2017-2018学年安徽省蚌埠市怀远县马城中学七年级(上)第一次月考数学试卷
2017~2018学年度初一安徽省蚌埠市禹会区北京师大附属学校七年级(上)第一次月考数学试卷

2017~2018学年度安徽省蚌埠市禹会区北京师大附属学校初中一年级(上)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2011•郑州模拟)9的倒数是()A.9B.C.﹣9D.2.(3分)(2016秋•逊克县期中)室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃3.(3分)(2017秋•禹会区校级月考)下列几种说法不正确的是()A.0既不是正数,也不是负数B.所有的有理数都能用数轴上的点表示C.0的绝对值是0D.若|a|=|b|,则a与b互为相反数4.(3分)(2017秋•禹会区校级月考)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.﹣2B.﹣3C.﹣4D.05.(3分)(2017秋•禹会区校级月考)(﹣5)7表示的意义是()A.﹣5乘以7的积B.7个﹣5相乘的积C.5个﹣7相乘的积D.7个﹣5相加的和6.(3分)(2011秋•襄城区期末)下列各式正确的是()A.﹣|﹣3|=3B.+(﹣3)=3C.﹣(﹣3)=3D.﹣(﹣3)=﹣37.(3分)(2017•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×10128.(3分)(2013•连云港)如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>bB.|a|>|b|C.﹣a<bD.a+b<09.(3分)(2017秋•禹会区校级月考)绝对值大于﹣2且小于5的所有的整数的和是()A.7B.﹣7C.0D.510.(3分)(2017秋•禹会区校级月考)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729…通过观察,用你所发现的规律得出32017的末位数是()A.1B.3C.7D.9二、填空题(本大题共11小题,每空2分,共26分)11.(4分)(2017秋•禹会区校级月考)﹣2的相反数是,写出一个比﹣2大的负数:.12.(2分)(2017秋•禹会区校级月考)在数轴上与1相距3个单位长度的点所对应的有理数为.13.(4分)(2017秋•禹会区校级月考)比较大小:﹣﹣,﹣(﹣5)﹣|﹣5|14.(2分)(2017秋•路南区期中)已知a、b互为相反数,c、d互为倒数,则a﹣cd+b=.15.(2分)(2017秋•禹会区校级月考)把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略括号的和的形式是.16.(2分)(2016秋•肃州区校级期中)如果收入1 000元记作+1 000元,那么﹣600元表示.17.(2分)(2014秋•江阴市期中)如图是一个程序运算,若输入的x为﹣5,则输出y的结果为.18.(2分)(2017秋•禹会区校级月考)如表是国外部分城市与北京的时差(带正号的数表示同一时刻该城市比北京时间快的时数):如果现在北京时间是16:00,那么纽约时间是(以上均为24小时制).19.(2分)(2017秋•禹会区校级月考)290200精确到万位的近似数.20.(2分)(2017秋•禹会区校级月考)|a﹣11|+|b+12|=0,则(a+b)2017=.21.(2分)(2005•无锡)一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是个单位.三、解答题(本大题7小题,共67分)22.(6分)(2017秋•禹会区校级月考)把下列各数先在数轴上表示出来,再按从大到小的顺序用“<”号连接起来:﹣4,0,3,22,﹣(﹣),﹣|﹣2|.23.(6分)(2017秋•禹会区校级月考)已知,|a|=3,|b|=2,且ab>0,求a﹣b的值.24.(8分)(2017秋•禹会区校级月考)对于有理数a、b,定义运算:a⊗b=a×b﹣a ﹣b+1(1)计算(﹣3)⊗4的值.(2)填空:5⊗(﹣2)(﹣2)⊗5(填“>”或“=”或“<”).25.(24分)(2017秋•禹会区校级月考)计算(1)(﹣13)+24(2)6﹣(+3)﹣(﹣7)+(﹣2)(3)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(4)(5)5.6+(﹣0.9)+4.4+(﹣8.1)(6)8﹣23÷(﹣4)×(5﹣7)26.(9分)(2017秋•禹会区校级月考)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+9,﹣3,﹣5,﹣15,﹣3,+11,﹣6,﹣8,+5,+6(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.4升/千米,则这次养护共耗油多少升?27.(11分)(2016秋•苏州期中)如图,在5×5的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:A→B(+1,+4),从B到A的爬行路线为:B→A (﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)A→C(,),B→D(,),C→(+1,);(2)若甲虫A的爬行路线为A→B→C→D,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A的爬行路线示意图及最终甲虫P 的位置.2017~2018学年度安徽省蚌埠市禹会区北京师大附属学校初中一年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2011•郑州模拟)9的倒数是()A.9B.C.﹣9D.【分析】直接运用倒数的求法解答.【解答】解:∵9×=1,∴9的倒数是,故选:B.【点评】此题考查倒数的意义和求法:乘积是1的两个数互为倒数,是基础题目.2.(3分)(2016秋•逊克县期中)室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃【分析】求室内温度比室外温度高多少度,就是用室内温度减去室外温度,列出算式.【解答】解:用室内温度减去室外温度,即10﹣(﹣3)=10+3=13.故选D.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.3.(3分)(2017秋•禹会区校级月考)下列几种说法不正确的是()A.0既不是正数,也不是负数B.所有的有理数都能用数轴上的点表示C.0的绝对值是0D.若|a|=|b|,则a与b互为相反数【分析】根据数轴、有理数、相反数和绝对值的相关知识进行判断即可.【解答】解:A、0既不是正数,也不是负数是正确的,不符合题意;B、所有的有理数都能用数轴上的点表示是正确的,不符合题意;C、0的绝对值是0是正确的,不符合题意;D、若|a|=|b|,则a与b相等或互为相反数,原来的说法是错误的,符合题意.故选:D.【点评】此题主要考查了数轴、有理数、绝对值的意义以及相反数的性质.相反数的性质:符号不同,绝对值相等的两个数互为相反数;绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.(3分)(2017秋•禹会区校级月考)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.﹣2B.﹣3C.﹣4D.0【分析】根据A,B表示的数的绝对值相等,得到AB的中点为原点,即可确定出A 表示的数.【解答】解:∵点A,B表示的数的绝对值相等,∴线段AB中点为原点,则A表示的数为﹣3,故选:B.【点评】此题考查了数轴,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.5.(3分)(2017秋•禹会区校级月考)(﹣5)7表示的意义是()A.﹣5乘以7的积B.7个﹣5相乘的积C.5个﹣7相乘的积D.7个﹣5相加的和【分析】根据有理数乘方的定义即可求解.【解答】解:(﹣5)7表示的意义是7个﹣5相乘的积.故选:B.【点评】本题考查了有理数乘方的定义,比较简单,理解求几个相同因数的积的运算叫做乘方,相同因数叫底数,相同因数的个数叫指数,如a n中,底数是a,指数是n,表示的意义是n个a相乘.6.(3分)(2011秋•襄城区期末)下列各式正确的是()A.﹣|﹣3|=3B.+(﹣3)=3C.﹣(﹣3)=3D.﹣(﹣3)=﹣3【分析】根据相反数的定义和绝对值的性质对各选项分析判断后利用排除法求解.【解答】解:A、﹣|﹣3|=﹣3,故本选项错误;B、+(﹣3)=﹣3,故本选项错误;C、﹣(﹣3)=3,故本选项正确;D、﹣(﹣3)=3,故本选项错误.故选:C.【点评】本题考查了相反数的定义,绝对值的性质,是基础题,熟记概念是解题的关键.7.(3分)(2017•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010C.1.6×1011D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2013•连云港)如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>bB.|a|>|b|C.﹣a<bD.a+b<0【分析】根据数轴确定出a、b的正负情况以及绝对值的大小,然后对各选项分析判断后利用排除法求解.【解答】解:根据数轴,a<0,b>0,且|a|<|b|,A、应为a<b,故本选项错误;B、应为|a|<|b|,故本选项错误;C、∵a<0,b>0,且|a|<|b|,∴a+b>0,∴﹣a<b正确,故本选项正确;D、应该是a+b>0,故本选项错误.故选:C.【点评】本题考查了实数与数轴的关系,根据数轴确定出a、b的正负情况以及绝对值的大小是解题的关键.9.(3分)(2017秋•禹会区校级月考)绝对值大于﹣2且小于5的所有的整数的和是()A.7B.﹣7C.0D.5【分析】找出绝对值大于﹣2且小于5的所有的整数,求出之和即可.【解答】解:绝对值大于﹣2且小于5的所有的整数为﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,则所有整数之和为﹣4﹣3﹣2﹣1+0+1+2+3+4=0.故选:C.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.10.(3分)(2017秋•禹会区校级月考)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729…通过观察,用你所发现的规律得出32017的末位数是()A.1B.3C.7D.9【分析】观察不难发现,3n的个位数字分别为3、9、7、1,每4个数为一个循环组依次循环,用2017÷4,根据余数的情况确定答案即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,…,∴个位数字分别为3、9、7、1依次循环,∵2017÷4=504…1,∴32017的个位数字与循环组的第1个数的个位数字相同,是3.故选:B.【点评】本题考查了尾数特征,观察数据发现每4个数为一个循环组,个位数字依次循环是解题的关键.二、填空题(本大题共11小题,每空2分,共26分)11.(4分)(2017秋•禹会区校级月考)﹣2的相反数是2,写出一个比﹣2大的负数:﹣1.