2018理科数学高考模拟试卷word版本

合集下载

2018年全国普通高等学校高考数学模拟试卷(理科)(一)

2018年全国普通高等学校高考数学模拟试卷(理科)(一)

2018年全国普通高等学校高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A.B.C.D.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.6.(5分)已知函数则()A.2+πB.C.D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A.B.C.D.8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73 B.﹣61 C.﹣55 D.﹣6310.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.3212.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.14.(5分)已知x,y满足约束条件则目标函数的最小值为.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n﹣1﹣a2n,n ∈N*,则数列{b n}的前2n项和为.16.(5分)如图,在直角梯形ABCD中,AB⊥BC,AD∥BC,,点E是线段CD 上异于点C,D的动点,EF⊥AD于点F,将△DEF沿EF折起到△PEF的位置,并使PF⊥AF,则五棱锥P﹣ABCEF的体积的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC的内角A,B,C的对边a,b,c分别满足c=2b=2,2bcosA+acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.18.(12分)在四棱柱ABCD﹣A 1B1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD 的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.2018年全国普通高等学校高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|﹣x2+4x≥0},,C={x|x=2n,n∈N},则(A∪B)∩C=()A.{2,4}B.{0,2}C.{0,2,4}D.{x|x=2n,n∈N}【解答】解:A={x|﹣x2+4x≥0}={x|0≤x≤4},={x|3﹣4<3x<33}={x|﹣4<x<3},则A∪B={x|﹣4<x≤4},C={x|x=2n,n∈N},可得(A∪B)∩C={0,2,4},故选C.2.(5分)设i是虚数单位,若,x,y∈R,则复数x+yi的共轭复数是()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i【解答】解:由,得x+yi==2+i,∴复数x+yi的共轭复数是2﹣i.故选:A.3.(5分)已知等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,则下列命题正确的是()A.a5是常数B.S5是常数C.a10是常数D.S10是常数【解答】解:∵等差数列{a n}的前n项和是S n,且a4+a5+a6+a7=18,∴a4+a5+a6+a7=2(a1+a10)=18,∴a1+a10=9,∴=45.故选:D.4.(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:设AB=2,则BC=CD=DE=EF=1,=××=,∴S△BCIS平行四边形EFGH=2S△BCI=2×=,∴所求的概率为P===.故选:A.5.(5分)已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.【解答】解:设双曲线C:的右焦点F(c,0),双曲线的渐近线方程为y=x,由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(,b),水秀中华代入双曲线的方程可得﹣=1,可得4a2﹣2ac﹣c2=0,由e=,可得e2+2e﹣4=0,解得e=﹣1(﹣1﹣舍去),故选:D.6.(5分)已知函数则()A.2+πB.C.D.【解答】解:∵,=∫cos2tdt===,∴=()+(﹣cosx)=﹣2.故选:D.7.(5分)执行如图所示的程序框图,则输出的S的值为()A.B.C.D.【解答】解:第1次循环后,S=,不满足退出循环的条件,k=2;第2次循环后,S=,不满足退出循环的条件,k=3;第3次循环后,S==2,不满足退出循环的条件,k=4;…第n次循环后,S=,不满足退出循环的条件,k=n+1;…第2018次循环后,S=,不满足退出循环的条件,k=2019第2019次循环后,S==2,满足退出循环的条件,故输出的S值为2,故选:C8.(5分)已知函数(ω>0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A.可由函数g(x)=cos4x的图象向左平移个单位而得B.可由函数g(x)=cos4x的图象向右平移个单位而得C.可由函数g(x)=cos4x的图象向右平移个单位而得D.可由函数g(x)=cos4x的图象向右平移个单位而得【解答】解:函数=sin(2ωx)﹣•+=sin(2ωx﹣)(ω>0)的相邻两个零点差的绝对值为,∴•=,∴ω=2,f(x)=sin(4x﹣)=cos[(4x﹣)﹣]=cos(4x﹣).