12.2全等三角形的判定(SSS、SAS、ASA、AAS)练习题
专项12-2 三角形全等的判定(SSS)(解析版)

2020—2021八年级上学期专项冲刺卷(人教版)专项12.2 三角形全等的判定(SSS )姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、 选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,工人师傅常用角尺平分一个任意角.做法如下:如图,AOB ∠是一个任意角,在边,OA OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分别与,M N 重合.则过角尺顶点C 的射线OC 便是AOB ∠的平分线,其依据是( )A .SSSB .SASC .ASAD .AAS【答案】A【分析】 利用全等三角形判定定理AAS 、SAS 、ASA 、SSS 对△MOC 和△NOC 进行分析,即可作出正确选择.【详解】解:∵OM =ON ,CM =CN ,OC 为公共边,∴△MOC ≌△NOC (SSS ).∴∠MOC =∠NOC故选:A .【点睛】此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.2.如图,已知AOB ∠,观察图中尺规作图的痕迹,可以判定111COD C O D ≌,其判定的依据是( )A .SSSB .SASC .ASAD .AAS【答案】A【分析】 由作法易得OD =O 1D 1,OC =O 1C 1,CD =C 1D 1,根据SSS 得到三角形全等.【详解】解:在△COD 和△C 1O 1D 1中,111111CO C O DO D O CD C D =⎧⎪=⎨⎪=⎩,∴111COD C O D ≌(SSS ).故选:A .【点睛】本题考查了全等三角形的判定方法SSS 的运用,熟练掌握三角形全等的判定是正确解答本题的关键.3.如图,在ABD △和ACD △中,AB AC =,BD CD =,则ABD ACD △≌△的依据是( )A .SASB .ASAC .AASD .SSS【答案】D【分析】 由SSS 判定△ABD ≌△ACD ,即可得出结论.【详解】解:在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD 和△ACD (SSS );故选:D .【点睛】本题考查了全等三角形的判定方法;熟记全等三角形的判定方法是解决问题的关键.4.如图,2AB =,6BC AE ==,7CE CF ==,8BF =,则四边形ABDE 与CDF 面积的比值是( )A .1B .34C .23D .12【答案】A【分析】 由题意得AC=CB+BA=8,可得AC=BF ,利用SSS 可证得△AEC ≌△BCF ,从而可得S △AEC =S △BCF ,也就得出S △CDF +S △CDB =S ABDE +S △CDB ,这样可求出四边形ABDE 与△CDF 面积的比值.【详解】解:由题意得AC=CB+BA=8,∴AC=BF ,在△AEC 和△BCF 中AC BF CE CF AE BC ⎧⎪⎨⎪⎩===∴△AEC ≌△BCF ,∴S △AEC =S △BCF ,故可得S △CDF +S △CDB =S ABDE +S △CDB ⇒S ABDE =S △CDF ,∴四边形ABDE 与△CDF 面积的比值是1.故选:A .【点睛】本题考查了三角形的面积及等积变换的知识,证明△AEC ≌△BCF 是解答本题的关键. 5.如图,已知AC =AD ,BC =BD ,能确定△ACB ≌△ADB 的理由是( )A .SASB .AASC .ASAD .SSS【答案】D【分析】 因为AC=AD ,BC=BD ,AB 共边,所以可根据SSS 判定△ACB ≌△ADB .【详解】∵AC=AD ,BC=BD ,AB=AB ,∴△ABC ≌△ABD (SSS ),A 、B 、C 都不是全等的原因.故选D .【点睛】本题考查了全等三角形的判定定理的应用,能熟练地掌握全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有:SAS ,ASA ,AAS ,SSS .6.如图,点D 在线段BC 上,若1802ACE ABC x ∠=︒-∠-︒,且BC DE =,AC DC =,AB EC =,则下列角中,大小为x ︒的角是( )A .EFC ∠B .ABC ∠ C .FDC ∠D .DFC ∠【答案】C先证明()ABC CED SSS ∆≅∆得到B E ∠=∠、FCD FDC ∠=∠,再根据1802ACE ABC x ∠=︒-∠-︒可得2CFE x ∠=︒;然后根据外角的性质可得2EFC FDC FCD FDC ∠=∠+∠=∠即可解答.【详解】解:在ABC ∆和CED ∆中,AC CD AB CE BC ED =⎧⎪=⎨⎪=⎩,()ABC CED SSS ∴∆≅∆,B E ∴∠=∠,FCD FDC ∠=∠1802180ACE ABC x E CFE ∠=︒-∠-︒=︒-∠-∠,2CFE x ∴∠=︒,2EFC FDC FCD FDC ∠=∠+∠=∠=2x ︒,FDC x ∴∠=︒.故答案为C .【点睛】本题主要考查全等三角形的判定和性质、三角形的外角的性质等知识,弄清题意、理清角之间的关系是解答本题的关键.7.平面上有△ACD 与△BCE ,其中AD 与BE 相交于P 点,如图.若AC=BC ,AD=BE ,CD=CE ,∠ACE=55°,∠BCD=155°,则∠BPD 的度数为( )A .110°B .125°C .130°D .135°【答案】C【分析】 易证△ACD ≌△BCE ,由全等三角形的性质可知:∠A=∠B ,再根据已知条件和四边形的内角和为360°,即可求出∠BPD 的度数.解:在△ACD 和△BCE 中,AC BC CD CE AD BE =⎧⎪=⎨⎪=⎩,∴△ACD ≌△BCE (SSS ),∴∠A=∠B ,∠BCE=∠ACD ,∴∠BCA=∠ECD ,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°-75°-155°=130°,故选:C .【点睛】本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.8.如图,在ABC ∆中,,,,AB AC BD CD E F ==是AD 上的任意两点.若8,6BC AD ==,则图中阴影部分的面积为( )A .12B .20C .24D .48【答案】A【分析】利用SSS 证明△ADC ≌△ADB ,可得S △ADC =S △ADB ,通过拼接可得S 阴影=S △ADB ,再利用三角形的面积公式可求解.【详解】∵AB=AC ,BD=CD ,AD=AD ,∴△ADC ≌△ADB (SSS ),AD ⊥BC∴S △ADC =S △ADB ,BD=12BC , ∵BC=8,∴BD=4,∵S △BEF =S △CEF ,AD=6,∴S 阴影=S △ADB =12BD•AD 12=×4×6=12. 故选:A .【点睛】本题主要考查了全等三角形的性质与判定,三角形的面积,理解S 阴影=S △ADB 是解题的关键. 9.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明A O B AOB '''∠=∠的依据是( )A .SSSB .SASC .SSAD .ASA【答案】A【分析】 OC O C ='',OD O D ='',CD C D ='',从而可以利用SSS 判定DOC △≌△D O C ''',即可得到结论.