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可;有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,根据有理数比较大小的方法,可得一个比﹣2大的负数:﹣1.故答案为:2,﹣1.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.12.(2分)(2017秋•禹会区校级月考)在数轴上与1相距3个单位长度的点所对应的有理数为﹣2或4.【分析】写出与表示1的点相距3个单位的点有2个,从而得到这两个数一个比1小3,另一个比1大3.【解答】解:在数轴上与1相距3个单位长度的点所对应的有理数为﹣2或4.故答案为﹣2或4.【点评】本题考查了数轴:数轴上的点与实数一一对应,数轴上右边的数总比左边的数大;利用数轴解决问题体现了数形结合的优点.13.(4分)(2017秋•禹会区校级月考)比较大小:﹣>﹣,﹣(﹣5)>﹣|﹣5|【分析】(1)先通分,再根据负数比较大小的法则进行比较;(2)先去括号、去绝对值符号,再根据有理数比较大小的法则进行比较.【解答】解:(1)∵﹣=﹣<0,﹣=﹣<0,|﹣|<|﹣|,∴﹣>﹣;(2)∵﹣(﹣5)=5>0,﹣|﹣5|=﹣5<0,∴﹣(﹣5)>﹣|﹣5|.故答案为:>、>.【点评】本题考查的是有理数的大小比较,解答此类题目时要先把各数化为最简形式,再根据有理数大小比较的法则进行比较.14.(2分)(2017秋•路南区期中)已知a、b互为相反数,c、d互为倒数,则a﹣cd+b=﹣1.【分析】根据题意列出式子a+b=0,cd=1,然后就将原式化简变形进行解答即可.【解答】解:由题意,得a+b=0,cd=1,∴a﹣cd+b=a+b﹣cd=0﹣1=﹣1.【点评】本题主要考查互为相反数的性质与互为倒数的性质.互为相反数的两个数和为0;乘积是1的两个数互为倒数.15.(2分)(2017秋•禹会区校级月考)把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略括号的和的形式是﹣8﹣4﹣5+2.【分析】根据有理数的加减法法则将括号去掉.【解答】解:(﹣8)﹣(+4)+(﹣5)﹣(﹣2)=﹣8﹣4﹣5+2.故答案为:﹣8﹣4﹣5+2.【点评】本题主要考查了有理数的加减混合运算,要熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.16.(2分)(2016秋•肃州区校级期中)如果收入1 000元记作+1 000元,那么﹣600元表示支出600元.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:由题意得:﹣600元表示支出600元.故答案为:支出600元.【点评】本题主要考查了正数和负数得定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.17.(2分)(2014秋•江阴市期中)如图是一个程序运算,若输入的x为﹣5,则输出y的结果为﹣10.【分析】根据图表列出算式,然后把x=﹣5代入算式进行计算即可得解.【解答】解:根据题意可得,y=[x+4﹣(﹣3)]×(﹣5),当x=﹣5时,y=[﹣5+4﹣(﹣3)]×(﹣5)=(﹣5+4+3)×(﹣5)=2×(﹣5)=﹣10.故答案为:﹣10.【点评】本题考查了代数式求值,根据图表正确列出算式是解题的关键.18.(2分)(2017秋•禹会区校级月考)如表是国外部分城市与北京的时差(带正号的数表示同一时刻该城市比北京时间快的时数):如果现在北京时间是16:00,那么纽约时间是4:00.(以上均为24小时制).【分析】根据表格可以得到北京时间比纽约时间快的时数,从而可以解答本题.【解答】解:∵由表格可得,北京时间比纽约时间快的时数为:0﹣(﹣12)=12,∴当北京时间是16:00时,纽约时间为:16﹣12=4(时),即如果现在北京时间是16:00,那么纽约时间是4:00,故答案为:4:00.【点评】本题考查正数和负数,解题的关键明确正数和负数在题目中的实际含义.19.(2分)(2017秋•禹会区校级月考)290200精确到万位的近似数 2.9×105.【分析】先利用科学记数法表示,然后把千位上的数字0进行四舍五入即可.【解答】解:290200精确到万位的近似数为2.9×105.故答案为2.9×105.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.20.(2分)(2017秋•禹会区校级月考)|a﹣11|+|b+12|=0,则(a+b)2017=﹣1.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣11=0,b+12=0,解得a=11,b=﹣12,所以,(a+b)2017=(11﹣12)2017=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.21.(2分)(2005•无锡)一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是50个单位.【分析】设向右为正,向左为负.根据正负数的意义列出式子计算即可.【解答】解:设向右为正,向左为负.1+(﹣2)+3+(﹣4)+.+(﹣100)=[1+(﹣2)]+[3+(﹣4)]+.+[99+(﹣100)]=﹣50.∴落点处离O点的距离是50个单位.故答案为50.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.三、解答题(本大题7小题,共67分)22.(6分)(2017秋•禹会区校级月考)把下列各数先在数轴上表示出来,再按从大到小的顺序用“<”号连接起来:﹣4,0,3,22,﹣(﹣),﹣|﹣2|.【分析】先根据数轴表示数的方法把所给的数表示出来,然后直接写出它们的大小关系.【解答】解:22=﹣4,(﹣)=;﹣|﹣2|=﹣2如图所示:它们的大小关系为:﹣4<﹣|﹣2|<0<﹣(﹣)<2<22.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.也考查了数轴.23.(6分)(2017秋•禹会区校级月考)已知,|a|=3,|b|=2,且ab>0,求a﹣b的值.【分析】直接利用绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵ab>0,∴a=3时,b=2;a=﹣3时,b=﹣2,故a﹣b=3﹣2=1或a﹣b=﹣3﹣(﹣2)=﹣1.【点评】此题主要考查了有理数的乘法以及绝对值,正确得出a,b的值是解题关键.24.(8分)(2017秋•禹会区校级月考)对于有理数a、b,定义运算:a⊗b=a×b﹣a ﹣b+1(1)计算(﹣3)⊗4的值.(2)填空:5⊗(﹣2)=(﹣2)⊗5(填“>”或“=”或“<”).【分析】(1)利用题中的新定义计算即可得到结果;(2)两式利用题中新定义计算得到结果,即可做出判断.【解答】解:(1)根据题意得:(﹣3)⊗4=﹣12+3﹣4+1=﹣12;(2)根据题意得:5⊗(﹣2)=﹣10﹣5+2+1=﹣12;(﹣2)⊗5=﹣10+2﹣5+1=﹣12,则5⊗(﹣2)=(﹣2)⊗5.故答案为:(2)=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(24分)(2017秋•禹会区校级月考)计算(1)(﹣13)+24(2)6﹣(+3)﹣(﹣7)+(﹣2)(3)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(4)(5)5.6+(﹣0.9)+4.4+(﹣8.1)(6)8﹣23÷(﹣4)×(5﹣7)【分析】(1)根据有理数的加法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法和加减法可以解答本题;(4)根据乘法分配律可以解答本题;(5)根据有理数的加减法可以解答本题;(6)根据有理数的乘除法和减法可以解答本题;【解答】解:(1)(﹣13)+24=11;(2)6﹣(+3)﹣(﹣7)+(﹣2)=6+(﹣3)+7+(﹣2)=8;(3)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)=﹣10+8÷4﹣12=﹣10+2﹣12=﹣20;(4)=(﹣18)+20+(﹣21)=﹣19;(5)5.6+(﹣0.9)+4.4+(﹣8.1)=(5.6+4.4)+[(﹣0.9)+(﹣8.1)]=10+(﹣9)=1;(6)8﹣23÷(﹣4)×(5﹣7)=8﹣8÷(﹣4)×(﹣2)=8﹣4=4.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.26.(9分)(2017秋•禹会区校级月考)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+9,﹣3,﹣5,﹣15,﹣3,+11,﹣6,﹣8,+5,+6(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.4升/千米,则这次养护共耗油多少升?【分析】(1)把养护小组当天的行驶记录加起来,根据向东为正,向西为负,判断养护小组最后到达的地方在出发点的那个方向,距出发点多远;(2)计算养护小组行驶的所有数据,比较得到养护过程中最远距离出发点的距离;(3)计算养护小组所有行驶路程的绝对值的和,根据耗油量为0.4升/千米,计算出这次养护的耗油.【解答】解:(1)+9﹣3﹣5﹣15﹣3+11﹣6﹣8+5+6=(+9+11)+(﹣3﹣3﹣15﹣8)+(﹣6+6)+(﹣5+5)=20﹣29+0+0=﹣9答:养护小组最后到达的地方在出发点的西方,距出发点9千米;(2)因为9﹣3=6,6﹣5=1,1﹣15=﹣14,﹣14﹣3=﹣17,﹣17+11=﹣6,﹣6﹣6=﹣12,﹣12﹣8=﹣20,﹣20+5=﹣15,﹣15+6=﹣9,其中绝对值最大的是﹣20,即养护过程中,最远处离出发点20千米;(3)由题意:(|+9|+|﹣3|+|﹣5|+|﹣15|+|﹣3|+|+11|+|﹣6|+|﹣8|+|+5|+|+6|)×0.4=(9+3+5+15+3+11+6+8+5+6)×0.4=71×0.4=28.4(升)答:这次养护共耗油28.4升【点评】本题考查了正负数的意义及有理数的混合运算,理解题意是解决本题的关键.27.(11分)(2016秋•苏州期中)如图,在5×5的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:A→B(+1,+4),从B到A的爬行路线为:B→A (﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)A→C(+3,+4),B→D(+3,﹣2),C→D(+1,﹣2);(2)若甲虫A的爬行路线为A→B→C→D,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A的爬行路线示意图及最终甲虫P 的位置.【分析】(1)根据第一个数表示左右方向,第二个数表示上下方向结合图形写出即可;(2)根据行走路线列出算式计算即可得解;(3)根据方格和标记方法作出线路图即可得解.【解答】解:(1)A→C(+3,+4);B→D(+3,﹣2);C→D(+1,﹣2)故答案为:+3,+4;+3,﹣2;D,﹣2;(2)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为1+4+2+0+1+2=10.答:甲虫A爬行的路程为10;(3)甲虫A爬行示意图与点P的位置如图所示:【点评】本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.。