故把函数g(x)=cos4x的图象向右平移个单位,可得f(x)的图象,故选:B.9.(5分)的展开式中剔除常数项后的各项系数和为()A.﹣73 B.﹣61 C.﹣55 D.﹣63【解答】解:展开式中所有各项系数和为(2﹣3)(1+1)6=﹣64;=(2x﹣3)(1+++…),其展开式中的常数项为﹣3+12=9,∴所求展开式中剔除常数项后的各项系数和为﹣64﹣9=﹣73.故选:A.10.(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()A.B.C.D.【解答】解:如图,可得该几何体是六棱锥P﹣ABCDEF,底面是正六边形,有一PAF侧面垂直底面,且P在底面的投影为AF中点,过底面中心N作底面垂线,过侧面PAF的外心M作面PAF的垂线,两垂线的交点即为球心O,设△PAF的外接圆半径为r,,解得r=,∴,则该几何体的外接球的半径R=,∴表面积是则该几何体的外接球的表面积是S=4πR2=.故选:C.11.(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A.16 B.20 C.24 D.32【解答】解:抛物线C:y2=4x的焦点F(1,0),设直线l1:y=k1(x﹣1),直线l2:y=k2(x ﹣1),由题意可知,则,联立,整理得:k12x2﹣(2k12+4)x+k12=0,设A(x1,y1),B(x2,y2),则x1+x2=,设D(x3,y3),E(x4,y4),同理可得:x3+x4=2+,由抛物线的性质可得:丨AB丨=x1+x2+p=4+,丨DE丨=x3+x4+p=4+,∴|AB|+|DE|=8+==,当且仅当=时,上式“=”成立.∴|AB|+|DE|的最小值24,故选:C.12.(5分)若函数y=f(x),x∈M,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数.若函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2,当x∈[0,2)时,函数.若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,则实数m的取值范围是()A.B.C.D.【解答】解:根据题意,对于函数f(x),当x∈[0,2)时,,分析可得:当0≤x≤1时,f(x)=﹣2x2,有最大值f(0)=,最小值f(1)=﹣,当1<x<2时,f(x)=f(2﹣x),函数f(x)的图象关于直线x=1对称,则此时有﹣<f(x)<,又由函数y=f(x)是定义在区间[0,+∞)内的2级类周期函数,且T=2;则在∈[6,8)上,f(x)=23•f(x﹣6),则有﹣12≤f(x)≤4,则f(8)=2f(6)=4f(4)=8f(2)=16f(0)=8,则函数f(x)在区间[6,8]上的最大值为8,最小值为﹣12;对于函数,有g′(x)=﹣+x+1==,分析可得:在(0,1)上,g′(x)<0,函数g(x)为减函数,在(1,+∞)上,g′(x)>0,函数g(x)为增函数,则函数g(x)在(0,+∞)上,由最小值f(1)=+m,若∃x1∈[6,8],∃x2∈(0,+∞),使g(x2)﹣f(x1)≤0成立,必有g(x)min≤f(x)max,即+m≤8,解可得m≤,即m的取值范围为(﹣∞,];故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量,,且,则=.【解答】解:根据题意,向量,,若,则•=2sinα﹣cosα=0,则有tanα=,又由sin2α+cos2α=1,则有或,则=(,)或(﹣,﹣),则||=,则=2+2﹣2•=;故答案为:14.(5分)已知x,y满足约束条件则目标函数的最小值为.【解答】解:由约束条件作出可行域如图,联立,解得A(2,4),=,令t=5x﹣3y,化为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,t有最小值为﹣2.∴目标函数的最小值为.故答案为:.15.(5分)在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n﹣1﹣a2n,n∈N*,则数列{b n}的前2n项和为.【解答】解:等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设首项为a1,公比为q,则:,整理得:,解得:.则:,所以:b n =a 2n ﹣1﹣a 2n ==﹣22n ﹣4,则:T 2n ==.故答案为:.16.(5分)如图,在直角梯形ABCD 中,AB ⊥BC ,AD ∥BC ,,点E 是线段CD上异于点C ,D 的动点,EF ⊥AD 于点F ,将△DEF 沿EF 折起到△PEF 的位置,并使PF ⊥AF ,则五棱锥P ﹣ABCEF 的体积的取值范围为 (0,) .【解答】解:∵PF ⊥AF ,PF ⊥EF ,AF ∩EF=F , ∴PF ⊥平面ABCD .设PF=x ,则0<x <1,且EF=DF=x .∴五边形ABCEF 的面积为S=S 梯形ABCD ﹣S △DEF =×(1+2)×1﹣x 2=(3﹣x 2). ∴五棱锥P ﹣ABCEF 的体积V=(3﹣x 2)x=(3x ﹣x 3),设f (x )=(3x ﹣x 3),则f′(x )=(3﹣3x 2)=(1﹣x 2), ∴当0<x <1时,f′(x )>0,∴f (x )在(0,1)上单调递增,又f (0)=0,f (1)=. ∴五棱锥P ﹣ABCEF 的体积的范围是(0,).