。

三、函数口诀1. 一次函数•斜率线与图一般,k为常数表示;•横截距表示线性,x为零点定值。

2. 二次函数•抛物线开口,大声呈现;•正负开口说,a为定义数;•零点表情,一二定理。

3. 指数函数•底小指大,结果更大;•底大指小,结果更小;•零次幂表达,答案为一。

4. 对数函数•底数不等于一,结果纳负数;•底数大于一,结果增大;•底数在零一之间,结果减小。

四、概率与统计口诀1. 排列•排列之秘,A(n, k);•n个不同数,取k个全排列。

2. 组合•组合之密,C(n, k);•n个不同数,取k个无序排列。

3. 随机事件•如实,把事实说清楚;•可和,求并把分情况。

4. 条件概率•乘法做,定义是元素;•全概率,分类找相同。

5. 期望•期待其,乘以概率求;•如此则,累加其结果。

五、导数与积分口诀1. 基本函数的导数•幂函数求导,幂降一,系数要乘;•对数函数求导,除原函数乘导。

2. 基本函数的积分•幂函数积分,幂升一,系数要乘;•对数函数积分,原函数除导。

3. 牛顿-莱布尼茨公式•定积分谁握,不论上界下界;•上去下回,为积分加上负号。

高中数学口诀

高中数学口诀

高中数学口诀高中数学口诀一、代数基础口诀:1. 二次方程求根公式:delta = b^2 - 4ac, x = (-b ± √delta) / 2a。

2. 一元二次方程的解:两根相等,delta = 0,两根相反,delta > 0,无解,delta < 0。

3. 四则运算优先顺序:括号,乘除,加减。

4. 和差化积:(a ± b)² = a² ± 2ab + b²。

5. 因式分解基本公式:a² - b² = (a + b)(a - b)。

二、函数与图像口诀:1. 一次函数的图像:y = kx + b,直线斜率为k,截距为b。

2. 幂函数“开口”:幂指数为正的开口向上,为负的开口向下。

3. 对称轴分析:二次函数的对称轴公式,x = -b /(2a)。

4. 函数图像平移:y = f(x ± a),横向右移a单位,纵向上移a单位。

5. 一次函数与一次函数相交,解得交点;一次函数与二次函数相交,解二次方程。

三、解三角函数口诀:1. 正弦函数正比例,余弦函数余比例,正割函数倒正弦,余割函数倒余弦,负弦余切亦是然。

2. 正弦余弦周期为2π,正切余切周期为π。

3. 锐角三角函数值,必然均在0到1之间;钝角正切值,以后再求再思量。

4. 归一化:将角度转为弧度,范围在[-π, π]之间。

5. 三角函数关系:tan = sin / cos,cot = cos / sin。

四、几何基础口诀:1. 三角形的外角和等于360°,内角和等于180°。

2. 同位角、内错角、同旁内角,两对角相等。

3. 正弦定理:a / sinA = b / sinB = c / sinC。

4. 余弦定理:c² = a² + b² - 2ab*cosC。

5. 平行线相交定理:同位角相等、内错角相等、同旁内角互补。

高中数学常用口诀

高中数学常用口诀

高中数学常用口诀
在学习高中数学的过程中,口诀是帮助我们记忆公式和定理的有效
方法。

下面列举了一些高中数学常用口诀,希望对大家的学习有所帮助:
一、三角函数口诀:
1.正弦余弦皆与角,正比负比循规矩。

2.正负所在那一限,正弦正切是正的。

3.根号三只友正弦,二的根号二友余弦。

二、圆的口诀:
1.圆周率尺规法,一圆项。

千千根号重:π=3.14159,记忆个不轻。

2.弧长弧度两相邻,三点为圆中间驻,角度琴键弦用好,角度度数
对应着。

3.圆周角邻直角,同弦近圆交。

外切内稳势精顾,辅角对顶三逢亲。

三、平面几何口诀:
1.同类三角相似法,列比率哥达刮拉。

相似方幅求来比,等比等品
君得跟。

2.圆的曲面独一元,求面积头一招君。

高下残积主罕省,内长径尔
再添。

四、导数与微分口诀:
1.函数雏形列惯例,导则吾友以求之。

增长差变须记证,指事牵牛开辟门。

2.多项减副主法兰,微分为证铺金殿。

商显骤忽元幡摇,商商商手绕十课。

以上是一些高中数学常用口诀,希望同学们在学习数学的过程中能够加以运用,提升记忆效率,轻松掌握知识。

数学公式顺口溜高中

数学公式顺口溜高中

数学公式顺口溜高中
一元二次方程求根法,负b加减根号b平方,除以二a可得解。

三角函数正弦余弦,正切余切,割和余割,联立解三角形。

数列通项公式,递推公式灵活用,求和公式记牢牢,一看就知道。

排列组合基础知,阶乘乘积慢慢推,重复排列有公式,求组合靠计算。

函数图像画得好,一阶导数速求导,二阶导数画凸凹,极值定理又出手。

立体几何分三维,体积表面都要会,平行面距离求,交线交角别忘记。

微积分求极限,定义法或夹逼,导数求斜率,一定要掌握好。

以上是数学公式,记住顺口溜,高中考试轻松通过,数学学习快速进步。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。