2017-2018学年安徽省蚌埠市七年级数学上期中试题(含答案)

安徽省蚌埠市2017-2018学年七年级数学上学期期中试题(时间90分钟,满分120分)题号一二三总分得分一、选择题(每题3分,共30分)1.-2017的相反数是()A. B.- C. -2017 D. 20172.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A. 0.95×kmB. 9.5×kmC. 9.5×kmD. 950×km3.计算(-2)×3的结果是()A. -6B. -5C. 1D. 64.数轴上的点A到原点的距离是5,则点A表示的数为()A. ﹣5B. 5C. 5或﹣5D. 2.5或﹣2.55.如果与﹣3是同类项,那么m、n的值分别为()A. m=﹣2,n=3B. m=2,n=3C. m=﹣3,n=2D. m=3,n=26. 一个多项式A与多项式B=2x2-3xy-y2的和是多项式C=x2+xy+y2,则A等于( )A. x2-4xy-2y2B. -x2+4xy+2y2C. 3x2-2xy-2y2D. 3x2-2xy7.122和它的相反数之间的整数有()A. 3个B.4个C. 5个D. 6个8.有理数a,b在数轴上的位置如图所示,以下说法正确的是()A.a-b>0 B.|b|>|a| C.ab>0 D.b<-a9.已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为()A.5 B.1 C.-5 D.-110.某商品降低%x 后是a 元,则原价是 ( ) A .100ax元 B. (1)100x a +元 C.100ax元 D.1100a x-元二、填空题(每题3分,共24分)11.计算:+5==______.12.列式表示“比m 的平方的3倍大1的数”= ______ . 13.若120170a b ++-=,那么b a =_____________14.多项式3x |m |-(m +2)x +7是关于x 的二次三项式,则m 的值为______ .15. 若1x =时,式子37ax bx ++的值为4.则当1x =-时,式子37ax bx ++的值为___________.16.当x= ______ 时,代数式2x-1与-3x+4的值相等. 17.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)f (1)=3,f (2)=4,f (3)=5,f (4)=6,… (2)122f ⎛⎫=⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:()120172017f f ⎛⎫-⎪⎝⎭=____________。
安徽省蚌埠市禹会区2017_2018学年七年级数学上学期第一次月考试卷

安徽省蚌埠市禹会区2017-2018学年七年级数学上学期第一次月考试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2011•郑州模拟)9的倒数是()A.9 B.C.﹣9 D.2.(3分)(2016秋•逊克县期中)室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃3.(3分)(2017秋•禹会区校级月考)下列几种说法不正确的是()A.0既不是正数,也不是负数B.所有的有理数都能用数轴上的点表示C.0的绝对值是0D.若|a|=|b|,则a与b互为相反数4.(3分)(2017秋•禹会区校级月考)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.﹣2 B.﹣3 C.﹣4 D.05.(3分)(2017秋•禹会区校级月考)(﹣5)7表示的意义是()A.﹣5乘以7的积B.7个﹣5相乘的积C.5个﹣7相乘的积D.7个﹣5相加的和6.(3分)(2011秋•襄城区期末)下列各式正确的是()A.﹣|﹣3|=3 B.+(﹣3)=3 C.﹣(﹣3)=3 D.﹣(﹣3)=﹣37.(3分)(2017•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×10128.(3分)(2013•连云港)如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b<09.(3分)(2017秋•禹会区校级月考)绝对值大于﹣2且小于5的所有的整数的和是()A.7 B.﹣7 C.0 D.510.(3分)(2017秋•禹会区校级月考)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729…通过观察,用你所发现的规律得出32017的末位数是()A.1 B.3 C.7 D.9二、填空题(本大题共11小题,每空2分,共26分)11.(4分)(2017秋•禹会区校级月考)﹣2的相反数是,写出一个比﹣2大的负数:.12.(2分)(2017秋•禹会区校级月考)在数轴上与1相距3个单位长度的点所对应的有理数为.13.(4分)(2017秋•禹会区校级月考)比较大小:﹣﹣,﹣(﹣5)﹣|﹣5|14.(2分)(2017秋•路南区期中)已知a、b互为相反数,c、d互为倒数,则a﹣cd+b= .15.(2分)(2017秋•禹会区校级月考)把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略括号的和的形式是.16.(2分)(2016秋•肃州区校级期中)如果收入1 000元记作+1 000元,那么﹣600元表示.17.(2分)(2014秋•江阴市期中)如图是一个程序运算,若输入的x为﹣5,则输出y的结果为.18.(2分)(2017秋•禹会区校级月考)如表是国外部分城市与北京的时差(带正号的数表示同一时刻该城市比北京时间快的时数):如果现在北京时间是16:00,那么纽约时间是(以上均为24小时制).19.(2分)(2017秋•禹会区校级月考)290200精确到万位的近似数.20.(2分)(2017秋•禹会区校级月考)|a﹣11|+|b+12|=0,则(a+b)2017= .21.(2分)(2005•无锡)一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是个单位.三、解答题(本大题7小题,共67分)22.(6分)(2017秋•禹会区校级月考)把下列各数先在数轴上表示出来,再按从大到小的顺序用“<”号连接起来:﹣4,0,3,22,﹣(﹣),﹣|﹣2|.23.(6分)(2017秋•禹会区校级月考)已知,|a|=3,|b|=2,且ab>0,求a﹣b的值.24.(8分)(2017秋•禹会区校级月考)对于有理数a、b,定义运算:a⊗b=a×b﹣a﹣b+1 (1)计算(﹣3)⊗4的值.(2)填空:5⊗(﹣2)(﹣2)⊗5(填“>”或“=”或“<”).25.(24分)(2017秋•禹会区校级月考)计算(1)(﹣13)+24(2)6﹣(+3)﹣(﹣7)+(﹣2)(3)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(4)(5)5.6+(﹣0.9)+4.4+(﹣8.1)(6)8﹣23÷(﹣4)×(5﹣7)26.(9分)(2017秋•禹会区校级月考)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+9,﹣3,﹣5,﹣15,﹣3,+11,﹣6,﹣8,+5,+6(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为 0.4升/千米,则这次养护共耗油多少升?27.(11分)(2016秋•苏州期中)如图,在5×5的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:A→B(+1,+4),从B到A的爬行路线为:B→A(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)A→C(,),B→D(,),C→(+1,);(2)若甲虫A的爬行路线为A→B→C→D,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A的爬行路线示意图及最终甲虫P的位置.2017-2018学年安徽省蚌埠市禹会区北京师大附属学校七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2011•郑州模拟)9的倒数是()A.9 B.C.﹣9 D.【分析】直接运用倒数的求法解答.【解答】解:∵9×=1,∴9的倒数是,故选:B.【点评】此题考查倒数的意义和求法:乘积是1的两个数互为倒数,是基础题目.2.(3分)(2016秋•逊克县期中)室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃【分析】求室内温度比室外温度高多少度,就是用室内温度减去室外温度,列出算式.【解答】解:用室内温度减去室外温度,即10﹣(﹣3)=10+3=13.故选D.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.3.(3分)(2017秋•禹会区校级月考)下列几种说法不正确的是()A.0既不是正数,也不是负数B.所有的有理数都能用数轴上的点表示C.0的绝对值是0D.若|a|=|b|,则a与b互为相反数【分析】根据数轴、有理数、相反数和绝对值的相关知识进行判断即可.【解答】解:A、0既不是正数,也不是负数是正确的,不符合题意;B、所有的有理数都能用数轴上的点表示是正确的,不符合题意;C、0的绝对值是0是正确的,不符合题意;D、若|a|=|b|,则a与b相等或互为相反数,原来的说法是错误的,符合题意.故选:D.【点评】此题主要考查了数轴、有理数、绝对值的意义以及相反数的性质.相反数的性质:符号不同,绝对值相等的两个数互为相反数;绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.(3分)(2017秋•禹会区校级月考)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.﹣2 B.﹣3 C.﹣4 D.0【分析】根据A,B表示的数的绝对值相等,得到AB的中点为原点,即可确定出A表示的数.【解答】解:∵点A,B表示的数的绝对值相等,∴线段AB中点为原点,则A表示的数为﹣3,故选:B.【点评】此题考查了数轴,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.5.(3分)(2017秋•禹会区校级月考)(﹣5)7表示的意义是()A.﹣5乘以7的积B.7个﹣5相乘的积C.5个﹣7相乘的积D.7个﹣5相加的和【分析】根据有理数乘方的定义即可求解.【解答】解:(﹣5)7表示的意义是7个﹣5相乘的积.故选:B.【点评】本题考查了有理数乘方的定义,比较简单,理解求几个相同因数的积的运算叫做乘方,相同因数叫底数,相同因数的个数叫指数,如a n中,底数是a,指数是n,表示的意义是n个a相乘.6.(3分)(2011秋•襄城区期末)下列各式正确的是()A.﹣|﹣3|=3 B.+(﹣3)=3 C.﹣(﹣3)=3 D.﹣(﹣3)=﹣3【分析】根据相反数的定义和绝对值的性质对各选项分析判断后利用排除法求解.【解答】解:A、﹣|﹣3|=﹣3,故本选项错误;B、+(﹣3)=﹣3,故本选项错误;C、﹣(﹣3)=3,故本选项正确;D、﹣(﹣3)=3,故本选项错误.