【详解】1 、以O 为圆心, 任意长为半径用圆规画弧, 分别交OA 、OB 于点C 、D ;2 、任意画一点O ',画射线O A '',以O '为圆心,OC 长为半径画弧C E ',交O A ''于点C ';3 、以C '为圆心,CD 长为半径画弧, 交弧C E '于点D ;4 、过点D 画射线O B '',A O B '''∠就是与AOB ∠相等的角 .则通过作图我们可以得到OC O C ='',OD O D ='',CD C D ='',从而可以利用SSS 判定DOC △≌△D O C ''',所以A O B AOB '''∠=∠,【点睛】此题考查了学生对常用的作图方法及全等三角形的判定方法的掌握情况.由作法找已知条件,结合判定方法进行思考是解题关键.10.如图,四边形ABCD 的对角线AC ,BD 相交于点O ,ABO ADO △≌△,下列结论:①AC BD ⊥;②CB CD =;③ABC ADC △≌△;④DA DC =.其中所有正确结论的序号是( )A .①②③④B .①②③C .①②④D .①②【答案】B【分析】 根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD ,AB=AD ,再根据全等三角形的判定定理得出△ABC ≌△ADC ,进而得出其它结论.【详解】∵△ABO ≌△ADO ,∴∠AOB=∠AOD=90°,OB=OD ,AB=AD ,∴AC ⊥BD ,故①正确;∵四边形ABCD 的对角线AC 、BD 相交于点O ,OB=OD ,AC ⊥BD ,∴BC=DC ,②正确;在△ABC 和△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,∴△ABC ≌△ADC (SSS ),故③正确;AB=AD ,BC=DC ,没有条件得出DA=DC ,④不正确;综上,①②③正确,故选:B .本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键.11.如图,已知AB=2,BF=8,BC=AE=6,CE=CF=7,则△CDF与四边形ABDE的面积比值是( )A.1:1 B.2:1 C.1:2 D.2:3【答案】A【解析】【分析】由题意得AC=CB+BA=8,可得AC=BF,利用SSS可证得△AEC≌△BCF,从而可得S△AEC=S△BCF,也就得出S△CDF+S△CDB=S四边形ABDE+S△CDB,这样可求出四边形ABDE与△CDF面积的比值.【详解】解:∵AB=2,BF=8,BC=AE=6,∴AC=CB+BA=8,∴AC=BF,在△AEC和△BCF中,AC BF CE CF BC AE=⎧⎪⎨⎪⎩==∴△AEC≌△BCF(SSS),∴S△AEC=S△BCF,∴S△CDF+S△CDB=S四边形ABDE+S△CDB∴S四边形ABDE=S△CDF,∴四边形ABDE与△CDF面积的比值是1:1.故选A.【点睛】本题考查了面积及等积变换的知识,难度一般,根据题意证明△AEC≌△BCF是解答本题的关键,另外要注意等量代换在解答数学题目中的运用.12.如图,已知AE=AD ,AB=AC ,EC=DB ,下列结论:①∠C=∠B ;②∠D=∠E ;③∠EAD=∠BAC ;④∠B=∠E ;其中错误的是( )A .①②B .②③C .③④D .只有④【答案】D【详解】解:因为AE =AD ,AB =AC ,EC =DB ;所以△ABD ≌△ACE(SSS);所以∠C =∠B ,∠D =∠E ,∠EAC=∠DAB ;所以 ∠EAC-∠DAC=∠DAB-∠DAC ;得∠EAD=∠CAB .所以错误的结论是④,故选D .【点睛】此题考查了全等三角形的判定方法,根据已知条件利用SSS 证明两个三角形全等,还考查了全等三角形的性质:全等三角形的对应角相等,全等三角形的对应边相等.二、 填空题(本大题共6小题,每小题3分,共18分)13.如图,在ABC ∆和ADC ∆中,AB AD =,BC DC =,80DAB ∠=︒,则DAC ∠=_______.【答案】40︒【分析】根据全等三角形的判定定理得出△ABC ≌△ADC ,根据全等三角形的性质得出∠DAC=∠BAC ,即可求出结果.【详解】解:在△ABC 和△ADC 中,AB AD AC AC BC DC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠DAC=∠BAC∵∠DAB=80°,∴∠DAC=40°,故答案为:40°.【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是解此题的关键.14.如图,已知AB =AC ,AD =AE ,BD =CE ,B ,D ,E 三点在同一直线上︒︒∠=∠=125,355,则2∠=________.【答案】30°【分析】先根据SSS 证明△ABD ≌△ACE ,然后根据全等三角形的性质可得∠ABD=∠2,再利用三角形的外角性质求解即可.【详解】解:∵AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS ),∴∠ABD=∠2,∵B ,D ,E 三点在同一直线上,∴∠ABD=∠3-∠1=55°-25°=30°,即∠2=30°.故答案为:30°.【点睛】本题考查了全等三角形的判定和性质以及三角形的外角性质,属于基础题型,熟练掌握全等三角形的判定和性质是解题的关键.15.如图,AB =AC ,BD =CD ,AD =AE ,∠EDC =16°,则∠BAD =_____度.【答案】32【分析】证明△ABD ≌△ACD (SSS ),得出∠BAD =∠CAD ,∠ADB =∠ADC =90°,求出∠ADE =90°﹣∠EDC =74°,由等腰三角形的性质得出∠AED =∠ADE =74°,由三角形内角和定理即可得出答案.【详解】解:在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∴∠BAD =∠CAD ,∠ADB =∠ADC =90°,∴∠ADE =90°﹣∠EDC =90°﹣16°=74°,∵AD =AE ,∴∠AED =∠ADE =74°,∴∠BAD =∠CAD =180°﹣2×74°=32°;故答案为:32.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;熟练掌握等腰三角形的性质,证明三角形全等是解题的关键.16.如图所示,AB AC =,BD DC =,若35B ∠=︒,则C ∠=_________.【答案】35︒【分析】连接AD ,根据SSS 证明△ABD ≌△ACD ,再根据全等三角形的性质得出C ∠=35B ∠=︒.【详解】如图所示:连接AD ,在△ABD 和△ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∴C ∠=B ,又∵35B ∠=︒,∴C ∠=35︒.故答案为:35︒.【点睛】考查了全等三角形的判定和性质,解题关键是正确添加辅助线,构成全等三角形.17.如图,AB=AC ,BE=CD ,要使ABE ACD ≅,依据SSS ,则还需添加条件_______________.(填一个即可)【答案】AE AD =或CE BD =(填其中任一个均可)【分析】根据SSS 定理、线段的和差即可得.