故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知△ABC的内角A,B,C的对边a,b,c分别满足c=2b=2,2bcosA+acosC+ccosA=0,又点D满足.(1)求a及角A的大小;(2)求的值.【解答】解:(1)由2bcosA+acosC+ccosA=0及正弦定理得﹣2sinBcosA=sinAcosC+cosAsinC,即﹣2sinBcosA=sin(A+C)=sinB,在△ABC中,sinB>0,所以.又A∈(0,π),所以.在△ABC中,c=2b=2,由余弦定理得a2=b2+c2﹣2bccosA=b2+c2+bc=7,所以.(2)由,得=,所以.18.(12分)在四棱柱ABCD﹣A 1B1C1D1中,底面ABCD是正方形,且,∠A1AB=∠A1AD=60°.(1)求证:BD⊥CC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为.【解答】解:(1)连接A1B,A1D,AC,因为AB=AA1=AD,∠A1AB=∠A1AD=60°,所以△A1AB和△A1AD均为正三角形,于是A1B=A1D.设AC与BD的交点为O,连接A1O,则A1O⊥BD,又四边形ABCD是正方形,所以AC⊥BD,而A1O∩AC=O,所以BD⊥平面A1AC.又AA1⊂平面A1AC,所以BD⊥AA1,又CC1∥AA1,所以BD⊥CC1.(2)由,及,知A 1B⊥A1D,于是,从而A1O⊥AO,结合A1O⊥BD,AO∩AC=O,得A1O⊥底面ABCD,所以OA、OB、OA1两两垂直.如图,以点O为坐标原点,的方向为x轴的正方向,建立空间直角坐标系O﹣xyz,则A(1,0,0),B(0,1,0),D(0,﹣1,0),A1(0,0,1),C(﹣1,0,0),,,,由,得D1(﹣1,﹣1,1).设(λ∈[0,1]),则(x E+1,y E+1,z E﹣1)=λ(﹣1,1,0),即E(﹣λ﹣1,λ﹣1,1),所以.设平面B 1BD的一个法向量为,由得令x=1,得,设直线DE与平面BDB1所成角为θ,则,解得或(舍去),所以当E为D1C1的中点时,直线DE与平面BDB1所成角的正弦值为.19.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(μ,σ2),利用该正态分布,求Z落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则P(μ﹣σ<Z≤μ+σ)=0.6826,P(μ﹣2σ<Z≤μ+2σ)=0.9544.【解答】解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为.(2)①∵Z服从正态分布N(μ,σ2),且μ=26.5,σ≈11.95,∴P(14.55<Z<38.45)=P(26.5﹣11.95<Z<26.5+11.95)=0.6826,∴Z落在(14.55,38.45)内的概率是0.6826.②根据题意得X~B(4,),;;;;.∴X的分布列为∴.20.(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD 的斜率之和k AD+k BD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由.【解答】解:(1)由已知可得解得a2=2,b2=c2=1,所求椭圆方程为.(2)由得(1+2k2)x2+8kx+6=0,则△=64k2﹣24(1+2k2)=16k2﹣24>0,解得或.设A(x1,y1),B(x2,y2),则,,设存在点D(0,m),则,,所以==.要使k AD+k BD为定值,只需6k﹣4k(2﹣m)=6k﹣8k+4mk=2(2m﹣1),k与参数k无关,故2m﹣1=0,解得,当时,k AD+k BD=0.综上所述,存在点,使得k AD+k BD为定值,且定值为0.21.(12分)已知函数f(x)=e x﹣2(a﹣1)x﹣b,其中e为自然对数的底数.(1)若函数f(x)在区间[0,1]上是单调函数,试求实数a的取值范围;(2)已知函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,且g(1)=0,若函数g(x)在区间[0,1]上恰有3个零点,求实数a的取值范围.【解答】解:(1)根据题意,函数f(x)=e2﹣2(a﹣1)x﹣b,其导数为f'(x)=e x﹣2(a﹣1),当函数f(x)在区间[0,1]上单调递增时,f'(x)=e x﹣2(a﹣1)≥0在区间[0,1]上恒成立,∴2(a﹣1)≤(e x)min=1(其中x∈[0,1]),解得;当函数f(x)在区间[0,1]单调递减时,f'(x)=e x﹣2(a﹣1)≤0在区间[0,1]上恒成立,∴2(a﹣1)≥(e x)max=e(其中x∈[0,1]),解得.综上所述,实数a的取值范围是.(2)函数g(x)=e x﹣(a﹣1)x2﹣bx﹣1,则g'(x)=e x﹣2(a﹣1)x﹣b,分析可得f(x)=g'(x).由g(0)=g(1)=0,知g(x)在区间(0,1)内恰有一个零点,设该零点为x0,则g(x)在区间(0,x0)内不单调,所以f(x)在区间(0,x0)内存在零点x1,同理,f(x)在区间(x0,1)内存在零点x2,所以f(x)在区间(0,1)内恰有两个零点.由(1)知,当时,f(x)在区间[0,1]上单调递增,故f(x)在区间(0,1)内至多有一个零点,不合题意.当时,f(x)在区间[0,1]上单调递减,故f(x)在(0,1)内至多有一个零点,不合题意;所以.