故选:C.【点评】本题考查了相反数的定义,绝对值的性质,是基础题,熟记概念是解题的关键.7.(3分)(2017•安徽)截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元,其中1600亿用科学记数法表示为()A.16×1010B.1.6×1010 C.1.6×1011 D.0.16×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:1600亿用科学记数法表示为1.6×1011,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)(2013•连云港)如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b<0【分析】根据数轴确定出a、b的正负情况以及绝对值的大小,然后对各选项分析判断后利用排除法求解.【解答】解:根据数轴,a<0,b>0,且|a|<|b|,A、应为a<b,故本选项错误;B、应为|a|<|b|,故本选项错误;C、∵a<0,b>0,且|a|<|b|,∴a+b>0,∴﹣a<b正确,故本选项正确;D、应该是a+b>0,故本选项错误.故选:C.【点评】本题考查了实数与数轴的关系,根据数轴确定出a、b的正负情况以及绝对值的大小是解题的关键.9.(3分)(2017秋•禹会区校级月考)绝对值大于﹣2且小于5的所有的整数的和是()A.7 B.﹣7 C.0 D.5【分析】找出绝对值大于﹣2且小于5的所有的整数,求出之和即可.【解答】解:绝对值大于﹣2且小于5的所有的整数为﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,则所有整数之和为﹣4﹣3﹣2﹣1+0+1+2+3+4=0.故选:C.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.10.(3分)(2017秋•禹会区校级月考)观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729…通过观察,用你所发现的规律得出32017的末位数是()A.1 B.3 C.7 D.9【分析】观察不难发现,3n的个位数字分别为3、9、7、1,每4个数为一个循环组依次循环,用2017÷4,根据余数的情况确定答案即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,…,∴个位数字分别为3、9、7、1依次循环,∵2017÷4=504…1,∴32017的个位数字与循环组的第1个数的个位数字相同,是3.故选:B.【点评】本题考查了尾数特征,观察数据发现每4个数为一个循环组,个位数字依次循环是解题的关键.二、填空题(本大题共11小题,每空2分,共26分)11.(4分)(2017秋•禹会区校级月考)﹣2的相反数是 2 ,写出一个比﹣2大的负数:﹣1 .【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可;有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,根据有理数比较大小的方法,可得一个比﹣2大的负数:﹣1.故答案为:2,﹣1.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.12.(2分)(2017秋•禹会区校级月考)在数轴上与1相距3个单位长度的点所对应的有理数为﹣2或4 .【分析】写出与表示1的点相距3个单位的点有2个,从而得到这两个数一个比1小3,另一个比1大3.【解答】解:在数轴上与1相距3个单位长度的点所对应的有理数为﹣2或4.故答案为﹣2或4.【点评】本题考查了数轴:数轴上的点与实数一一对应,数轴上右边的数总比左边的数大;利用数轴解决问题体现了数形结合的优点.13.(4分)(2017秋•禹会区校级月考)比较大小:﹣>﹣,﹣(﹣5)>﹣|﹣5|【分析】(1)先通分,再根据负数比较大小的法则进行比较;(2)先去括号、去绝对值符号,再根据有理数比较大小的法则进行比较.【解答】解:(1)∵﹣=﹣<0,﹣=﹣<0,|﹣|<|﹣|,∴﹣>﹣;(2)∵﹣(﹣5)=5>0,﹣|﹣5|=﹣5<0,∴﹣(﹣5)>﹣|﹣5|.故答案为:>、>.【点评】本题考查的是有理数的大小比较,解答此类题目时要先把各数化为最简形式,再根据有理数大小比较的法则进行比较.14.(2分)(2017秋•路南区期中)已知a、b互为相反数,c、d互为倒数,则a﹣cd+b= ﹣1 .【分析】根据题意列出式子a+b=0,cd=1,然后就将原式化简变形进行解答即可.【解答】解:由题意,得a+b=0,cd=1,∴a﹣cd+b=a+b﹣cd=0﹣1=﹣1.【点评】本题主要考查互为相反数的性质与互为倒数的性质.互为相反数的两个数和为0;乘积是1的两个数互为倒数.15.(2分)(2017秋•禹会区校级月考)把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略括号的和的形式是﹣8﹣4﹣5+2 .【分析】根据有理数的加减法法则将括号去掉.【解答】解:(﹣8)﹣(+4)+(﹣5)﹣(﹣2)=﹣8﹣4﹣5+2.故答案为:﹣8﹣4﹣5+2.【点评】本题主要考查了有理数的加减混合运算,要熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数.16.(2分)(2016秋•肃州区校级期中)如果收入1 000元记作+1 000元,那么﹣600元表示支出600元.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:由题意得:﹣600元表示支出600元.故答案为:支出600元.【点评】本题主要考查了正数和负数得定义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.17.(2分)(2014秋•江阴市期中)如图是一个程序运算,若输入的x为﹣5,则输出y的结果为﹣10 .【分析】根据图表列出算式,然后把x=﹣5代入算式进行计算即可得解.【解答】解:根据题意可得,y=[x+4﹣(﹣3)]×(﹣5),当x=﹣5时,y=[﹣5+4﹣(﹣3)]×(﹣5)=(﹣5+4+3)×(﹣5)=2×(﹣5)=﹣10.故答案为:﹣10.【点评】本题考查了代数式求值,根据图表正确列出算式是解题的关键.18.(2分)(2017秋•禹会区校级月考)如表是国外部分城市与北京的时差(带正号的数表示同一时刻该城市比北京时间快的时数):如果现在北京时间是16:00,那么纽约时间是4:00.(以上均为24小时制).【分析】根据表格可以得到北京时间比纽约时间快的时数,从而可以解答本题.【解答】解:∵由表格可得,北京时间比纽约时间快的时数为:0﹣(﹣12)=12,∴当北京时间是16:00时,纽约时间为:16﹣12=4(时),即如果现在北京时间是16:00,那么纽约时间是4:00,故答案为:4:00.【点评】本题考查正数和负数,解题的关键明确正数和负数在题目中的实际含义.19.(2分)(2017秋•禹会区校级月考)290200精确到万位的近似数 2.9×105.【分析】先利用科学记数法表示,然后把千位上的数字0进行四舍五入即可.【解答】解:290200精确到万位的近似数为2.9×105.故答案为2.9×105.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.20.(2分)(2017秋•禹会区校级月考)|a﹣11|+|b+12|=0,则(a+b)2017= ﹣1 .【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣11=0,b+12=0,解得a=11,b=﹣12,所以,(a+b)2017=(11﹣12)2017=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.21.(2分)(2005•无锡)一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是50 个单位.【分析】设向右为正,向左为负.根据正负数的意义列出式子计算即可.【解答】解:设向右为正,向左为负.1+(﹣2)+3+(﹣4)+.+(﹣100)=[1+(﹣2)]+[3+(﹣4)]+.+[99+(﹣100)]=﹣50.∴落点处离O点的距离是50个单位.故答案为50.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.三、解答题(本大题7小题,共67分)22.(6分)(2017秋•禹会区校级月考)把下列各数先在数轴上表示出来,再按从大到小的顺序用“<”号连接起来:﹣4,0,3,22,﹣(﹣),﹣|﹣2|.【分析】先根据数轴表示数的方法把所给的数表示出来,然后直接写出它们的大小关系.【解答】解:22=﹣4,(﹣)=;﹣|﹣2|=﹣2如图所示:它们的大小关系为:﹣4<﹣|﹣2|<0<﹣(﹣)<2<22.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.也考查了数轴.23.(6分)(2017秋•禹会区校级月考)已知,|a|=3,|b|=2,且ab>0,求a﹣b的值.【分析】直接利用绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵ab>0,∴a=3时,b=2;a=﹣3时,b=﹣2,故a﹣b=3﹣2=1或a﹣b=﹣3﹣(﹣2)=﹣1.【点评】此题主要考查了有理数的乘法以及绝对值,正确得出a,b的值是解题关键.24.(8分)(2017秋•禹会区校级月考)对于有理数a、b,定义运算:a⊗b=a×b﹣a﹣b+1 (1)计算(﹣3)⊗4的值.(2)填空:5⊗(﹣2)= (﹣2)⊗5(填“>”或“=”或“<”).【分析】(1)利用题中的新定义计算即可得到结果;(2)两式利用题中新定义计算得到结果,即可做出判断.【解答】解:(1)根据题意得:(﹣3)⊗4=﹣12+3﹣4+1=﹣12;(2)根据题意得:5⊗(﹣2)=﹣10﹣5+2+1=﹣12;(﹣2)⊗5=﹣10+2﹣5+1=﹣12,则5⊗(﹣2)=(﹣2)⊗5.故答案为:(2)=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.(24分)(2017秋•禹会区校级月考)计算(1)(﹣13)+24(2)6﹣(+3)﹣(﹣7)+(﹣2)(3)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)(4)(5)5.6+(﹣0.9)+4.4+(﹣8.1)(6)8﹣23÷(﹣4)×(5﹣7)【分析】(1)根据有理数的加法可以解答本题;(2)根据有理数的加减法可以解答本题;(3)根据有理数的乘除法和加减法可以解答本题;(4)根据乘法分配律可以解答本题;(5)根据有理数的加减法可以解答本题;(6)根据有理数的乘除法和减法可以解答本题;【解答】解:(1)(﹣13)+24=11;(2)6﹣(+3)﹣(﹣7)+(﹣2)=6+(﹣3)+7+(﹣2)=8;(3)﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)=﹣10+8÷4﹣12=﹣10+2﹣12=﹣20;(4)=(﹣18)+20+(﹣21)=﹣19;(5)5.6+(﹣0.9)+4.4+(﹣8.1)=(5.6+4.4)+[(﹣0.9)+(﹣8.1)]=10+(﹣9)(6)8﹣23÷(﹣4)×(5﹣7)=8﹣8÷(﹣4)×(﹣2)=8﹣4=4.