【详解】由题意,有以下两种情况:(1)当AE AD =时,由SSS 定理可证得ABE ACD ≅;(2)当CE BD =时,AB AC =,AC CE AB BD ∴-=-,即AE AD =,则当CE BD =时,也可利用SSS 定理证得ABE ACD ≅;故答案为:AE AD =或CE BD =(填其中任一个均可).【点睛】本题考查了SSS 定理,熟练掌握SSS 定理是解题关键.18.如图,点E ,F 在线段AD 上,且AE DF =,//AB DC ,AB DC =,连接BE ,BF ,CE ,CF ,则图中共有_____对全等三角形.【答案】3【分析】易证△ABE ≌△DCF,从而可得出△ABF ≌△DCE,进而可得出△BEF ≌△CFE .【详解】∵AB ∥DC∴∠A=∠D∵AB=CD,AE=DF∴△ABE ≌△DCF(SAS)∴AE=DF ,BE=CF∴AF=ED∴△ABF ≌△DCE(SAS)∴BF=EC∵EF=EF∴△BEF ≌△CFE(SSS)故答案为:3.【点睛】本题考查三角形全等的证明,需要注意SSA 是不能证明全等的.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:BC ∥EF .【答案】见解析【分析】先根据AF =DC ,可推得AF -CF =DC -CF ,即AC =DF ;再根据已知AB =DE ,BC =EF ,根据全等三角形全等的判定定理SSS ,即可证明△ABC ≌△DEF ,然后利用全等三角形的性质求解.【详解】证明:∵AF =DC ,∴AF ﹣CF =DC ﹣CF ,即AC =DF ;在△ABC 和△DEF 中AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ).∴∠ACB =∠DFE又∵∠ACB +∠BCD =180°;∠DFE +∠EF A =180° ∴∠BCD =∠EF A∴BC ∥EF【点睛】本题考查了全等三角形全等的判定和性质,熟练掌握各判定定理正确推理论证是解题的关键. 20.已知:如图,,,AB CD DE BF AE CF ===.(1)求证:ABE CDF △≌△;(2)请直接判断AE 与CF 的位置关系.【答案】(1)见详解;(2)AE ∥CF ,理由见详解【分析】(1)证得DF =BE ,可证明△ABE ≌△CDF (SSS ).(2)由全等三角形的性质得出∠AEB =∠DFC ,得出∠AEF =∠EFC ,则可得出结论.【详解】(1)证明:∵DE =BF ,∴DE −EF =BF −EF .即DF =BE ,在△ABE 和△CDF 中,AB CD BE DF AE CF ⎧⎪⎨⎪⎩===,∴△ABE ≌△CDF (SSS ).(2)解:AE ∥CF .理由:∵△ABE ≌△CDF ,∴∠AEB =∠DFC ,∵∠AEB +∠AEF =∠DFC +∠EFC =180°,∴∠AEF =∠EFC ,∴AE ∥CF .【点睛】本题考查了全等三角形的判定和性质,平行线的判定,熟练掌握全等三角形的判定与性质是解题的关键.21.如图,点E 在线段BD 上,已知,,AB AC AD AE BE CD ===.(1)求证:BAC EAD ∠=∠.(2)写出123∠∠∠、、之间的数量关系,并予以证明.【答案】(1)证明见解析;(2)312∠=∠+∠,证明见解析.【分析】(1)根据SSS 证BAE CAD ≅,推出 1BAE ∠=∠即可;(2)根据全等三角形性质推出1BAE ∠=∠,2ABE ∠=∠,代入 3BAE ABE ∠=∠+∠求出即可.【详解】证明:(1)∵在BAE △和CAD 中AE AD AB AC BE DC =⎧⎪=⎨⎪=⎩,∴()BAE CAD SSS ≌,∴1BAE ∠=∠,∴1BAE EAC EAC ∠+∠=∠+∠,∴BAC EAD ∠=∠.(2)312∠=∠+∠,证明:∵BAE CAD △≌△,∴1BAE ∠=∠,2ABE ∠=∠,∵3BAE ABE ∠=∠+∠,∴312∠=∠+∠.【点睛】本题考查了全等三角形的性质和判定和三角形外角性质的应用,注意:全等三角形的对应角相等. 22.如图,点B ,E ,C ,F 在一条直线上,AB=DE ,AC=DF ,BE=CF .试说明:(1)ABC DEF ≅;(2)A EGC ∠=∠.【答案】(1)见解析;(2)见解析【分析】(1)根据等式性质,由BE=CF 得BC=EF ,再根据SSS 定理得△ABC ≌△DEF 即可;(2)由全等三角形得∠B=∠DEF ,由平行线的判定定理得AB ∥DE ,再根据平行线的性质得∠A=∠EGC .【详解】(1)∵BE CF =,∴BE EC CF EC +=+,即BC EF =,在△ABC 与△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,∴(SSS)ABC DEF ≅△△;(2)∵△ABC ≌△DEF ,∴∠B=∠DEF ,∴AB ∥DE ,∴∠A=∠EGC .【点睛】本题考查了全等三角形的判定和性质,平行线的性质与判定,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.23.如图,点A D C F 、、、在同一条直线上,,,AD CF AB DE BC EF ===.(1)请说明ABC DEF △≌△;(2)BC 与EF 平行吗?为什么?【答案】(1)详见解析;(2)//BC EF ,理由详见解析.【分析】(1)根据线段的和差关系可得AC=DF ,利用SSS 即可证明△ABC ≌△DEF ;(2)根据全等三角形的性质可得∠ACB=∠F ,即可证明BC//EF .【详解】(1)∵AD=CF ,∴AD+CD=CF+CD ,即AC=DF ,在△ABC 和△DEF 中, AB CD BC CF AC DF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF .(2)//BC EF ,理由如下:由(1)可知,ABC DEF △≌△,∴F ACB ∠=∠,∴//BC EF .【点睛】本题考查全等三角形的判定与性质及平行线的判定,熟练掌握判定定理是解题关键.24.已知:如图,AB DC =,AD CB =,在DA 、BC 的延长线上各任取一点E ,F ,连接EF .求证:(1)//AB CD ;(2)E F ∠=∠.【答案】(1)见解析;(2)见解析【解析】【分析】(1)连接BD ,证明ABD CDB ∆≅∆,根据全等三角形的性质得到∠3=∠4,由平行线的判定即可得到结论;(2)根据全等三角形的性质得到∠1=∠2,根据平行线的判定和性质即可得到结论.【详解】证明:(1)连接BD ,在ABD ∆和CDB ∆中,AB DC BD DB AD BC =⎧⎪=⎨⎪=⎩,∴ABD CDB ∆≅∆,∴34∠=∠,∴//AB CD ;(2)∵ABD CDB ∆≅∆,∴12∠=∠,∴//AD BC ,∴E F ∠=∠.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.。
SAS,ASA,AAS习题全等三角形练习题