令f'(x)=0,得x=ln(2a﹣2)∈(0,1),所以函数f(x)在区间[0,ln(2a﹣2)]上单调递减,在区间(ln(2a﹣2),1]上单调递增.记f(x)的两个零点为x1,x2(x1<x2),因此x1∈(0,ln(2a﹣2)],x2∈(ln(2a﹣2),1),必有f(0)=1﹣b>0,f(1)=e﹣2a+2﹣b>0.由g(1)=0,得a+b=e,所以,又f(0)=a﹣e+1>0,f(1)=2﹣a>0,所以e﹣1<a<2.综上所述,实数a的取值范围为(e﹣1,2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,圆C1的参数方程为(θ为参数,a是大于0的常数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为.(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,ρ∈R与圆C1、圆C2的异于原点的焦点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长.【解答】解:(1)圆C1:(θ是参数)消去参数θ,得其普通方程为(x+1)2+(y+1)2=a2,将x=ρcosθ,y=ρsinθ代入上式并化简,得圆C1的极坐标方程,由圆C2的极坐标方程,得ρ2=2ρcosθ+2ρsinθ.将x=ρcosθ,y=ρsinθ,x2+y2=ρ2代入上式,得圆C2的直角坐标方程为(x﹣1)2+(y﹣1)2=2.(2)由(1)知圆C1的圆心C1(﹣1,﹣1),半径r1=a;圆C 2的圆心C2(1,1),半径,,∵圆C1与圆C2外切,∴,解得,即圆C1的极坐标方程为.将代入C1,得,得;将代入C2,得,得;故.[选修4-5:不等式选讲]23.已知函数f(x)=|2x+1|.(1)求不等式f(x)≤10﹣|x﹣3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(﹣2n)≥16.【解答】解:(1)此不等式等价于或或解得或或3<x≤4.即不等式的解集为.(2)证明:∵m>0,n>0,m+2n=mn,,即m+2n≥8,当且仅当即时取等号.∴f(m)+f(﹣2n)=|2m+1|+|﹣4n+1|≥|(2m+1)﹣(﹣4n+1)|=|2m+4n|=2(m+2n)≥16,当且仅当﹣4n+1≤0,即时,取等号.∴f(m)+f(﹣2n)≥16.。

2018全国高考仿真卷理科数学word含解析 2018年普通高等学校招生全国统一考试仿真卷+理科数学(六)

2018全国高考仿真卷理科数学word含解析 2018年普通高等学校招生全国统一考试仿真卷+理科数学(六)

绝密 ★ 启用前2018年普通高等学校招生全国统一考试仿真卷理科数学(六)本试题卷共2页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.[2018·漳州调研]在复平面内,复数1z 和2z 对应的点分别是()2,1A 和()0,1B ,则12z z =( )A .12i --B .12i -+C .12i -D .12i +【答案】C【解析】由复数1z 和2z 对应的点分别是()2,1A 和()0,1B 得:12iz =+,2iz =,故C .级 姓名 准考证号 考场号 座位号此卷只装订不密封2.[2018·晋中调研]已知集合{}|1M x x =<,{}21xNx=>,则MN =( )A .{}|01x x <<B .{}|0x x <C .{}|1x x <D .∅【答案】A 【解析】{}{}210xN xxx =>=>,{}|1M x x =<,{}|01MN x x ∴=<<.故选:A .3.[2018·南平质检]已知函数()ln f x x=,若()11f x -<,则实数x 的取值范围是( ) A .(),e 1-∞+ B .()0,+∞ C .()1,e 1+ D .()e 1,++∞【答案】C【解析】已知函数()ln f x x=,若()11f x -<,则()()1ln e e f xf -<=,由函数为增函数,故:01e 11ex x <-<⇒<<+,故选C .4.[2018·孝义模拟],则co s 2α等于( ) A .35B .12C .13D .3-【答案】A【解析】将正切值代入得到35.故答案为:A .5.[2018·漳州调研已知向量()2,1=-a ,()1,A x -,()1,1B -,若A B⊥a,则实数x的值为( ) A .5- B .0 C .1- D .5【答案】A【解析】∵()1,A x -,()1,1B -,∴()2,1A B x =--,又∵()2,1=-a ,A B⊥a ,∴()()22110A Bx ⋅=⨯+--⨯-=a ,解得5x =-,故选A .6.[2018·黄山一模]《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”.就是说:圆堡瑽(圆柱体)的体积为112V =⨯(底面圆的周长的平方⨯高),则由此可推得圆周率π的取值为( ) A .3 B .3.1 C .3.14 D .3.2【答案】A【解析】设圆柱体的底面半径为r ,高为h ,由圆柱的体积公式得体积为:2πV r h=.,解得π3=.故选A . 7.[2018·宁德质检]已知三角形A B C中,A B A C ==3D BA D=,连接C D 并取线段C D 的中点F ,则A F C D⋅的值为( )A .5-B .154-C .52-D .2-【答案】B 【解析】因为3D BA D=,线段C D 的中点为F ,14C DA B A C=-,1111111⎛⎫1124A B A C ⎛⎫+ ⎪⎝⎭,22111115882162164A F C D A B A C ⎛⎫⎛⎫⋅=-=⨯-=-⎪ ⎪⎝⎭⎝⎭,故选B .8.