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.26.(9分)(2017秋•禹会区校级月考)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+9,﹣3,﹣5,﹣15,﹣3,+11,﹣6,﹣8,+5,+6(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为 0.4升/千米,则这次养护共耗油多少升?【分析】(1)把养护小组当天的行驶记录加起来,根据向东为正,向西为负,判断养护小组最后到达的地方在出发点的那个方向,距出发点多远;(2)计算养护小组行驶的所有数据,比较得到养护过程中最远距离出发点的距离;(3)计算养护小组所有行驶路程的绝对值的和,根据耗油量为 0.4升/千米,计算出这次养护的耗油.【解答】解:(1)+9﹣3﹣5﹣15﹣3+11﹣6﹣8+5+6=(+9+11)+(﹣3﹣3﹣15﹣8)+(﹣6+6)+(﹣5+5)=20﹣29+0+0=﹣9答:养护小组最后到达的地方在出发点的西方,距出发点9千米;(2)因为9﹣3=6,6﹣5=1,1﹣15=﹣14,﹣14﹣3=﹣17,﹣17+11=﹣6,﹣6﹣6=﹣12,﹣12﹣8=﹣20,﹣20+5=﹣15,﹣15+6=﹣9,其中绝对值最大的是﹣20,即养护过程中,最远处离出发点20千米;(3)由题意:(|+9|+|﹣3|+|﹣5|+|﹣15|+|﹣3|+|+11|+|﹣6|+|﹣8|+|+5|+|+6|)×0.4 =(9+3+5+15+3+11+6+8+5+6)×0.4=71×0.4=28.4(升)答:这次养护共耗油28.4升【点评】本题考查了正负数的意义及有理数的混合运算,理解题意是解决本题的关键.27.(11分)(2016秋•苏州期中)如图,在5×5的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:A→B(+1,+4),从B到A的爬行路线为:B→A(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)A→C(+3 ,+4 ),B→D(+3 ,﹣2 ),C→ D (+1,﹣2 );(2)若甲虫A的爬行路线为A→B→C→D,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),最终到达甲虫P处,请在图中标出甲虫A的爬行路线示意图及最终甲虫P的位置.【分析】(1)根据第一个数表示左右方向,第二个数表示上下方向结合图形写出即可;(2)根据行走路线列出算式计算即可得解;(3)根据方格和标记方法作出线路图即可得解.【解答】解:(1)A→C(+3,+4);B→D(+3,﹣2);C→D(+1,﹣2)故答案为:+3,+4;+3,﹣2;D,﹣2;(2)据已知条件可知:A→B表示为:(1,4),B→C记为(2,0)C→D记为(1,﹣2);则该甲虫走过的路线长为1+4+2+0+1+2=10.答:甲虫A爬行的路程为10;(3)甲虫A爬行示意图与点P的位置如图所示:【点评】本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.。
怀远县初中2018-2019学年初中七年级上学期数学第一次月考试卷

怀远县初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•苏州)2的相反数是()A. 2B.C. -2D. -2.(2分)(2015•福建)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A. 0.1008×106B. 1.008×106C. 1.008×105D. 10.08×1043.(2分)(2015•襄阳)﹣2的绝对值是()A. 2B. -2C.D.4.(2分)(2015•贺州)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是()A. 0B. 3C. 4D. 85.(2分)(2015•厦门)已知一个单项式的系数是2,次数是3,则这个单项式可以是()A. ﹣2xy2B. 3x2C. 2xy3D. 2x36.(2分)(2015•潍坊)2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为()A. 1.11×104B. 11.1×104C. 1.11×105D. 1.11×1067.(2分)(2015•福建)下列各数中,绝对值最大的数是()A. 5B. -3C. 0D. -28.(2分)(2015•咸宁)方程2x﹣1=3的解是()A. -1B. -2C. 1D. 29.(2分)(2015•泰州)一个几何体的表面展开图如图所示,则这个几何体是()A. 四棱锥B. 四棱柱C. 三棱锥D. 三棱柱10.(2分)(2015•宁德)2014年我国国内生产总值约为636000亿元,数字636000用科学记数法表示为()A. B. C. D.11.(2分)(2015•广东)据国家统计局网站2014年12月4日发布的消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为()A. 1.3573×B. 1.3573×C. 1.3573×D. 1.3573×12.(2分)(2015•安徽)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A. 1.62×B. 1.62×C. 1.62×D. 0.162×二、填空题13.(1分)(2015•昆明)据统计,截止2014年12月28日,中国高铁运营总里程超过16000千米,稳居世界高铁里程榜首,将16000千米用科学记数法表示为________ 千米.14.(1分)(2015•厦门)已知(39+)×(40+)=a+b,若a是整数,1<b<2,则a=________ . 15.(1分)(2015•益阳)如图是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n个图案中有________根小棒.16.(1分)(2015•南宁)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是 ________.17.(1分)(2015•泉州)声音在空气中每小时约传播1200千米,将1200用科学记数法表示为________ .三、解答题18.(11分)任何一个整数,可以用一个多项式来表示:.例如:.已知是一个三位数.(1)为________.(2)小明猜想:“ 与的差一定是的倍数”, 请你帮助小明说明理由.(3)在一次游戏中,小明算出,,,与这个数和是,请你求出这个三位数.19.(9分)已知:c=10,且a,b满足(a+26)2+|b+c|=0,请回答问题:(1)请直接写出a,b,c的值:a=________,b=________;(2)在数轴上a、b、c所对应的点分别为A、B、C,记A、B两点间的距离为AB,则AB=________,AC=________;(3)在(1)(2)的条件下,若点M从点A出发,以每秒1个单位长度的速度向右运动,当点M到达点C时,点M停止;当点M运动到点B时,点N从点A出发,以每秒3个单位长度向右运动,点N到达点C后,再立即以同样的速度返回,当点N到达点A时,点N停止.从点M开始运动时起,至点M、N均停止运动为止,设时间为t秒,请用含t的代数式表示M,N两点间的距离.20.(11分)(1)【归纳】观察下列各式的大小关系:|-2|+|3|>|-2+3| |-6|+|3|>|-6+3||-2|+|-3|=|-2-3| |0|+|-8|=|0-8|归纳:|a|+|b|________|a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)(2)【应用】根据上题中得出的结论,若|m|+|n|=13,|m+n|=1,求m的值.(3)【延伸】a、b、c满足什么条件时,|a|+|b|+|c|>|a+b+c|.21.(6分)如图1,长方形OABC的边OA在数轴上,O为原点,长方形OABC的面积为12,OC边长为3.(1)数轴上点A表示的数为________.(2)将长方形OABC沿数轴水平移动,移动后的长方形记为O′A′B′C′,移动后的长方形O′A′B′C′与原长方形OABC重叠部分(如图2中阴影部分)的面积记为S.①当S恰好等于原长方形OABC面积的一半时,数轴上点A′表示的数是多少?②设点A的移动距离AA′=x.(ⅰ)当S=4时,求x的值;(ⅱ)D为线段AA′的中点,点E在线段OO′上,且OE=OO′,当点D,E所表示的数互为相反数时,求x的值.22.(11分)如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值;②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.23.(7分)小明同学积极参加体育锻炼,天天坚持跑步,他每天以2000m为标准,超过的米数记作正数,不足的米数记作负数.下表是他一周跑步情况的记录(单位:m):(2)他跑得最多的一天比最少的一天多跑了________m;(3)若他跑步的平均速度为200m/min,求这周他跑步的时间.24.(16分)同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|-4+6|=________;|-2-4|=________;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于-4与6之间,求|a+4|+|a-6|的值;(4)当a=________时,|a-1|+|a+5|+|a-4|的值最小,最小值是________;(5)当a=________时,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,最小值是________.25.(10分)某登山队以二号营地为基准,开始向距二号营地500米的顶峰冲击,他们记向上为正,行进过程记录如下:(单位:米):+150,-35,-40,+210,-32,+20,-18,-5,+20,+85,-25.(1)他们最终有没有登上顶峰?若没有,距顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人每米要消耗氧气0.04升,则他们共耗氧多少升?怀远县初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题1.【答案】C【考点】相反数【解析】【解答】根据相反数的含义,可得2的相反数是:﹣2.故选:C.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可2.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:100800=1.008×105.故选C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.3.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【分析】根据负数的绝对值等于它的相反数解答.4.