全等三角形练习题第1课时边角边(SAS)一、选择题1. 如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2. 能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. A C=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3. 如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )A. AB∥CDB. AD∥BCC. ∠A=∠CD. ∠ABC=∠CDA4.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.AC=DC,∠A=∠D二、填空题5. 如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是 .6. 如图,AC与BD相交于点O,若AO=BO,AC=BD,∠DBA=30°,∠DAB=50°,则∠CBO= 度.第1题第9题图第3题图第4题图第5题图第10题图第11题图7.(2011黑龙江鸡西)如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥DE ,BF =CE ,请添加一个适当的条件: ,使得AC =DF .8.(2009·怀化中考)如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).9.(2005•天津)如图,OA=OB ,OC=OD ,∠O=60°,∠C=25°,则∠BED= 度.10. 如图,若AO=DO ,只需补充 就可以根据SAS 判定△AOB ≌△DOC.三、解答题11. 如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .12. 已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .13. 如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .ACE B 0第13题图第14题图第12题图D14. 如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.15、如图,点A、B、C、D在同一条直线上,AB=DC,AE//DF,16、如图,在ABC∆中,AB BC=,90ABC∠=。
全等三角形的判定精选练习题(分SSS、SAS、AAS、ASA、HL分专题)

全等三角形的判定(SSS)1、如图 1, AB=AD , CB=CD ,∠ B=30 °,∠ BAD=46 °,则∠ ACD 的度数是 ()A.120 °B.125 °C.127°D.104 °2、如图 2,线段 AD 与 BC 交于点 O,且 AC=BD , AD=BC , ? 则下面的结论中不正确的是()A. △ ABC ≌△ BADB. ∠ CAB= ∠ DBAC.OB=OCD.∠ C= ∠D3、在△ ABC 和△ A 1B 1C1中,已知 AB=A 1B 1, BC=B 1C1,则补充条件 ____________,可得到△ ABC ≌△A 1B1C1.4、如图 3,AB=CD ,BF=DE ,E、F 是 AC 上两点,且AE=CF .欲证∠ B= ∠ D,可先运用等式的性质证明AF=________ ,再用“ SSS”证明 ______≌ _______得到结论.5、如图,已知AB=CD ,AC=BD ,求证:∠ A= ∠ D.6、如图, AC 与 BD 交于点 O, AD=CB ,E、F 是 BD 上两点,且AE=CF ,DE=BF. 请推导下列结论:⑴∠ D=∠B ;⑵ AE ∥CF.7、已知如图,A 、 E、F、 C 四点共线, BF=DE , AB=CD.⑴请你添加一个条件,使△ DEC ≌△ BFA ;⑵在⑴的基础上,求证: DE∥ BF.全等三角形的判定(SAS)1、如图1, AB ∥ CD , AB=CD, BE=DF ,则图中有多少对全等三角形()A.3B.4C.5D.62、如图2, AB=AC,AD=AE,欲证△ABD≌△ ACE ,可补充条件()A. ∠ 1= ∠23、如图 3, AD=BCA.AB ∥ CDB.∠ B= ∠ C,要得到△ ABDB.AD ∥ BCC.∠ D= ∠ ED. ∠BAE= ∠CAD 和△CDB 全等,可以添加的条件是 ( C.∠A=∠ C D. ∠ABC= ∠ CDA)4、如图 4, AB 与 CD 交于点 O, OA=OC , OD=OB ,∠ AOD=________ , ? 根据 _________可得到△ AOD≌△ COB,从而可以得到AD=_________ .5、如图 5,已知△ ABC 中, AB=AC , AD 平分∠ BAC ,请补充完整过程说明△∵ AD 平分∠ BAC ,∴∠ ________=∠ _________(角平分线的定义).在△ ABD 和△ ACD 中,∵ ____________________________ ,∴△ ABD≌△ ACD(ABD)≌△ ACD的理由.6、如图 6,已知 AB=AD , AC=AE ,∠ 1= ∠ 2,求证∠ ADE= ∠ B.7、如图,已知AB=AD ,若 AC 平分∠ BAD ,问 AC 是否平分∠ BCD ?为什么?BA CD8、如图,在△ABC 和△ DEF 中, B 、 E、 F、 C,在同一直线上,下面有 4 个条件,请你在其中选 3 个作为题设,余下的一个作为结论,写一个真命题,并加以证明.①AB=DE ;② AC=DF ;③∠ ABC= ∠ DEF ;④ BE=CF.9、如图⑴, AB ⊥ BD , DE⊥ BD ,点 C 是 BD 上一点,且BC=DE , CD=AB .⑴试判断AC 与 CE 的位置关系,并说明理由.⑵如图⑵,若把△CDE 沿直线 BD 向左平移,使△CDE 的顶点 C 与 B 重合,此时第⑴问中的位置关系还成立吗?(注意字母的变化)AC与BE全等三角形(三) AAS和 ASA【知识要点】1.角边角定理( ASA):有两角及其夹边对应相等的两个三角形全等.2 .角角边定理( AAS):有两角和其中一角的对边对应相等的两个三角形全等.【典型例题】例 1.如图, AB∥ CD, AE=CF,求证: AB=CDD FC O例 2.如图,已知: AD=AE,ACD ABE ,求证:BD=CE.AE BAD E例 3.如图,已知:CD . BAC ABD ,求证:OC=OD.B CD COA B例 4.如图已知: AB=CD,AD=BC,O是 BD中点,过 O点的直线分别交DA和 BC的延长线于E,F. 求证: AE=CF.FDCOAB例 5.如图,已知123 ,AB=AD.求证:BC=DE.EA2E1OB D 3C例6.如图,已知四边形 ABCD中, AB=DC,AD=BC,点 F 在 AD 上,点 E 在 BC上, AF=CE, EF 的对角线 BD 交于 O,请问 O点有何特征?A F DOB EC【经典练习】1. △ ABC和△A B C中,A A' , BC B C ,C C 则△ABC与△ A B C.2.如图,点 C,F 在 BE上,12, BC EF ,请补充一个条件,使△ABC≌DFE,补充的条件是.A DB 12EC F3.在△ ABC和△A B C中,下列条件能判断△ABC和△A B C全等的个数有()① A AB B , BC B C② AA , B B , AC A C③ A AB B , AC B C④ AA , B B , AB A CA . 1 个 B. 2 个 C. 3 个 D. 4 个4.如图,已知 MB=ND,MBA NDC ,下列条件不能判定是△ABM≌△CDN的是()A.M NB. AB=CD M NC. AM=CND. AM∥ CN5.如图 2 所示,∠E=∠ F=90°,∠ B=∠ C, AE=AF,给出下列结论:①∠ 1=∠2② BE=CF③△ ACN≌△ ABM④ CD=DN A C B D 其中正确的结论是_________ _________ 。