[2018·海南二模]已知正项数列{}n a 满足221120n n n n a a a a ++--=,则数列{}n b 的前n 项和为( ) A .nB .()12n n - C .()12n n + D .()()122n n ++【答案】C 【解析】由221120n n n n a a a a ++--=,可得:()()1120n n n n a a a a +++-=,又0na >,∴12n na a +=,∴112nn a a +⋅=,∴∴数列{}n b 的前n 项和()12n n +,故选:C .9.[2018·集宁一中]设不等式组33240,0x y x y x y -≤⎧⎪-≥-⎨⎪≥≥⎩所表示的平面区域为M ,在M 内任取一点(),P x y ,1x y +≤的概率是( ) A .17B .27C .37D .47【答案】A【解析】作出约束条件所表示的平面区域,如图所示,四边形O A B C 所示,作出直线1x y +=,由几何概型的概率计算公式知1x y +≤的概率112772O A B CS P S ===阴影四边形,故选A .10.[2018·江西联考]如图,网格纸上小正方形的边长为2,粗实线及粗虚线画出的是某四棱锥的三视图,则该四棱锥的外接球的表面积为( )ABC .41πD .31π【答案】C【解析】根据三视图得出,该几何体是镶嵌在正方体中的四棱锥OA B C D-,正方体的棱长为4,A ,D 为棱的中点,根据几何体可以判断:球心应该在过A ,D的平行于底面的中截面上,设球心到截面B C O 的距离为x ,则到A D 的距离为4x -,(222Rx ∴=+,()22224R x =+-,解得出:32x=,22341824R⎛⎫=+=⎪⎝⎭,该多面体外接球的表面积为:2441R π=π,故选C .11.[2018·深圳中学]e 为自然对数的底数,已知函数()y fx a x =-有唯一零点的充要条件是( )A .1a <-98>B .1a <-C.1a>-D .1a>-或98a >【答案】A【解析】作出函数()f x ()1,1B -,1O Bk =-,设直线yax=与曲线()ln 11yx x =-≥相切,则ln 1a xx =-,即,当2ex=时,()0g x '=,分析可知,当2ex =时,函数()g xy ax=与曲线()ln 11yx x =-≥相切.分析图形可知,当1a <-98a>时,函数()f x 的图像与函数yax=的图像只有一个交点,即函数()yfx a x =-有唯一零点.故选A .12.[2018·华师附中]已知抛物线2:2(0)E yp x p =>的焦点为F ,O 为坐标原点,,12p N⎛⎫-- ⎪⎝⎭,连结O M ,O N 分别交抛物线E 于点A ,B ,且A ,B,F 三点共线,则p 的值为( )A .1B .2C .3D .4【答案】C【解析】直线O M 的方程为18yxp=-,将其代入22y p x =故32,1629ppA ⎛⎫-⎪⎝⎭;直线O N 的方程为2yxp=,将其代入22y p x =故32,2p B p ⎛⎫ ⎪⎝⎭,又,02p F⎛⎫⎪⎝⎭21881A F p k p=-,因为A ,B ,F 三点共线,所以A BA Fk k =,即2918481p pp=-,解得3p=.故选C .第Ⅱ卷本卷包括必考题和选考题两部分。

山东省临沂市2018届高考数学一模试卷(理科)Word版含解析

山东省临沂市2018届高考数学一模试卷(理科)Word版含解析

山东省临沂市2018届高考一模试卷(理科数学)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合A={﹣1,1},B={1,4},则A∩(∁U B)=()A.{﹣1,1} B.{﹣1}C.{1}D.∅2.已知数据x1,x2,x3,…,x50,500(单位:公斤),其中x1,x2,x3,…,x50,是某班50个学生的体重,设这50个学生体重的平均数为x,中位数为y,则x1,x2,x3,…,x50,500这51个数据的平均数、中位数分别与x、y比较,下列说法正确的是()A.平均数增大,中位数一定变大B.平均数增大,中位数可能不变C.平均数可能不变,中位数可能不变D.平均数可能不变,中位数可能变小3.设随机变量ξ服从正态分布N(1,σ2),则函数f(x)=x2+2x+ξ不存在零点的概率为()A.B.C.D.4.已知a∈R,则“a<1”是“|x﹣2|+|x|>a恒成立”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件5.定义min,则由函数f(x)的图象与x轴、直线x=2所围成的封闭图形的面积为()A.B.C.D.6.已知点F1,F2为双曲线的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为()A.B.C.D.7.如图所示的程序框图,输出S的值为()A.B.C.D.8.已知x,y∈R,且满足,则z=|x+2y|的最大值为()A.10 B.8 C.6 D.39.如图,四棱锥P﹣ABCD的底面ABCD为平行四边形,NB=2PN,则三棱锥N﹣PAC与三棱锥D﹣PAC 的体积比为()A.1:2 B.1:8 C.1:6 D.1:310.