【答案】B【考点】探索数与式的规律【解析】【解答】解:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,末位数字以2,4,8,6循环,原式=2+22+23+24+…+22015﹣1=﹣1=22016﹣3,∵2016÷4=504,∴22016末位数字为6,则2+22+23+24+…+22015﹣1的末位数字是3,故选B【分析】观察已知等式,发现末位数字以2,4,8,6循环,原式整理后判断即可得到结果.5.【答案】D【考点】单项式【解析】【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、﹣2xy2系数是﹣2,错误;B、3x2系数是3,错误;C、2xy3次数是4,错误;D、2x3符合系数是2,次数是3,正确;故选D.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.6.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将11.1万用科学记数法表示为1.11×105.故选C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.7.【答案】A【考点】绝对值,有理数大小比较【解析】【解答】解:|5|=5,|﹣3|=3,|0|=0,|﹣2|=2,∵5>3>2>0,∴绝对值最大的数是5,故选:A.【分析】根据绝对值的概念,可得出距离原点越远,绝对值越大,可直接得出答案.8.【答案】D【考点】解一元一次方程【解析】【解答】解:方程2x﹣1=3,移项合并得:2x=4,解得:x=2,故选D.【分析】方程移项合并,把x系数化为1,即可求出解.9.【答案】A【考点】几何体的展开图【解析】【解答】如图所示:这个几何体是四棱锥.故选:A.【分析】根据四棱锥的侧面展开图得出答案.10.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将636000亿用科学记数法表示为:6.36×105亿元.故选:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.11.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】将13 573 000用科学记数法表示为:1.3573×107.故选:B.12.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】将1.62亿用科学记数法表示为1.62×108.故选C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.二、填空题13.【答案】1.6×104【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:将16000用科学记数法表示为:1.6×104.故答案为:1.6×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.14.【答案】1161【考点】有理数的混合运算【解析】解:(39+)×(40+)=1560+27+24+=1611+∵a是整数,1<b<2,∴a=1611.故答案为:1611.【分析】首先把原式整理,利用整式的乘法计算,进一步根据b的取值范围得出a的数值即可.15.【答案】5n+1【考点】探索图形规律【解析】【解答】解:∵第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…∴第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.故答案为:5n+1.【分析】由图可知:第1个图案中有5+1=6根小棒,第2个图案中有2×5+2﹣1=11根小棒,第3个图案中有3×5+3﹣2=16根小棒,…由此得出第n个图案中有5n+n﹣(n﹣1)=5n+1根小棒.16.【答案】13【考点】探索数与式的规律【解析】【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为:13.【分析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为﹣17﹣3=﹣20,A12表示的数为16+3=19,则可判断点A n 与原点的距离不小于20时,n的最小值是13.17.【答案】1.2×103【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1200=1.2×103,故答案为:1.2×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.三、解答题18.【答案】(1)(2)解:;与的差一定是的倍数.(3)解:,由已知条件可得=== 即.是个三位数至少从16开始,经尝试发现,只有满足条件,此时,这个三位数为【考点】整式的加减运算【解析】【解答】解:(1)【分析】(1)根据每个数位上的数字所表示的意义:个位上的数字是几就表示几个1,十位上的数字是几就表示表示几个10,百位上的数字是几就表示几个100…,从而得出答案;(2)根据(1)所得的方法,将被减数与减数分别改写成一个加法算式,然后根据整式的加法法则,去括号再合并同类项互为最简形式,根据结果判断是否是9的倍数即可;(3)根据,,,与这个数和是及(1)发现的改写规律列出方程,再根据等式的性质在方程的两边都加上,然后化简得出,是个三位数a+b+c 至少从16开始,经尝试发现,只有满足条件,此时.19.【答案】(1)-26;-10(2)16;36(3)解:点N运动的总时间为:2(36÷3)=12×2=24,24+16=40,设t秒时,M、N第一次相遇,3(t-16)=t,t=24,分五种情况:①当0≤t≤16时,如图2,点M在运动,点N在A处,此时MN=t,②当16<t≤24时,如图3,M在N的右侧,此时MN=t-3(t-16)=-2t+48,③M、N第二次相遇(点N从C点返回时):t+3(t-16)=36×2,t=30,当24<t≤30时,如图4,点M在N的左侧,此时MN=36×2-t-3(t-16)=-4t+120,④当30<t≤36时,如图5,点M在N的右侧,此时MN=3(t-16)-36-(36-t)=4t-120,⑤当36<t≤40时,如图6,点M在点C处,此时MN=3(t-16)-36=3t-84,【考点】数轴及有理数在数轴上的表示,偶次幂的非负性,绝对值的非负性【解析】【解答】解:(1)∵c是最小的两位正整数,a,b满足(a+26)2+|b+c|=0,∴c=10,a+26=0,b+c=0,∴a=-26,b=-10,c=10,故答案为:-26,-10,10;(2 )①∵数轴上a、b、c三个数所对应的点分别为A、B、C,∴点A表示的数是-26,点B表示的数是-10,点C表示的数是10,所画的数轴如图1所示;∴AB=-10+26=16,AC=10-(-26)=36;故答案为:16,36;②∵点P为点A和C之间一点,其对应的数为x,∴AP=x+26,PC=10-x;故答案为:x+26,10-x;【分析】(1)根据偶次方的非负性和绝对值的非负性可以求得a、b的值;(2)根据数轴上两点的距离公式求出AB和AC的长;(3)根据题意先求出t的范围:0≤t≤40,然后分五种情况讨论:M、N第一次相遇:①点M在运动,点N 在A处;②M在N的右侧;M、N第二次相遇(点N从C点返回时):③点M在N的左侧;④点M在N的右侧;⑤点M在点C处 .根据题意结合数轴上两点的距离表示MN的长.20.【答案】(1)≥(2)解:由上题结论可知,因为|m|+|n|=13,|m+n|=1,|m|+|n|≠|m+n|,所以m、n 异号.当m为正数,n 为负数时,m-n=13,则n=m-13,|m+m-13|=1,m=7或6;当m为负数,n为正数时,-m+n=13,则n=m+13,|m+m+13|=1,m=-7或-6.综上所述:m为±6或±7(3)解:若按a、b、c中0的个数进行分类,可以分成四类:第一类:A.b、c三个数都不等于0 .①1个正数,2个负数,此时|a|+|b|+|c|>|a+b+c|;②1个负数,2个正数,此时|a|+|b|+|c|>|a+b+c|;③3个正数,此时|a|+|b|+|c|=|a+b+c|,故排除;④3个负数,此时|a|+|b|+|c|=|a+b+c|,故排除;第二类:A.b、c三个数中有1个0 【结论同第(1)问①1个0,2个正数,此时|a|+|b|+|c|=|a+b+c|,故排除;②1个0,2个负数,此时|a|+|b|+|c|=|a+b+c|,故排除;③1个0,1个正数,1个负数,此时|a|+|b|+|c|>|a+b+c|;第三类:A.b、c三个数中有2个0.①2个0,1个正数:此时|a|+|b|+|c|=|a+b+c|,故排除;②2个0,1个负数:此时|a|+|b|+|c|=|a+b+c|,故排除;第四类:A.b、c 三个数都为0,此时|a|+|b|+|c|=|a+b+c|,故排除;综上所述:不等式成立的条件是:1个负数2个正数;1个正数2个负数;1个0,1个正数和1个负数.【考点】探索数与式的规律【解析】【分析】(1)由题意可得;(2)由已知可得≠ ,所以可知m、n异号,分两种情况讨论即可求解:①当m为正数,n为负数时;②当m为负数,n为正数时;(3)由题意可按a、b、c中0的个数进行分类,可以分成四类:第一类:A.b、c三个数都不等于0。
【安徽专版】2017-2018学年度人教版数学七年级(上)第一次联考数学试卷

2017-2018学年安徽省七年级(上)第一次联考数学试卷一、选择题(每小题3分,共30分)1.(3分)(2017•淮安)﹣2的相反数是()A.2 B.﹣2 C.D.﹣2.(3分)(2008•乐山)|3.14﹣π|的值为()A.0 B.3.14﹣πC.π﹣3.14 D.0.143.(3分)(2017秋•水城县校级月考)下列各组数中,不相等的一组是()A.﹣(+7),﹣|﹣7|B.﹣(+7),﹣|+7|C.+(﹣7),﹣(+7)D.+(+7),﹣|﹣7|4.(3分)(2015•长沙模拟)比较(﹣4)3和﹣43,下列说法正确的是()A.它们底数相同,指数也相同B.它们底数相同,但指数不相同C.它们所表示的意义相同,但运算结果不相同D.虽然它们底数不同,但运算结果相同5.(3分)(2015秋•广南县校级期中)在数轴上,原点两旁与原点等距离的两点所表示的数的关系是()A.相等B.互为倒数C.互为相反数D.不能确定6.(3分)(2015•酒泉)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×1027.(3分)(2018•石家庄模拟)一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和08.(3分)(2017秋•潘集区校级月考)一个三位数百位数字为x,十位数字为y,个位数字是z,这个三位数字可以表示为()A.x+10y+z B.100x+10y+z C.100x+y+z D.1000x+y+109.(3分)(2015秋•偃师市期末)丁丁做了以下4道计算题:①(﹣1)2014=2014;②0﹣(﹣1)=1;③;④.请你帮他检查一下,他一共。
安徽省蚌埠市怀远县马城中学七年级(上)第一次月考数学试卷

年数 a
高度 h(单位:厘米)
1
115
2
130
3
145
4
…
…
(1)计算第 4 年树苗可能达到的高度; (2)请用含 a 的代数式表示高度 h; (3)用你得到的代数式计算,生长了 10 年后的树苗可能达到的高度. 21.(12 分)“十、一”黄金周期间,阜阳生态园在 7 天假期中每天旅游的人数变化如表(正
第5页(共5页)
猜测第 n 个等式(n 为正整数)应为
.
