高中数学公式口诀大全(带口诀)

合集下载

高中数学口诀(知识记忆顺口溜)

高中数学口诀(知识记忆顺口溜)
四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。
复数实数很密切,须注意本质区别。
排列、组合、二次项定律
加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,
简单三角的方程,化为最简求解集。
不等式
解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
还有数学归纳法,证明步骤程序化:
首先验证再假定,从 K向着K加1,
推论过程须详尽,归纳原理来肯定。
复数
虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。
代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。
其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;
图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;
反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;
函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;
图象第一象限内,函数增减看正负。

高中数学知识点记忆口诀

高中数学知识点记忆口诀

高中数学知识点记忆口诀高中数学知识点记忆口诀如下:一、数学思想方法总论中学数学一线牵,代数几何两珠连;三个基本记心间,四种能力非等闲。

常规五法天天练,策略六项时时变,精研数学七思想,诱思导学乐无边。

一线:函数一条主线(贯穿教材始终)二珠:代数、几何珠联璧合(注重知识交汇)三基:方法(熟)知识(牢)技能(巧)四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)五法:换元法、配方法、待定系数法、分析法、归纳法。

六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动。

七思想:函数方程最重要,分类整合常用到,数形结合千般好,化归转化离不了;有限自将无限描,或然终被必然表,特殊一般多辨证,知识交汇步步高。

二、数学知识方法分论集合与逻辑集合逻辑互表里,子交并补归全集。

对错难知开语句,是非分明即命题; 纵横交错原否逆,充分必要四关系。

真非假时假非真,或真且假运算奇。

函数与数列数列函数子母胎,等差等比自成排。

数列求和几多法?通项递推思路开; 变量分离无好坏,函数复合有内外。

同增异减定单调,区间挖隐最值来。

三角函数三角定义比值生,弧度互化实数融; 同角三类善诱导,和差倍半巧变通。

解前若能三平衡,解后便有一脉承; 角值计算大化小,弦切相逢异化同。

方程与不等式函数方程不等根,常使参数范围生; 一正二定三相等,均值定理最值成。

参数不定比大小,两式不同三法证; 等与不等无绝对,变量分离方有恒。

解析几何联立方程解交点,设而不求巧判别; 韦达定理表弦长,斜率转化过中点。

选参建模求轨迹,曲线对称找距离; 动点相关归定义,动中求静助解析。

立体几何多点共线两面交,多线共面一法巧; 空间三垂优弦大,球面两点劣弧小。

线线关系线面找,面面成角线线表; 等积转化连射影,能割善补架通桥。

排列与组合分步则乘分类加,欲邻需捆欲隔插; 有序则排无序组,正难则反排除它。

元素重复连乘法,特元特位你先拿; 平均分组阶乘除,多元少位我当家。

高中数学口诀

高中数学口诀

高中数学口诀高中数学口诀一、代数基础口诀:1. 二次方程求根公式:delta = b^2 - 4ac, x = (-b ± √delta) / 2a。

2. 一元二次方程的解:两根相等,delta = 0,两根相反,delta > 0,无解,delta < 0。

3. 四则运算优先顺序:括号,乘除,加减。

4. 和差化积:(a ± b)² = a² ± 2ab + b²。

5. 因式分解基本公式:a² - b² = (a + b)(a - b)。