已知抛物线x2=4y,直线y=k(k为常数)与抛物线交于A,B两个不同点,若在抛物线上存在一点P(不与A,B重合),满足,则实数k的取值范围为()A.k≥2 B.k≥4 C.0<k≤2 D.0<k≤4二、填空题:本大题共5小题,每小题5分,共25分.11.已知i是虚数单位,m,n∈R,且m+2i=2﹣ni,则的共轭复数为_______.12.二项式的展开式中,常数项等于_______(用数字作答).13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)是偶函数,它的部分图象如图所示.M是函数f(x)图象上的点,K,L是函数f(x)的图象与x轴的交点,且△KLM为等腰直角三角形,则f(x)=_______.14.若a>0,b>0,则的最小值是_______.15.定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上任意一点,O为坐标原点,设向量,且实数λ满足x=λx1+(1﹣λ)x2,此时向量.若|≤K恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准K下线性近似,其中K是一个确定的实数.已知函数f(x)=x2﹣2x在区间[1,2]上可在标准K下线性近似,那么K 的最小值是_______.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2wx﹣sin2(wx﹣)(x∈R,w为常数且<w<1),函数f(x)的图象关于直线x=π对称.(I)求函数f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f(A)=.求△ABC面积的最大值.17.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动,该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.(Ⅰ)求甲、乙两人所付滑雪费用相同的概率;(Ⅱ)设甲、乙两人所付的滑雪费用之和为随机变量ξ.求ξ的分布列与数学期望E(ξ).18.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=45,AP=AD=AC=2,E为PA的中点.(Ⅰ)设面PAB∩面PCD=l,求证:CD∥l;(Ⅱ)求二面角B﹣CE﹣D的余弦值.19.已知等差数列{a n}的公差d=2,其前n项和为S n,数列{a n}的首项b1=2,其前n项和为T n,满足.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{|a n b n﹣14|}的前n项和W n.20.已知椭圆E: +=1,A、B分别是椭圆E的左、右顶点,动点M在射线1:x=4(y>0)上运动,MA交椭圆E于点P,MB交椭圆E于点Q.(1)若△MAB垂心的纵坐标为﹣4,求点的P坐标;(2)试问:直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.21.已知函数f(x)=sinx﹣ax.(Ⅰ)对于x∈(0,1),f(x)>0恒成立,求实数a的取值范围;(Ⅱ)当a=1时,令h(x)=f(x)﹣sinx+lnx+1,求h(x)的最大值;(Ⅲ)求证:.山东省临沂市2018届高考一模试卷(理科数学)参考答案与试题解析一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合A={﹣1,1},B={1,4},则A∩(∁U B)=()A.{﹣1,1} B.{﹣1}C.{1}D.∅【考点】交、并、补集的混合运算.【分析】求出全集中y的值确定出U,再由B利用补集的定义求出B的补集,找出A与B补集的交集即可.【解答】解:由全集U中y=log2x,x=,1,2,16,得到y=﹣1,0,1,4,即全集U={﹣1,0,1,4},∵A={﹣1,1},B={1,4},∴∁U B={﹣1,0},则A∩(∁U B)={﹣1},故选:B.2.已知数据x1,x2,x3,…,x50,500(单位:公斤),其中x1,x2,x3,…,x50,是某班50个学生的体重,设这50个学生体重的平均数为x,中位数为y,则x1,x2,x3,…,x50,500这51个数据的平均数、中位数分别与x、y比较,下列说法正确的是()A.平均数增大,中位数一定变大B.平均数增大,中位数可能不变C.平均数可能不变,中位数可能不变D.平均数可能不变,中位数可能变小【考点】众数、中位数、平均数.【分析】根据平均数与中位数的定义,分析这组数据,即可得出正确的结论.【解答】解:根据题意得,数据x1,x2,x3,…,x50,是某班50个学生的体重,其平均数应在50公斤左右,再增加一个数据500,这51个数据的平均数一定增大,而中位数有可能不变,如:按大小顺序排列后,第25、26个数据相等时,其中位数相等.故选:B.3.设随机变量ξ服从正态分布N(1,σ2),则函数f(x)=x2+2x+ξ不存在零点的概率为()A.B.C.D.【考点】正态分布曲线的特点及曲线所表示的意义;函数的零点;古典概型及其概率计算公式.【分析】函数f(x)=x2+2x+ξ不存在零点,可得ξ>1,根据随机变量ξ服从正态分布N(1,σ2),可得曲线关于直线x=1对称,从而可得结论.【解答】解:∵函数f(x)=x2+2x+ξ不存在零点,∴△=4﹣4ξ<0,∴ξ>1∵随机变量ξ服从正态分布N(1,σ2),∴曲线关于直线x=1对称∴P(ξ>1)=故选C.4.