三、专心算一算(每小题 25 分,计 25 分)
19.(25 分)(1)33+(﹣32)+7﹣(﹣3)
(2) ×( ﹣ )× ÷
(3)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2012 (4)1﹣2+3﹣4+…+2013﹣2014
第2页(共5页)
(5)若|x﹣4|+(3﹣y)2=0,求多项式 xy 的值. 四、耐心解一解:(每小题 12 分,共 24 分) 20.(12 分)树的高度与树生长的年数有关,测得某棵树的有关数据如表:(树苗原高 100
8.(3 分)我国的陆地国土面积为 9.60×106km2,它是由四舍五入得到的,那么它( )
A.有 3 个有效数字,精确到百分位
B.有 3 个有效数字,精确到万位
C.有 3 个有效数字,精确到百万位
D.有 2 个有效数字,精确到万位
9.(3 分)若 a+b<0,ab>0,那么这两个数( )
A.都是正数
﹣5℃
D.1℃,﹣5℃,﹣9℃
3.(3 分)绝对值不大于 3 的所有整数的和是( )
A.0
B.﹣1
C.1
安徽省蚌埠市2017-2018学年七年级数学上期中试题含答案

安徽省蚌埠市2017-2018学年七年级数学上学期期中试题考试时间:100分钟 试卷分值:120分一、选择题(30分) 1.5-的倒数是( ) A.15 B.5 C.15- D.5- 2.下列四种运算中,结果最大的是( )A .)2(1-+B .)2(1--C .)2(1-⨯D .)2(1-÷3.合肥地铁自开通以来,发展速度不断加快,现已成为合肥市民主要出行方式之一.今年10月1日合肥地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为( )A .18.1×105B .1.81×106C .1.81×107D .181×1044.计算3(2)4(2)x y x y --+-的结果是( )A .2x y -B .2x y +C .2x y --D .2x y -+ 5.解方程3162x x+-=,去分母,得( ) A .133x x --= B .633x x --= C .633x x -+= C .133x x -+= 6.若)3(2+a 的值与4互为相反数,则a 的值为( ) A .﹣1 B .72- C .﹣5 D .127.单项式31y xm -与n xy 4的和是单项式,则m n 的值是( )A .3B .6C .8D .9 8.下列说法中正确的是( )A. a -表示负数B.若x x -=,则0<xC.绝对值最小的有理数是0D. a 和0不是单项式 9.若()0521=---m xm 是关于x 的一元一次方程,则m 的值为( )A .﹣2B .2C .2±D .无法确定 10.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( ) A .84 B .336 C .510 D .1326 二、填空题(32分)11.计算5)2(--的结果等于 .12.代数式5223bc a -系数为 ; 多项式424273xy y x y x --的最高次项是 .13.32)31(3-⨯-= . 14.已知2x =是关于x 的方程1(1)2a x a x +=+的解,则a 的值是 . 15.已知有理数y x ,满足:532-=--y x ,则整式x y -2的值为 .16.若y x ,为有理数,且0)2017(20172=-++y x ,则2017)(yx 的值为 .17.已知数a 在数轴上对应的点如图所示,则代数式a a -+-14的值是 .18.观察按下列规则排成的一列数:61,15,24,33,42,51,14,23,32,41,13,22,31,12,21,11,…(※) 在(※)中,从左起第m 个数记为)(m F ,当1011)(=m F 时,则m 的值为 .三、解答题(58分) 19.(10分)计算:(1) .12)2()1()3(32-------(2).22)211(432)23(32-⨯-÷-⨯⨯-20.(8分)先化简再求值:求)]32(2[52222xy y x y x xy ---的值。
2017-2018学年安徽省蚌埠市怀远县马城中学七年级(上)第一次月考数学试卷

2017-2018学年安徽省蚌埠市怀远县马城中学七年级(上)第一次月考数学试卷一、细心选一选(每小题3分,计30分)1.(3分)(2013•攀枝花)﹣5的相反数是()A.B.﹣5 C.D.52.(3分)(2012秋•枞阳县校级期中)冬季某天我国三个城市的最高气温分别是﹣9℃,1℃,﹣5℃,把它们从高到低排列正确的是()A.﹣9℃,﹣5℃,1℃B.﹣5℃,﹣9℃,1℃C.1℃,﹣9℃,﹣5℃D.1℃,﹣5℃,﹣9℃3.(3分)(2016秋•蚌埠期中)绝对值不大于3的所有整数的和是()A.0 B.﹣1 C.1 D.64.(3分)(2017秋•怀远县校级月考)下列说法中,不正确的是()A.平方等于本身的数只有0和1B.正数的绝对值是它本身,负数的绝对值是它的相反数C.0除以任何数都得0D.两个负数比较,绝对值大的负数小5.(3分)(2017秋•怀远县校级月考)下列各式中正确的是()A.﹣2+1=﹣3 B.﹣5﹣2=﹣3 C.﹣12=1 D.(﹣1)3=﹣16.(3分)(2015秋•黄石港区期末)现规定一种新运算“*”:a*b=a b,如3*2=32=9,则()*3=()A.B.8 C.D.7.(3分)(2010秋•永宁县期中)把一张厚度为0.1mm的白纸连续对折五次后的厚度为()A.0.5mm B.0.8mm C.1.6mm D.3.2mm8.(3分)(2017秋•怀远县校级月考)我国的陆地国土面积为9.60×106km2,它是由四舍五入得到的,那么它()A.有3个有效数字,精确到百分位B.有3个有效数字,精确到万位C.有3个有效数字,精确到百万位D.有2个有效数字,精确到万位9.(3分)(2017•长乐市校级模拟)若a+b<0,ab>0,那么这两个数()A.都是正数B.都是负数C.一正一负D.符号不能确定10.(3分)(2016秋•安岳县期末)有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0二、静心填一填(每小题4分,计32分)11.(4分)(2013秋•惠山区校级期中)某天的最低气温是﹣4℃,最高气温是4℃,这一天的温差是℃.12.(4分)(2017秋•怀远县校级月考)在数轴上,距离原点有2个单位的点所对应的数是.13.(4分)(2012秋•蕉岭县校级期中)我们在买化肥时,总会发现袋上标注有(50±0.5)kg,±0.5kg的意思是.14.(4分)(2014秋•灌南县校级期中)2006年中央为提高参加合作医疗农民的补助标准,将投入4730000000元人民币,把4730000000用科学记数法表示为.15.(4分)(2014秋•天水期末)平方得的数是;立方得﹣64的数是.16.(4分)(2017秋•怀远县校级月考)观察,按规律在横线上填写适当的数:,﹣,,﹣,(不化简).17.(4分)(2010秋•永宁县期中)若a、b互为相反数,c、d互为倒数,且m 是绝对值最小的数,则=.18.(4分)(2004•云南)观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41…猜测第n个等式(n为正整数)应为.三、专心算一算(每小题25分,计25分)19.(25分)(2017秋•怀远县校级月考)(1)33+(﹣32)+7﹣(﹣3)(2)×(﹣)×÷(3)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2012(4)1﹣2+3﹣4+…+2013﹣2014(5)若|x﹣4|+(3﹣y)2=0,求多项式xy的值.四、耐心解一解:(每小题12分,共24分)20.(12分)(2013秋•深圳期中)树的高度与树生长的年数有关,测得某棵树的有关数据如表:(树苗原高100厘米)年数a高度h(单位:厘米)1115213031454……(1)计算第4年树苗可能达到的高度;(2)请用含a的代数式表示高度h;(3)用你得到的代数式计算,生长了10年后的树苗可能达到的高度.21.(12分)(2010秋•永宁县期中)“十、一”黄金周期间,阜阳生态园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数)日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化单位:千人+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2(1)若9月30日的游客人数记为a,请用a的代数式表示10月2日的游客人数?(2)请判断七天内游客人数最多的是哪天?请说明理由.(3)若9月30日的游客人数为5千人,门票每人10元.问黄金周期间阜阳生态园门票收入是多少元?五、仔细猜一猜:(9分)22.(9分)(2017秋•怀远县校级月考)观察如图所示的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式.2017-2018学年安徽省蚌埠市怀远县马城中学七年级(上)第一次月考数学试卷参考答案与试题解析一、细心选一选(每小题3分,计30分)1.(3分)(2013•攀枝花)﹣5的相反数是()A.B.﹣5 C.D.5【分析】直接根据相反数的定义求解.【解答】解:﹣5的相反数是5.故选:D.【点评】本题考查了相反数:a的相反数为﹣a.2.(3分)(2012秋•枞阳县校级期中)冬季某天我国三个城市的最高气温分别是﹣9℃,1℃,﹣5℃,把它们从高到低排列正确的是()A.﹣9℃,﹣5℃,1℃B.﹣5℃,﹣9℃,1℃C.1℃,﹣9℃,﹣5℃D.1℃,﹣5℃,﹣9℃【分析】首先根据正数大于一切负数,可知1℃排在第一位;再根据两个负数,绝对值大的其值反而小,可知﹣5℃>﹣9℃;从而得出结果.【解答】解:∵正数大于一切负数,∴1℃排在第一位;又∵|﹣9|=9>|﹣5|=5,∴﹣5>﹣9,所以把它们从高到低排列正确的是1℃,﹣5℃,﹣9℃.故选:D.【点评】本题考查了有理数大小比较的法则.主要利用了以下知识点:正数大于一切负数;两个负数,绝对值大的其值反而小.3.(3分)(2016秋•蚌埠期中)绝对值不大于3的所有整数的和是()A.0 B.﹣1 C.1 D.6【分析】首先根据绝对值及整数的定义求出绝对值不大于3的所有整数,然后根据有理数的加法法则,将所有整数相加,即可得出结果.【解答】解:利用绝对值性质,可求出绝对值不大于3的所有整数为:0,±1,±2,±3.所以0+1﹣1+2﹣2+3﹣3=0.故选:A.【点评】本题主要考查了绝对值的定义及有理数的加法法则.需注意不大于3,即小于或等于3,包含3这个数.4.(3分)(2017秋•怀远县校级月考)下列说法中,不正确的是()A.平方等于本身的数只有0和1B.正数的绝对值是它本身,负数的绝对值是它的相反数C.0除以任何数都得0D.两个负数比较,绝对值大的负数小【分析】根据各个选项中的语句可以判断是否正确,从而可以解答本题.【解答】解:平方等于本身的数只有0和1,故选项A正确;正数的绝对值是它本身,负数的绝对值是它的相反数,故选项B正确;0除以任何不为0的数都得0,故选项C错误;两个负数比较,绝对值大的反而小,故选项D正确,故选:C.