全等三角形的判定ASA、AAS-练习题

14.4(2)全等三角形的判定ASA、AAS一、探究现在,我们讨论:如果两个三角形有两个角、一条边分别对应相等,那么这两个三角形能全等吗?这时同样应有两种不同的情况:如图所示,一种情况是两个角及这两角的夹边;另一种情况是两个角及其中一角的对边.ASA AAS二、检测反馈,学以致用1.如图,已知AO=DO,∠AOB与∠DOC是对顶角,还需补充条件______________=_______________,就可根据“ASA”说明△AOB≌△DOC;或者补充条件_______________=_______________,就可根据“AAS”,说明△AOB≌△DOC。
(若把“AO=DO”去掉,答案又会有怎样的变化呢?)2. 如图,OP是∠MON的角平分线,C是OP上一点,CA⊥OM,CB⊥ON,垂足分别为A、B,△AOC≌△BOC吗?为什么?3、如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.求证:AD=AE.三、巩固练习1、如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为______cm.第1题2、已知:如图 , ∠1=∠2 , ∠3=∠4求证:AC=AB.3.如图,AB⊥BC,AD⊥DC,∠BAC=∠CAD.试说明:AB=AD .4、已知:如图 , FB=CE , AB∥ED , AC∥FD.F、C在直线 BE上.求证:AB=DE , AC=DF.5、如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,试说明:AB=AC+AD6、已知:如图,AB=DC,∠A=∠D.试说明:∠1=∠2.7.如图,ΔABC中,D是AC上一点,BE∥AC,BE=AD,AE分别交BD、BC于点F、G.⑴图中有全等三角形吗?请找出来,并证明你的结论.⑵若连结DE,则DE与AB有什么关系?并说明理由.。
(完整版)全等三角形的性质与判定(SSS、SAS、ASA、AAS)练习题

全等三角形的性质与判定(SSS 、SAS 、ASA 、AAS )练习题1. 如图,在△ABC 中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C=2. 如图,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC=90°,则∠A=1题图 2题图 3题图 4题图3. 如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A ′OB ′,边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO=4. 如图,△ABC ≌△ADE,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,则∠DEF=5. 如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE ,垂足分别为D 、E ,若BD=3,CE=2,求DE 的长.6. 如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC,垂足分别是E 、F ,连接EF,交AD 于G ,试判断AD 与EF的关系,并证明你的结论。
7. 如图所示,在△ABC 中,AD 为∠BAC 的角平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长。
8. 如图,AD=BD,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点H ,则BH 与AC 相等吗?为什么?E F C D BEGB E FEF C AB A'B'BCD D B'AHE9. 已知:BD 、CE 是△ABC 的高,点F 在BD 上,BF=AC,点G 在CE 的延长线上,CG=AB,求证:AG ⊥AF10. 如图:在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB,连结AD 、AG.试判断AD 与AG 的关系如何?并证明之。
全等三角形的判定ASA_AAS专题练习题

全等三角形的判定(ASA,AAS)1.已知:如图, ∠1=∠2 , ∠3=∠4求证:AC=AB.2. 已知:如图, FB=CE , AB∥ED , AC∥FD.F、C在直线BE上.求证:AB=DE , AC=DF.3. 已知:如图, AB⊥BC于B , EF⊥AC于G , DF⊥BC于D , BC=DF.求证:AC=EF.4. 已知:如图A C⊥CD于C , B D⊥CD于D , M是AB的中点, 连结CM并延长交BD于点F。
求证:AC=BF.5. 已知:如图, E、D、B、F在同一条直线上, AD∥CB , ∠BAD=∠BCD , DE=BF.求证:AE∥CF.6. 如图在△ABC和△DBC中, ∠1=∠2 , ∠3=∠4 , P是BC上任意一点.求证:PA=PD.7.已知:如图, AE=BF , AD∥BC , AD=BC.AB、CD交于O点.求证:OE=OF8.已知:如图AC∥BD , AE和BE分别平分∠CAB∠DBA ,CD过点E.求证AB=AC+BD直角三角形全等HL【知识要点】斜边直角边公理:有斜边和直角边对应相等的两个直角三角形全等. 【典型例题】例1 如图,B 、E 、F 、C 在同一直线上,AE ⊥BC ,DF ⊥BC ,AB=DC ,BE=CF ,试判断AB 与CD 的位置关系. 例2 已知 如图,AB ⊥BD ,CD ⊥BD ,AB=DC ,求证:AD ∥BC.例3 公路上A 、B 两站(视为直线上的两点)相距26km ,C 、D 为两村庄(视为两个点),DA ⊥AB 于点A ,CB ⊥AB 于点B ,已知DA=16km ,BC=10km ,现要在公路AB 上建一个土特产收购站E ,使CD 两村庄到E 站的距离相等,那么E 站应建在距A 站多远才合理?例4 如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,具有BF=AC ,FD=CD ,试探究BE 与AC 的位置关系.BCABDCEF【经典练习】1.在Rt△ABC和Rt△DEF中,∠ACB=∠DFE=︒90,AB=DE,AC=DF,那么Rt△ABC与Rt△DEF(填全等或不全等)2.如图,点C在∠DAB的内部,CD⊥AD于D,CB⊥AB于B,CD=CB那么Rt△ADC≌Rt△ABC的理由是()A.SSSB. ASAC. SASD. HL3.如图,CE⊥AB,DF⊥AB,垂足分别为E、F,AC∥DB,且AC=BD,那么().A.SSS B. AAS C. SAS D. HL4.下列说法正确的个数有().①有一角和一边对应相等的的两个直角三角形全等;②有两边对应相等的两个直角三角形全等;③有两边和一角对应相等的两个直角三角形全等;④有两角和一边对应相等的两个直角三角形全等.A.1个 B. 2个 C. 3个 D. 4个5.过等腰△ABC的顶点A作底面的垂线,就得到两个全等三角形,其理由是 .6.如图,△ABC中,∠C=︒90,AM平分∠CAB,CM=20cm,那么M到AB的距离是()cm.7.在△ABC和△CBA'''中,如果AB=BA'',∠B=∠B',AC=CA'',那么这两个三角形().A.全等 B. 不一定全等 C. 不全等 D. 面积相等,但不全等8.如图,∠B=∠D=︒90,要证明△ABC与△ADC全等,还需要补充的条件是 .9.如图,在△ABC中,∠ACB=︒90,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.CBAADANP。