已知a∈R,则“a<1”是“|x﹣2|+|x|>a恒成立”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】要判断“a<1”是“|x﹣2|+|x|>a恒成立”的条件,我们可先构造函数y=|x﹣2|+|x|并求出函数的值域,然后转化为一个恒成立的判断与性质问题,最后结合充要条件的定义,进行判断.【解答】解:函数y=|x﹣2|+|x|的值域为[2,+∞)则当a<1时,|x﹣2|+|x|>a恒成立反之若,|x﹣2|+|x|>a,则说明a小于函数y=|x﹣2|+|x|的最小值2恒成立,即a<2故“a<1”是“|x﹣2|+|x|>a恒成立”的充分不必要条件故选:A.5.定义min,则由函数f(x)的图象与x轴、直线x=2所围成的封闭图形的面积为()A.B.C.D.【考点】定积分在求面积中的应用.【分析】根据题目给出的函数定义,写出分段函数f(x)=min{x2, },由图象直观看出所求面积的区域,然后直接运用定积分求解阴影部分的面积.【解答】解:由=x2,得:x=1,又当x<0时,<x2,所以,根据新定义有f(x)=min{x2, }=,图象如图,所以,由函数f(x)的图象与x轴、x=2直线所围成的封闭图形为图中阴影部分,其面积为S=x2dx+dx=|+lnx|=+ln2,故选:C.6.已知点F1,F2为双曲线的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】运用余弦定理可得|PF1|=2c,再由双曲线的定义可得|PF1|﹣|PF2|=2a,即为2c﹣2c=2a,运用离心率公式计算即可得到所求值.【解答】解:由题意可得|PF2|=|F1F2|=2c,∠PF2F1=120°,即有|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|cos∠PF2F1=4c2+4c2﹣2•4c2•(﹣)=12c2,即有|PF1|=2c,由双曲线的定义可得|PF1|﹣|PF2|=2a,即为2c﹣2c=2a,即有c=a,可得e==.故选:A.7.如图所示的程序框图,输出S的值为()A.B.C.D.【考点】程序框图.【分析】题目给出了当型循环结构框图,首先引入累加变量s和循环变量n,由判断框得知,算法执行的是求2n cosnπ的和,n从1取到100,利用等比数列求和公式即可计算得解.【解答】解:通过分析知该算法是求和2cosπ+22cos2π+23cos3π+…+2100cos100π,由于2cosπ+22cos2π+23cos3π+…+2100cos100π=﹣2+22﹣23+24﹣…+2100==.故选:C.8.已知x,y∈R,且满足,则z=|x+2y|的最大值为()A.10 B.8 C.6 D.3【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式组,对应的平面区域如图:(阴影部分)由z=|x+2y|,平移直线y=﹣x+z,由图象可知当直线y=﹣x﹣z经过点A时,z取得最大值,此时z最大.即A(﹣2,﹣2),代入目标函数z=|x +2y |得z=2×2+2=6 故选:C .9.如图,四棱锥P ﹣ABCD 的底面ABCD 为平行四边形,NB=2PN ,则三棱锥N ﹣PAC 与三棱锥D ﹣PAC 的体积比为( )A .1:2B .1:8C .1:6D .1:3【考点】棱柱、棱锥、棱台的体积.【分析】根据两个棱锥的底面和高与棱锥P ﹣ABC 的底面与高的关系得出两棱锥的体积与棱锥P ﹣ABC 的关系,得出答案.【解答】解:∵四边形ABCD 是平行四边形,∴S △ABC =S △ACD . ∴V D ﹣PAC =V P ﹣ACD =V P ﹣ABC .∵NB=2PN ,∴NB=PB ,∴V N ﹣ABC =V P ﹣ABC ,∴V N ﹣PAC =V P ﹣ABC ﹣V N ﹣ABC =V P ﹣ABC .∴.故选:D .10.已知抛物线x 2=4y ,直线y=k (k 为常数)与抛物线交于A ,B 两个不同点,若在抛物线上存在一点P(不与A ,B 重合),满足,则实数k 的取值范围为( ) A .k ≥2 B .k ≥4 C .0<k ≤2 D .0<k ≤4 【考点】抛物线的简单性质.【分析】由题意可得设A(2,k),B(﹣2,k),P(m,),运用向量的数量积的坐标表示,由换元法可得二次方程,由判别式大于等于0和两根非负的条件,运用韦达定理,解不等式即可得到所求范围.【解答】解:由y=k(k>0),代入抛物线x2=4y,可得x=±2,可设A(2,k),B(﹣2,k),P(m,),由,可得(2﹣m,k﹣)•(﹣2﹣m,k﹣)=0,即为(2﹣m)(﹣2﹣m)+(k﹣)2=0,化为m4+m2(1﹣)+k2﹣4k=0,可令t=m2(t≥0),则t2+t(1﹣)+k2﹣4k=0,可得△=(1﹣)2﹣(k2﹣4k)≥0,即1≥0恒成立,由韦达定理可得﹣(1﹣)≥0,k2﹣4k≥0,解得k≥4.故选:B.二、填空题:本大题共5小题,每小题5分,共25分.11.已知i是虚数单位,m,n∈R,且m+2i=2﹣ni,则的共轭复数为i.【考点】复数代数形式的乘除运算.【分析】利用复数相等,求出m,n然后求解复数的代数形式.【解答】解:m,n∈R,且m+2i=2﹣ni,可得m=2,n=﹣2,====﹣i.它的共轭复数为i.故答案为:i.12.二项式的展开式中,常数项等于1215(用数字作答).【考点】二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得常数项【解答】解:展开式的通项公式为,由6﹣3k=0得k=2,所以常数项为,故答案为1215.13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)是偶函数,它的部分图象如图所示.M是函数f(x)图象上的点,K,L是函数f(x)的图象与x轴的交点,且△KLM为等腰直角三角形,则f(x)=cosπx.