二、函数与图像口诀:1. 一次函数的图像:y = kx + b,直线斜率为k,截距为b。

2. 幂函数“开口”:幂指数为正的开口向上,为负的开口向下。

3. 对称轴分析:二次函数的对称轴公式,x = -b /(2a)。

4. 函数图像平移:y = f(x ± a),横向右移a单位,纵向上移a单位。

5. 一次函数与一次函数相交,解得交点;一次函数与二次函数相交,解二次方程。

三、解三角函数口诀:1. 正弦函数正比例,余弦函数余比例,正割函数倒正弦,余割函数倒余弦,负弦余切亦是然。

2. 正弦余弦周期为2π,正切余切周期为π。

3. 锐角三角函数值,必然均在0到1之间;钝角正切值,以后再求再思量。

4. 归一化:将角度转为弧度,范围在[-π, π]之间。

5. 三角函数关系:tan = sin / cos,cot = cos / sin。

四、几何基础口诀:1. 三角形的外角和等于360°,内角和等于180°。

2. 同位角、内错角、同旁内角,两对角相等。

3. 正弦定理:a / sinA = b / sinB = c / sinC。

4. 余弦定理:c² = a² + b² - 2ab*cosC。

5. 平行线相交定理:同位角相等、内错角相等、同旁内角互补。

高中数学常用口诀

高中数学常用口诀

高中数学常用口诀
在学习高中数学的过程中,口诀是帮助我们记忆公式和定理的有效
方法。

下面列举了一些高中数学常用口诀,希望对大家的学习有所帮助:
一、三角函数口诀:
1.正弦余弦皆与角,正比负比循规矩。

2.正负所在那一限,正弦正切是正的。

3.根号三只友正弦,二的根号二友余弦。

二、圆的口诀:
1.圆周率尺规法,一圆项。

千千根号重:π=3.14159,记忆个不轻。

2.弧长弧度两相邻,三点为圆中间驻,角度琴键弦用好,角度度数
对应着。

3.圆周角邻直角,同弦近圆交。

外切内稳势精顾,辅角对顶三逢亲。

三、平面几何口诀:
1.同类三角相似法,列比率哥达刮拉。

相似方幅求来比,等比等品
君得跟。

2.圆的曲面独一元,求面积头一招君。

高下残积主罕省,内长径尔
再添。

四、导数与微分口诀:
1.函数雏形列惯例,导则吾友以求之。

增长差变须记证,指事牵牛开辟门。

2.多项减副主法兰,微分为证铺金殿。

商显骤忽元幡摇,商商商手绕十课。

以上是一些高中数学常用口诀,希望同学们在学习数学的过程中能够加以运用,提升记忆效率,轻松掌握知识。

高一数学公式口诀大全

高一数学公式口诀大全

高一数学公式口诀大全高一数学公式口诀大全:期中考试已经圆满结束,在期中考试后或多或少我们都会找到自己的复习不到位的地方,小编为大家分享高一数学公式口诀,希望能帮助大家复习知识!根据多年的实践,总结规律繁化简;概括知识难变易,高中数学巧记忆。

言简意赅易上口,结合课本胜一筹。

始生之物形必丑,抛砖引得白玉出。

一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X 是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

四、《数列》等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

数学公式顺口溜高中

数学公式顺口溜高中

数学公式顺口溜高中
一元二次方程求根法,负b加减根号b平方,除以二a可得解。

三角函数正弦余弦,正切余切,割和余割,联立解三角形。

数列通项公式,递推公式灵活用,求和公式记牢牢,一看就知道。

排列组合基础知,阶乘乘积慢慢推,重复排列有公式,求组合靠计算。

函数图像画得好,一阶导数速求导,二阶导数画凸凹,极值定理又出手。

立体几何分三维,体积表面都要会,平行面距离求,交线交角别忘记。

微积分求极限,定义法或夹逼,导数求斜率,一定要掌握好。

以上是数学公式,记住顺口溜,高中考试轻松通过,数学学习快速进步。

- 1 -。

高中数学公式口诀大全

高中数学公式口诀大全

高中数学公式口诀大全4、两数列,通项公式n项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:首先验证再假定,从k向着k加1,推论过程须详尽,归纳原理来肯定。