【点评】此题考查了有理数的乘方、相反数、绝对值、理数的除法,解答本题的关键是明确题意,可以判断各个选项是否正确.5.(3分)(2017秋•怀远县校级月考)下列各式中正确的是()A.﹣2+1=﹣3 B.﹣5﹣2=﹣3 C.﹣12=1 D.(﹣1)3=﹣1【分析】根据有理数加减法的运算方法,以及有理数的乘方的运算方法逐一判断即可.【解答】解:∵2+1=﹣1,∴选项A不正确;∵﹣5﹣2=﹣7,∴选项B不正确;∵﹣12=﹣1,∴选项C不正确;∵(﹣1)3=﹣1,∴选项D正确.故选:D.【点评】此题主要考查了有理数加减法的运算方法,以及有理数的乘方的运算方法,要熟练掌握.6.(3分)(2015秋•黄石港区期末)现规定一种新运算“*”:a*b=a b,如3*2=32=9,则()*3=()A.B.8 C.D.【分析】根据*的含义,以及有理数的混合运算的运算方法,求出()*3的值是多少即可.【解答】解:()*3=()3=.故选:C.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.7.(3分)(2010秋•永宁县期中)把一张厚度为0.1mm的白纸连续对折五次后的厚度为()A.0.5mm B.0.8mm C.1.6mm D.3.2mm【分析】分别求出对折一次、二次、三次纸的厚度,找出规律,即可求出对折5次后纸的厚度.【解答】解:∵对折一次后的厚度为21×0.1=0.2(mm);对折二次后的厚度为22×0.1=0.4(mm);对折三次后的厚度为23×0.1=0.8(mm);∴对折五次后的厚度为25×0.1=3.2(mm).故选:D.【点评】此题主要考查了有理数的乘方运算,此题属规律性题目,解答此题的关键是根据题意求出对折一次、二次、三次…的厚度,找出规律解答.8.(3分)(2017秋•怀远县校级月考)我国的陆地国土面积为9.60×106km2,它是由四舍五入得到的,那么它()A.有3个有效数字,精确到百分位B.有3个有效数字,精确到万位C.有3个有效数字,精确到百万位D.有2个有效数字,精确到万位【分析】利用近似数的精确度和有效数字的定义求解.【解答】解:9.60×106km2,它有三个有效数字,精确到万位.故选:B.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.9.(3分)(2017•长乐市校级模拟)若a+b<0,ab>0,那么这两个数()A.都是正数B.都是负数C.一正一负D.符号不能确定【分析】根据有理数的乘法法则,得a、b同号,再由有理数的加法法则,得a、b都是负数.【解答】解:∵ab>0,∴a、b同号,∵a+b<0,∴a、b都是负数,故选:B.【点评】本题考查了有理数的加法法则和有理数的乘法法则,要熟练掌握.10.(3分)(2016秋•安岳县期末)有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0【分析】先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.【解答】解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.【点评】本题考查了有理数的加法、减法,根据数轴判断出a、b的情况,以及绝对值的大小是解题的关键.二、静心填一填(每小题4分,计32分)11.(4分)(2013秋•惠山区校级期中)某天的最低气温是﹣4℃,最高气温是4℃,这一天的温差是8℃.【分析】这天的温差就是最高气温与最低气温的差.【解答】解:4﹣(﹣4)=4+4=8℃.答:这一天的温差是8℃.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.12.(4分)(2017秋•怀远县校级月考)在数轴上,距离原点有2个单位的点所对应的数是±2.【分析】由绝对值的定义可知:|x|=2,所以x=±2【解答】解:设距离原点有2个单位的点所对应的数为x,由绝对值的定义可知:|x|=2,∴x=±2,故答案为:±2【点评】本题考查绝对值的性质,属于基础题型.13.(4分)(2012秋•蕉岭县校级期中)我们在买化肥时,总会发现袋上标注有(50±0.5)kg,±0.5kg的意思是化肥介于49.5kg到50.5kg之间.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:袋上标注有(50±0.5)kg,表示这袋化肥最重为50+0.5=50.5kg,这袋化肥最轻为50﹣0.5=49.5kg,∴袋上标注有(50±0.5)kg,表示这袋化肥介于49.5kg到50.5kg之间.故答案为化肥介于49.5kg到50.5kg之间.【点评】本题考查了正数和负数的定义,明确正数和负数相加的计算是解题的关键.14.(4分)(2014秋•灌南县校级期中)2006年中央为提高参加合作医疗农民的补助标准,将投入4730000000元人民币,把4730000000用科学记数法表示为4.73×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将4730000000用科学记数法表示为4.73×109.故答案为:4.73×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(4分)(2014秋•天水期末)平方得的数是±;立方得﹣64的数是﹣4.【分析】根据平方根及立方根的定义进行解答即可.【解答】解:∵±=±,=﹣4,∴平方得的数是±,立方得﹣64的数是﹣4.故答案为:±,﹣4.【点评】本题考查的是有理数的乘方,熟知有理数乘方的法则是解答此题的关键.16.(4分)(2017秋•怀远县校级月考)观察,按规律在横线上填写适当的数:,﹣,,﹣,(不化简).【分析】分子是从1开始连续的奇数,分母可以拆成两个连续自然数的乘积,奇数位置为正,偶数位置为负,由此得出第n个数为(﹣1)n+1,由此代入求得答案即可.【解答】解:∵第n个数为(﹣1)n+1,∴第5个数为=.故答案为:.【点评】此题考查数字的变化规律,找出数字之间的排列规律,找出运算的方法,利用规律与方法解决问题.17.(4分)(2010秋•永宁县期中)若a、b互为相反数,c、d互为倒数,且m 是绝对值最小的数,则=1.【分析】由a、b互为相反数得a+b=0,c、d互为倒数得cd=1,且m是绝对值最小的数得m=0,由此代入代数式求值即可.【解答】解:∵a+b=0,cd=1,m=0,∴=0+1﹣0=1.故答案为:1.【点评】此题考查绝对值、相反数、倒数的意义以及代数式求值,有理数的混合运算的等知识.18.(4分)(2004•云南)观察下列顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41…猜测第n个等式(n为正整数)应为9(n﹣1)+n=10n﹣9.【分析】这几个等式中,左边:第几个式子是9乘以(几减1),再加上几;右边:第几个式子即十位是几减1,个位是1.【解答】解:根据分析:即第n个式子是9(n﹣1)+n=10(n﹣1)+1=10n﹣9.故答案为9(n﹣1)+n=10n﹣9.【点评】找等式的规律时,要分别观察左边和右边的规律,还要注意两边之间的关系.三、专心算一算(每小题25分,计25分)19.(25分)(2017秋•怀远县校级月考)(1)33+(﹣32)+7﹣(﹣3)(2)×(﹣)×÷(3)(﹣2)3﹣2×(﹣3)+|2﹣5|﹣(﹣1)2012(4)1﹣2+3﹣4+…+2013﹣2014(5)若|x﹣4|+(3﹣y)2=0,求多项式xy的值.【分析】(1)将减法转化为加法后,根据加法法则计算可得;(2)先计算括号内的、并将除法转化为乘法,再计算乘法即可得;(3)根据有理数的混合运算顺序和法则计算可得;(4)每两个数的差为﹣1,据此可得原式=(﹣1)×1007,计算可得;(5)根据非负数的性质得出x=4、y=3,代入计算可得.【解答】解:(1)原式=33+(﹣32)+7+3=43﹣32=11;(2)原式=×(﹣)××=﹣;(3)原式=﹣8﹣(﹣6)+3﹣1=﹣8+6+3﹣1=﹣9+9=0;(4)原式==﹣1×1007=﹣1007;(5)∵|x﹣4|+(3﹣y)2=0,∴x﹣4=0,3﹣y=0,则x=4、y=3,∴xy=4×3=12.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和法则及非负数的性质.四、耐心解一解:(每小题12分,共24分)20.(12分)(2013秋•深圳期中)树的高度与树生长的年数有关,测得某棵树的有关数据如表:(树苗原高100厘米)年数a高度h(单位:厘米)1115213031454……(1)计算第4年树苗可能达到的高度;(2)请用含a的代数式表示高度h;(3)用你得到的代数式计算,生长了10年后的树苗可能达到的高度.【分析】(1)根据统计表可以得到高度每年增加15厘米,据此即可求解;(2)解法与(1)相同;(3)把a=10代入(2)所列的代数式,求值即可.【解答】解:(1)145+15=160(厘米);(2)h=15a+100(或h=115+15(a﹣1));(3)当a=10时,h=15×10+100=250.答:生长了10年后的树苗可能达到的高度是250厘米.【点评】本题考查了代数式求值,正确理解高度每年增加15厘米这一规律是关键.21.(12分)(2010秋•永宁县期中)“十、一”黄金周期间,阜阳生态园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数)日期1010月1010月10月1010月月1日2日月3日4日5日月6日7日人数变化单位:千人+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2(1)若9月30日的游客人数记为a,请用a的代数式表示10月2日的游客人数?(2)请判断七天内游客人数最多的是哪天?请说明理由.(3)若9月30日的游客人数为5千人,门票每人10元.问黄金周期间阜阳生态园门票收入是多少元?【分析】(1)10月2日的游客人数=a+1.6+0.8;(2)分别用a的代数式表示七天内游客人数,再找出最多的人数,以及对应的日期即可.(3)先把七天内游客人数分别用a的代数式表示,再求和,把a=5(千人)代入化简后的式子,乘以10即可得黄金周期间该公园门票的收入.【解答】解:(1)a+2.4(万人);(2)七天内游客人数分别是a+1.6,a+2.4,a+2.8,a+2.4,a+1.6,a+1.8,a+0.6,所以3日人最多;(3)(a+1.6)+(a+2.4)+(a+2.8)+(a+2.4)+(a+1.6)+(a+1.8)+(a+0.6)=7a+13.2=7×5+13.2=48.2(千人),∴黄金周期间该公园门票收入是48.2×1000×10=4.82×105(元).【点评】本题考查了正负数的意义,读懂题目的意思,根据题目给出的条件,列式计算,注意单位的统一是解题关键.五、仔细猜一猜:(9分)22.(9分)(2017秋•怀远县校级月考)观察如图所示的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n个图形相对应的等式.【分析】根据前4条算式即可求出得出规律.【解答】解:(1)第五个等式为:5×=5﹣,如图所示.(2)第n个等式为:n×=n﹣【点评】本题考查数字规律问题,解题的关键是根据题意找出规律,本题属于基础题型.。