?nbsp;变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

四、《数列》等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:首先验证再假定,从 K向着K加1,推论过程须详尽,归纳原理来肯定。

五、《复数》虚数单位i一出,数集扩大到复数。

一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。

箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。

代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。

i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。

虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。

几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。

利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。

四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。

复数实数很密切,须注意本质区别。

六、《排列、组合、二项式定理》加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。

特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。

排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。

两条性质两公式,函数赋值变换式。

七、《立体几何》点线面三位一体,柱锥台球为代表。

距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。

计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。

射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。

公理性质三垂线,解决问题一大片。

八、《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。

图形直观数入微,数学本是数形学。

坐标几何一对垂直相交于平面的轴线,可以让平面上的任意一点用一组实数来表示。

轴线的交点是 (0, 0),称为原点。

水平与垂直方向的位置,分别用x与y代表。

一条直线可以用方程式y=mx+c来表示,m是直线的斜率(gradient)。

这条直线与y轴相交于 (0,c),与x轴则相交于(–c/m, 0)。

垂直线的方程式则是x=k,x为定值。

通过(x0, y0)这一点,且斜率为n的直线是y–y0=n(x–x0)一条直线若垂直于斜率为n的直线,则其斜率为–1/n。

通过(x1, y1)与(x2, y2)两点的直线是y=(y2–y1/x2–x1)(x–x2)+y2x1≠x2若两直线的斜率分别为m与n,则它们的夹角θ满足于tanθ=m–n/1+mn半径为r、圆心在(a, b)的圆,以(x–a) 2+(y–b) 2=r2表示。

三维空间里的坐标与二维空间类似,只是多加一个z轴而已,例如半径为r、中心位置在(a, b, c)的球,以(x–a) 2+(y–b) 2+(z–c) 2=r2表示。

三维空间平面的一般式为ax+by+cz=d。

三角学边长为a、b、c的直角三角形,其中一个夹角为θ。

它的六个三角函数分别为:正弦(sine)、余弦(cosine)、正切(tangent)、余割(cosecant)、正割(secant)和余切(cotangent)。

sinθ=b/c cosθ=a/c tanθ=b/acscθ=c/b secθ=c/a cotθ=a/b若圆的半径是1,则其正弦与余弦分别为直角三角形的高与底。

a=cosθb=sinθ依照勾股定理,我们知道a2+b2=c2。

因此对于圆上的任何角度θ,我们都可得出下列的全等式:cos2θ+sin2θ=1三角恒等式根据前几页所述的定义,可得到下列恒等式(identity):tanθ=sinθ/cosθ,cotθ=cosθ/sinθs ecθ=1/cosθ,cscθ=1/sinθ分别用cos 2θ与sin 2θ来除cos 2θ+sin2θ=1,可得:sec 2θ–tan 2θ=1及csc 2θ–cot 2θ=1对于负角度,六个三角函数分别为:sin(–θ)=–sinθcsc(–θ)=–cscθcos(–θ)=cosθsec(–θ)=secθtan(–θ)=–tanθ cot(–θ)=–cotθ当两角度相加时,运用和角公式:sin(α+β)=sinαcosβ+cosαsinβcos(α+β)=cosαcosβ–sinαsinβtan(α+β)=tanα+tanβ/1–tanαtanβ若遇到两倍角或三倍角,运用倍角公式:sin2α=2sinαcosαsin3α=3sinαcos2α–sin3αcos2α= cos 2α–sin 2αcos3α= cos 3α–3sin 2αcosα tan 2α=2tanα/1–tan 2αtan3α=3tanα–tan 3α/1–3tan 2α二维图形下面是一些二维图形的周长与面积公式。

圆:半径= r直径d=2r圆周长= 2πr=πd面积=πr2(π=3.1415926…….)椭圆:面积=πaba与b分别代表短轴与长轴的一半。

矩形:面积= ab周长= 2a+2b平行四边形(parallelogram):面积= bh = ab sinα周长= 2a+2b梯形:面积= 1/2h (a+b)周长= a+b+h (secα+secβ)正n边形:面积= 1/2nb2 cot (180°/n)周长= nb四边形(i):面积= 1/2ab sinα四边形(ii):面积= 1/2 (h1+h2) b+ah1+ch2三维图形以下是三维立体的体积与表面积(包含底部)公式。

球体:体积= 4/3πr3表面积= 4πr2方体:体积= abc表面积= 2(ab+ac+bc)圆柱体:体积= πr2h表面积= 2πrh+2πr2圆锥体:体积= 1/3πr2h表面积=πr√r2+h2+πr2三角锥体:若底面积为A,体积= 1/3Ah平截头体(frustum):体积= 1/3πh (a2+ab+b2)表面积=π(a+b)c+πa2+πb2椭球:体积= 4/3πabc环面(torus):体积= 1/4π2 (a+b) (b–a) 2表面积=π2 (b2–a2)1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)−sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的 )a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan©=baa⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan©=ab1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2数学公式数学公式,是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。

相关文档
最新文档