五、复数虚数单位i一出,数集扩大到复数。

一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。

箭杆与x轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。

代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。

i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧5、用得结果。

虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。

几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。

利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。

四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。

复数实数很密切,须注意本质区别。

六、排列、组合、二项式定理加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。

特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑6、插空是技巧。

排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。

两条性质两公式,函数赋值变换式。

七、立体几何点线面三位一体,柱锥台球为代表。

距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。

计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。

射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。

高中数学口诀

高中数学口诀

高中数学口诀高中数学口诀(上)第一章代数基础1. 加减法凑整法:凑整使用,方程等式,快速简化。

2. 高次项凑齐法:幂指数齐,多项式一步搞。

3. 连加连乘法:累次求和,乘积相连,一招攻克全方程。

4. 因式分解法:拆括号秘,公式结构可敲打。

5. 质因数质因式:分解因数速直接,查找素数很实际。

6. 对称轴确定:横纵轴齐,确定坐标真。

7. 根轨迹观察:质数亮点,轨迹变换。

8. 根与系数关系:和、积、乘方,一目了然。

第二章函数与图像1. 函数定性分析:定义域找,单调取,奇偶观,周期求。

2. 函数拓展收缩:加减、倒置,平移缩放队非常。

3. 函数分段讨论:区间函数,条件束缚,得待灵活处理。

4. 典型函数曲线:线性单调直,二次轨迹齐,指数凸上,对数沉下,三角周期短。

第三章概率与统计1. 归纳法法则:观察问题,找规律,归纳推导法。

2. 理论频率法:总频率,个频数,逐个比,并列对比。

3. 期望逼近定律:均值核心,变量重合,独立性和。

4. 抽样指标估计:条件满足,总体估计,抽样调查方法。

第四章解析几何1. 图形基本特征:位移、旋转、对称变换。

2. 直线斜率关系:平行、垂直、相交。

3. 曲线变换规律:平移、伸缩和翻转。

4. 曲线切线性质:一阶导数,求斜率。

5. 图形方程关联:标准、一般、参数。

6. 空间图形投影:轴二等分,点到线垂。

7. 点线关系判定:距离、共面、方位。

高中数学口诀(下)第五章三角函数1. 一二三函数记:弦正双切线。

2. 度和弧的关系:180度等于派。

3. 余弦定理应:角边角乘积调。

4. 三角函数相等:负同,余同,背同,正倒。

5. 标准值计算:三角函数,特殊值。

6. 三角函数变换:加减,倍角,半角。

7. 三角函数扩展:单位圆,科学计算。

第六章高等代数1. 矩阵相乘法:行乘列运算真。

2. 方程组方法:高斯、克莱姆两常规。

3. 行列式性质:交换、抽公因,展开一步求。

4. 向量叉积法:模运算,方向垂直。

第七章导数与微分1. 定义紧记法:限往点,差商极限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式口诀大全一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

四、《数列》等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

五、《复数》虚数单位i一出,数集扩大到复数。

一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。

箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。

代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。

i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。

虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。

几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。

利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。

四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。

复数实数很密切,须注意本质区别。

六、《排列、组合、二项式定理》加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。

特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。

排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。

两条性质两公式,函数赋值变换式。

七、《立体几何》点线面三位一体,柱锥台球为代表。

距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。

计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。

射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。

公理性质三垂线,解决问题一大片。

八、《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。

图形直观数入微,数学本是数形学。

1.诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)s in(π2-a)=cos(a)cos(π2-a)=sin(a)sin(π2+a)=cos(a)cos(π2+a)=-sin(a)sin(π-a)=sin(a)cos(π-a)=-cos(a)sin(π+a)=-sin(a)cos(π+a)=-cos(a)2.两角和与差的三角函数sin(a+b)=sin(a)cos(b)+cos(α)sin(b)cos(a+b)=cos(a)cos(b)-sin(a)sin(b)sin(a-b)=sin(a)cos(b)-cos(a)sin(b)cos(a-b)=cos(a)cos(b)+sin(a)sin(b)tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)3.和差化积公式sin(a)+sin(b)=2sin(a+b2)cos(a-b2)sin(a)−sin(b)=2cos(a+b2)sin(a-b2)cos(a)+cos(b)=2cos(a+b2)cos(a-b2)cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)4.二倍角公式sin(2a)=2sin(a)cos(b)cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)5.半角公式sin2(a2)=1-cos(a)2cos2(a2)=1+cos(a)2tan(a2)=1-cos(a)sin(a)=sina1+cos(a)6.万能公式sin(a)=2tan(a2)1+tan2(a2)cos(a)=1-tan2(a2)1+tan2(a2)tan(a)=2tan(a2)1-tan2(a2)7.其它公式(推导出来的)a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中tan(c)=ba a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中tan(c)=ab 1+sin(a)=(sin(a2)+cos(a2))21-sin(a)=(sin(a2)-cos(a2))2一生受用的数学公式作者:HITMAN编辑坐标几何一对垂直相交于平面的轴线,可以让平面上的任意一点用一组实数来表示。