全等三角形的判定好题集(SAS,ASA,AAS)中考题集附答案解析

全等三角形的判定(SAS/ASA/AAS)一.选择题(共10小题)1.(贵阳)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一第1题第2题第3题第4题第5题第6题5.(随州)如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O,且AO平分∠BAC,那么图()11.如图,点B与点C关于直线AD轴对称,请你通过连接图中的两个已知点,找出一组全等三角形.连接_________,_________≌_________.第11题第12题第13题12.如图,点B,E,C,F在一条直线上,已知∠B=∠DEC,∠D=∠AOD,BE=CF.看图填空,并注明理由:∵∠D=∠AOD(已知),∴AC∥DF_________.∴_________=_________(两直线平行,同位角相等).∵BE=CF(已知),∴BC=EF_________.又∵∠B=∠DEC(已知),∴△ABC≌△DEF_________.13.如图,如果∠A=∠D,增加一个条件:_________,使△ABC≌△DCB.14.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC和△DFE全等.添加的条件是(填写一个即可):_________,理由是_________.第14题第15题第16题15.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个和书上完全一样的三角形,那么这两个三角形完全一样的依据是_________.16.如图,已知BC=EC,∠BCE=∠ACD,添加一个条件,使△ABC≌△DEC,你添加的条件是_________(答案不唯一,只需填一个)17.如图所示,在等边三角形ABC中,AD=BE=CF,若三个全等的三角形为一组,则图中共有_________组全等三角形.第17题第18题18.如图,点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2,AB=AD,请添加一个条件,使△ABC≌△ADE,则需添加的条件是_________.三.解答题(共8小题)19.(北京一模)已知:如图,点D在AB的延长线上,AB=DE,∠A=∠CBE=∠E.判断△ABC和△BDE是否全等?并证明你的结论.20.如图,在△ABC与△ABD中,BC=BD,∠ABC=∠ABD.点E为BC中点,点F为BD中点,连接AE,AF 求证:△ABE≌△ABF.21.如图,AC=AD,∠BAC=∠BAD,点E在AB上.请写出一对全等三角形,并证明.22.如图,四边形ABCD中,AD=BC,AD∥BC,E、F是对角线上的两点,要使△BCE≌△DAF,还需要添加的条件(只需添加一个条件)是_________,并加以证明.23.阅读并填空:两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点.试说明不重叠的两部分△AOF与△DOC全等的理由.解:因为两三角形纸板完全相同(已知),所以AB=DB,_________,_________(全等三角形对应边、对应角相等).所以AB﹣BF=_________(等式性质).即AF=_________(等式性质).(完成以下说理过程)24.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D.(1)△ACD≌△CBE.(2)若AD=2.5cm,DE=1.1cm.求BE的长.25.如图所示,D是AC上一点,BE∥AC,BE=AD,AE分别交BD,BC于点F,G.图中哪个三角形与△FAD全等?请你找出来并说明全等的理由.26.如图,在△ABC中,已知∠DBC=60°,AC>BC,又△ABC′、△BCA′、△CAB′都是△ABC形外的等边三角形,而点D在AC上,且BC=DC(1)证明:△C′BD≌△B′DC;(2)证明:△AC′D≌△DB′A;参考答案与试题解析一.选择题(共10小题)1.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()2.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是(),∴△中,中,3.如图,已知AB∥CD,AE=CF,则下列条件中不一定能使△ABE≌△CDF的是()4.如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()5.如图,已知CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O,且AO平分∠BAC,那么图中全等三角形共有()对.6.如图,将一张长方形纸片沿对角线AC折叠后,点D落在点E处,与BC交于点F,图中全等三角形(包含△ADC)对数有()7.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()9.如图,AB∥CD,AD∥BC;则图中的全等三角形共有()10.如图,已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()二.填空题(共8小题)11.如图,点B与点C关于直线AD轴对称,请你通过连接图中的两个已知点,找出一组全等三角形.连接AC,△ABD≌△ADC.12.如图,点B,E,C,F在一条直线上,已知∠B=∠DEC,∠D=∠AOD,BE=CF.看图填空,并注明理由:∵∠D=∠AOD(已知),∴AC∥DF(内错角相等,两直线平行).∴∠ACB=∠F(两直线平行,同位角相等).∵BE=CF(已知),∴BC=EF(等式的性质).又∵∠B=∠DEC(已知),∴△ABC≌△DEF(ASA).13.如图,如果∠A=∠D,增加一个条件:∠ABC=∠DCB,使△ABC≌△DCB.14.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC和△DFE全等.添加的条件是(填写一个即可):BC=EF,理由是SSS.15.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个和书上完全一样的三角形,那么这两个三角形完全一样的依据是ASA.16.如图,已知BC=EC,∠BCE=∠ACD,添加一个条件,使△ABC≌△DEC,你添加的条件是AC=CD(答案不唯一).(答案不唯一,只需填一个),17.如图所示,在等边三角形ABC中,AD=BE=CF,若三个全等的三角形为一组,则图中共有5组全等三角形.18.如图,点E在△ABC的外部,点D在BC边上,DE交AC于F,若∠1=∠2,AB=AD,请添加一个条件,使△ABC≌△ADE,则需添加的条件是∠ACB=∠AED或BD=DE或∠1=∠DAE.三.解答题(共8小题)19.已知:如图,点D在AB的延长线上,AB=DE,∠A=∠CBE=∠E.判断△ABC和△BDE是否全等?并证明你的结论.20.如图,在△ABC与△ABD中,BC=BD,∠ABC=∠ABD.点E为BC中点,点F为BD中点,连接AE,AF 求证:△ABE≌△ABF.21.如图,AC=AD,∠BAC=∠BAD,点E在AB上.请写出一对全等三角形,并证明.22.如图,四边形ABCD中,AD=BC,AD∥BC,E、F是对角线上的两点,要使△BCE≌△DAF,还需要添加的条件(只需添加一个条件)是BE=DF,并加以证明.23.阅读并填空:两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点.试说明不重叠的两部分△AOF与△DOC全等的理由.解:因为两三角形纸板完全相同(已知),所以AB=DB,BF=BC,∠A=∠D(全等三角形对应边、对应角相等).所以AB﹣BF=BD﹣BC(等式性质).即AF=CD(等式性质).(完成以下说理过程)24.如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D.(1)△ACD≌△CBE.(2)若AD=2.5cm,DE=1.1cm.求BE的长.25.如图所示,D是AC上一点,BE∥AC,BE=AD,AE分别交BD,BC于点F,G.图中哪个三角形与△FAD 全等?请你找出来并说明全等的理由.26.如图,在△ABC中,已知∠DBC=60°,AC>BC,又△ABC′、△BCA′、△CAB′都是△ABC形外的等边三角形,而点D在AC上,且BC=DC(1)证明:△C′BD≌△B′DC;(2)证明:△AC′D≌△DB′A;(3)对△ABC、△ABC′、△BCA′、△CAB′,从面积大小关系上,你能得出什么结论?,。
12.2全等三角形的判定(SSS、SAS、ASA、AAS)练习题

12.2全等三角形的判定(SSS 、SAS 、ASA 、AAS )练习题1.下列说法正确的是( )A .全等三角形是指形状相同的两个三角形B .全等三角形的周长和面积分别相等C .全等三角形是指面积相等的两个三角形D .所有等边三角形都全等.2.如图,在ABC ∆中,AC AB =,D 为BC 的中点,则下列结论中:①ABD ∆≌ACD ∆;②C B ∠=∠; ③AD 平分BAC ∠;④BC AD ⊥,其中正确的个数为( ) A .1个 B .2个 C .3个 D .4个 3.在ABC ∆和111C B A ∆中,已知11B A AB =,11C B BC =,则补充条件____________,可得到ABC ∆≌111C B A ∆. 4.如图,CD AB =,DE BF =,E 、F 是AC 上两点,且CF AE =.欲证D B ∠=∠,可先运用等式的性质证明AF =________,再用“SSS ”证明________≌_________•得到结论.2题图 4题图 5题图 6题图 5.如图,下列条件中能使ABD ∆≌ACD ∆的是( )A .AC AB =,C B ∠=∠ B .AC AB =,ADC ADB ∠=∠ C .AC AB =,CAD BAD ∠=∠ D .CD BD =,CAD BAD ∠=∠6.如图,线段AB 、CD 互相平分交于点O ,则下列结论错误的是( ) A .BC AD = B .D C ∠=∠ C .BC AD // D .OB OC =7.已知两边及其中一边的对角,作三角形,下列说法中正确的是( ) A .能作唯一的一个三角形 B .最多能作两个三角形 C .不能作出确定的三角形 D .以上说法都不对 8.如图,已知1∠=∠B ,CF BE =,要使ABC ∆≌DEF ∆,下面所添的条件正确的是( ) A .DF AC = B .EF BC = C .EF AC = D .DE AB =8题图 9题图 11题图 12题图 15题图9.如图,在ABC ∆中,AC AB =,点E 、F 是中线AD 上的两点,则图中可证明为全等的三角形有( ) A . 3对 B .4对 C .5对 D .6对 10.如图,ABC ∆和DEF ∆中,下列能判定ABC ∆≌DEF ∆的是( )A .DF AC =,EF BC =,D A ∠=∠B .E B ∠=∠,FC ∠=∠,DF AC = C .D A ∠=∠,E B ∠=∠,F C ∠=∠ D .E B ∠=∠,F C ∠=∠,DE AC = 11.如图,BC AD =,BD AC =,则图中全等三角形有( ) A .1对 B .2对 C .3对 D .4对12.如图,AB CD ⊥于D ,AC BE ⊥于E ,AO 平分BAC ∠,则图中全等三角形有( ) A .1对 B .2对 C .3对 D .4对13.已知B A AB ''=,A A '∠=∠,B B '∠=∠,则ABC ∆≌C B A '''∆的根据是( ) A .SAS B .SSA C .ASA D .AAS 14.ABC ∆和DEF ∆中,DE AB =,E B ∠=∠,要使ABC ∆≌DEF ∆ ,则下列补充的条件中错误的是( ) A .DF AC = B .EF BC = C .D A ∠=∠ D .F C ∠=∠15.如图,AD 平分BAC ∠,AC AB =,则图中全等三角形的对数是( )16.如图,AC AB ⊥,CD BD ⊥,21∠=∠,欲得到CE BE =,•可先利用_______, 证明ABC ∆≌DCB ∆,得到______=______,再根据___________,•证明________•≌________,即可得到CE BE =.17.如图,已知BC AD //,BC AD =.求证:ADC ∆≌CBA ∆18.如图,D 是ABC ∆中边BC 的中点,ACD ABD ∠=∠,且AC AB =. 求证:⑴ABD ∆≌ACD ∆ ⑵EC EB =19.如图,点A 、E 、B 、D 在同一直线上,DE AB =,DF AC =,DF AC //. ⑴求证:ABC ∆≌DEF ∆⑵你还可以得到的结论是 (写出一个即可)20.如图,AE AC =,E C ∠=∠,21∠=∠.求证:ABC ∆≌ADE ∆.21.如图,点B 、E 、C 、F 在同一直线上,CF BE =,DE AB =,DF AC =. 求证:D EGC ∠=∠精品文档22.如图,CE AE =,CE AE ⊥,︒=∠=∠90B D ,求证:DB AB CD =+23.如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .24.如图,已知21∠=∠,43∠=∠ 求证:BE BD =25.如图,已知CD AB =,BD AC =,求证:BE CE =.26. 如图:AB=CD ,AE=DF ,CE=FB ,求证:AF=DE 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.2全等三角形的判定(SSS 、SAS 、ASA 、AAS )练习题
1.下列说法正确的是( )
A .全等三角形是指形状相同的两个三角形
B .全等三角形的周长和面积分别相等
C .全等三角形是指面积相等的两个三角形
D .所有等边三角形都全等.