轴线的交点是(0, 0),称为原点。

水平与垂直方向的位置,分别用x与y代表。

一条直线可以用方程式y=mx+c来表示,m是直线的斜率(gradient)。

这条直线与y 轴相交于(0,c),与x轴则相交于(–c/m, 0)。

垂直线的方程式则是x=k,x为定值。

通过(x0, y0)这一点,且斜率为n的直线是y–y0=n(x–x0)一条直线若垂直于斜率为n的直线,则其斜率为–1/n。

通过(x1, y1)与(x2, y2)两点的直线是y=(y2–y1/x2–x1)(x–x2)+y2x1≠x2若两直线的斜率分别为m与n,则它们的夹角θ满足于tanθ=m–n/1+mn半径为r、圆心在(a, b)的圆,以(x–a) 2+(y–b) 2=r2表示。

三维空间里的坐标与二维空间类似,只是多加一个z轴而已,例如半径为r、中心位置在(a, b, c)的球,以(x–a) 2+(y–b) 2+(z–c) 2=r2表示。

三维空间平面的一般式为ax+by+cz=d。

三角学边长为a、b、c的直角三角形,其中一个夹角为θ。

它的六个三角函数分别为:正弦(sine)、余弦(cosine)、正切(tangent)、余割(cosecant)、正割(secant)和余切(cotangent)。

sinθ=b/c cosθ=a/c tanθ=b/acscθ=c/b secθ=c/a cotθ=a/b若圆的半径是1,则其正弦与余弦分别为直角三角形的高与底。

a=cosθb=sinθ依照勾股定理,我们知道a2+b2=c2。

因此对于圆上的任何角度θ,我们都可得出下列的全等式:cos2θ+sin2θ=1三角恒等式根据前几页所述的定义,可得到下列恒等式(identity):tanθ=sinθ/cosθ,cotθ=cosθ/sinθsecθ=1/cosθ,cscθ=1/sinθ分别用c os 2θ与sin 2θ来除cos 2θ+sin 2θ=1,可得:sec 2θ–tan 2θ=1及csc 2θ–cot 2θ=1对于负角度,六个三角函数分别为:sin(–θ)=–sinθ csc(–θ)=–cscθcos(–θ)=cosθsec(–θ)=secθtan(–θ)=–tanθcot(–θ)=–cotθ当两角度相加时,运用和角公式:sin(α+β)=sinαcosβ+cosαsinβcos(α+β)=cosαcosβ–sinαsinβtan(α+β)=tanα+tanβ/1–tanαtanβ若遇到两倍角或三倍角,运用倍角公式:sin2α=2sinαcosαsin3α=3sinαcos2α–sin3αcos2α=cos 2α–sin 2αcos3α=cos 3α–3sin 2αcosαtan 2α=2tanα/1–tan 2αtan3α=3tanα–tan 3α/1–3tan 2α二维图形下面是一些二维图形的周长与面积公式。

圆:半径=r直径d=2r圆周长=2πr =πd面积=πr2(π=3.1415926…….)椭圆:面积=πaba与b分别代表短轴与长轴的一半。

矩形:面积=ab周长=2a+2b平行四边形(parallelogram):面积=bh =ab sinα周长=2a+2b梯形:面积=1/2h (a+b)周长=a+b+h (secα+secβ)正n边形:面积=1/2nb2 cot (180°/n)周长=nb四边形(i):面积=1/2ab sinα四边形(ii):面积=1/2 (h1+h2) b+ah1+ch2三维图形以下是三维立体的体积与表面积(包含底部)公式。

球体:体积=4/3πr3表面积=4πr2方体:体积=abc表面积=2(ab+ac+bc)圆柱体:体积=πr2h表面积=2πrh+2πr2圆锥体:体积=1/3πr2h表面积=πr√r2+h2 +πr2三角锥体:若底面积为A,体积=1/3Ah平截头体(frustum):体积=1/3πh (a2+ab+b2) 表面积=π(a+b)c+πa2+πb2 椭球:体积=4/3πabc环面(torus):体积=1/4π2 (a+b) (b–a) 2 表面积=π2 (b2–a2)。

相关文档
最新文档