2.如图,在ABC ∆中,AC AB =,D 为BC 的中点,则下列结论中:①ABD ∆≌ACD ∆;②C B ∠=∠; ③AD 平分BAC ∠;④BC AD ⊥,其中正确的个数为( )
A .1个
B .2个
C .3个
D .4个
3.在ABC ∆和111C B A ∆中,已知11B A AB =,11C B BC =,则补充条件____________,可得到ABC ∆≌111C B A ∆.
4.如图,CD AB =,DE BF =,E 、F 是AC 上两点,且CF AE =.欲证D B ∠=∠,可先运用等式的性质证明AF =________,再用“SSS ”证明________≌_________•得到结论.
2题图 4题图 5题图 6题图
5.如图,下列条件中能使ABD ∆≌ACD ∆的是( )
A .AC A
B =,
C B ∠=∠ B .AC AB =,ADC ADB ∠=∠
C .AC AB =,CA
D BAD ∠=∠ D .CD BD =,CAD BAD ∠=∠
6.如图,线段AB 、CD 互相平分交于点O ,则下列结论错误的是( )
A .BC AD =
B .D
C ∠=∠ C .BC A
D // D .OB OC =
7.已知两边及其中一边的对角,作三角形,下列说法中正确的是( )
A .能作唯一的一个三角形
B .最多能作两个三角形
C .不能作出确定的三角形
D .以上说法都不对
8.如图,已知1∠=∠B ,CF BE =,要使ABC ∆≌DEF ∆,下面所添的条件正确的是( )
A .DF AC =
B .EF B
C = C .EF AC =
D .D
E AB =
8题图 9题图 11题图 12题图 15题图
9.如图,在ABC ∆中,AC AB =,点E 、F 是中线AD 上的两点,则图中可证明为全等的三角形有(
) A . 3对 B .4对 C .5对 D .6对
10.如图,ABC ∆和DEF ∆中,下列能判定ABC ∆≌DEF ∆的是( )
A .DF AC =,EF BC =,D A ∠=∠
B .E B ∠=∠,F
C ∠=∠,DF AC =
C .
D A ∠=∠,
E B ∠=∠,
F C ∠=∠ D .E B ∠=∠,F C ∠=∠,DE AC =
11.如图,BC AD =,BD AC =,则图中全等三角形有( )
A .1对
B .2对
C .3对
D .4对
12.如图,AB CD ⊥于D ,AC BE ⊥于E ,AO 平分BAC ∠,则图中全等三角形有( )
A .1对
B .2对
C .3对
D .4对
13.已知B A AB ''=,A A '∠=∠,B B '∠=∠,则ABC ∆≌C B A '''∆的根据是( )
A .SAS
B .SSA
C .ASA
D .AAS
14.ABC ∆和DEF ∆中,DE AB =,E B ∠=∠,要使ABC ∆≌DEF ∆ ,则下列补充的条件中错误的是(
)
A .DF AC =
B .EF B
C = C .
D A ∠=∠ D .F C ∠=∠
15.如图,AD 平分BAC ∠,AC AB =,则图中全等三角形的对数是( )
16.如图,AC AB ⊥,CD BD ⊥,21∠=∠,欲得到CE BE =,•可先利用_______,
证明ABC ∆≌DCB ∆,得到______=______,再根据___________,•证明________•
≌________,即可得到CE BE =.
17.如图,已知BC AD //,BC AD =.求证:ADC ∆≌CBA ∆
18.如图,D 是ABC ∆中边BC 的中点,ACD ABD ∠=∠,且AC AB =.
求证:⑴ABD ∆≌ACD ∆ ⑵EC EB =
19.如图,点A 、E 、B 、D 在同一直线上,DE AB =,DF AC =,DF AC //.
⑴求证:ABC ∆≌DEF ∆
⑵你还可以得到的结论是 (写出一个即可)
20.如图,AE AC =,E C ∠=∠,21∠=∠.求证:ABC ∆≌ADE ∆.
21.如图,点B 、E 、C 、F 在同一直线上,CF BE =,DE AB =,DF AC =.
求证:D EGC ∠=∠
22.如图,CE AE =,CE AE ⊥,︒=∠=∠90B D ,求证:DB AB CD =+
23.如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .
24.如图,已知21∠=∠,43∠=∠ 求证:BE BD =
25.如图,已知CD AB =,BD AC =,求证:BE CE =.
26. 如图:AB=CD ,AE=DF ,CE=FB ,求证:AF=DE 。
F E D
C B A
27.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,
求证:AE=AF。
28.如图,△ABC中,∠BAC=90°,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线
于E,直线CE交BA的延长线于F.
求证:BD=2CE.
29.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C
30.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE F
E
D
C
B
A D
A
F
E。