【考点】正弦函数的图象.【分析】由函数的最值求出A,由函数的奇偶性求出φ的值,由周期求出ω,可得函数的解析式.【解答】解:由题意可得A=,φ=2kπ+,k∈Z,再结合0<φ<π,可得φ=,函数f(x)=sin(ωx+)=cosωx.再根据•=,可得ω=π,函数f(x)=cosπx,故答案为:cosπx.14.若a>0,b>0,则的最小值是2+3.【考点】基本不等式.【分析】化简可得=++3,从而利用基本不等式求解即可.【解答】解:=2+++1=++3≥2+3,(当且仅当=,即a=b时,等号成立);故答案为:2+3.15.定义在区间[x1,x2]上的函数y=f(x)的图象为C,M是C上任意一点,O为坐标原点,设向量,且实数λ满足x=λx1+(1﹣λ)x2,此时向量.若|≤K恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准K下线性近似,其中K是一个确定的实数.已知函数f(x)=x2﹣2x在区间[1,2]上可在标准K下线性近似,那么K的最小值是.【考点】向量的线性运算性质及几何意义.【分析】y N﹣y M=λf(x1)+(1﹣λ)f(x2)﹣+2[λx1+(1﹣λ)x2]=,由题意可得:=|y N﹣y M|=||≤|λ(1﹣λ)|,再利用基本不等式的性质即可得出.【解答】解:y N﹣y M=λf(x1)+(1﹣λ)f(x2)﹣+2[λx1+(1﹣λ)x2]=+﹣+2[λx1+(1﹣λ)x2]=,|x1﹣x2|≤|1﹣2|=1,由题意可得:=|y N﹣y M|=||≤|λ(1﹣λ)|≤=,由于|≤K恒成立,∴,∴K的最小值为.故答案为:.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.已知函数f(x)=sin2wx﹣sin2(wx﹣)(x∈R,w为常数且<w<1),函数f(x)的图象关于直线x=π对称.(I)求函数f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f(A)=.求△ABC面积的最大值.【考点】正弦函数的图象;三角函数中的恒等变换应用.【分析】(1)化简f(x),根据对称轴求出ω,得出f(x)的解析式,利用周期公式计算周期;(2)由f(A)=解出A,利用余弦定理和基本不等式得出bc的最大值,代入面积公式得出面积的最大值.【解答】解:(I)f(x)=cos2ωx﹣[﹣cos(2ωx﹣)]=cos(2ωx﹣)﹣cos2ωx=﹣cos2ωx+sin2ωx=sin(2ωx﹣).令2ωx﹣=+kπ,解得x=.∴f(x)的对称轴为x=,令=π解得ω=.∵<w<1,∴当k=1时,ω=.∴f (x )=sin (x ﹣).∴f (x )的最小正周期T=.(2)∵f ()=sin (A ﹣)=,∴sin (A ﹣)=.∴A=.由余弦定理得cosA===.∴b 2+c 2=bc +1≥2bc ,∴bc ≤1.∴S △ABC ==≤.∴△ABC 面积的最大值是.17.为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动,该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为,;1小时以上且不超过2小时离开的概率分别为,;两人滑雪时间都不会超过3小时.(Ⅰ)求甲、乙两人所付滑雪费用相同的概率;(Ⅱ)设甲、乙两人所付的滑雪费用之和为随机变量ξ.求ξ的分布列与数学期望E (ξ). 【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列. 【分析】(Ⅰ)甲、乙两人所付费用相同即为0,40,80元,求出相应的概率,利用互斥事件的概率公式,可求甲、乙两人所付租车费用相同的概率;(Ⅱ)确定变量的取值,求出相应的概率,即可求得ξ的分布列与数学期望. 【解答】解:(Ⅰ)甲、乙两人所付费用相同即为0,40,80元.…都付0元的概率为P 1==,都付40元的概率为P 2==,都付80元的概率为P 3=(1﹣)(1﹣)=,故所付费用相同的概率为P=P 1+P 2+P 3=.(Ⅱ)由题意甲、乙两人所付的滑雪费用之和ξ的可能取值为0,40,80,120,160,P (ξ=0)==,P (ξ=40)==,P (ξ=80)=+=,P (ξ=120)=+=,P (ξ=160)=(1﹣)(1﹣)=,ξ 0 40 80 120 160数学期望E (ξ)=+=80.18.如图,在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BCA=45,AP=AD=AC=2,E 为PA 的中点.(Ⅰ)设面PAB ∩面PCD=l ,求证:CD ∥l ; (Ⅱ)求二面角B ﹣CE ﹣D 的余弦值.【考点】二面角的平面角及求法;棱锥的结构特征. 【分析】(Ⅰ)根据线面平行的判定定理以及性质定理即可证明CD ∥l ;(Ⅱ)建立空间直角坐标系,求出对应平面的法向量,利用向量法进行求解即可. 【解答】证明:(Ⅰ)取CD 的中点H ,∵AC ⊥AD ,AB ⊥BC ,∠BCA=45,AP=AD=AC=2, ∴AH ⊥CD ,∠CAH=∠CAB=45°, 即∠BAH=90°,即四边形ABCH 是矩形, 则AB ∥CH ,AB ∥CD∵CD ⊄面PAB ,AB ⊂面PAB , ∴CD ∥面PAB ,∵CD ⊂面PCD ,面PAB ∩面PCD=l , ∴根据线面平行的性质得CD ∥l .(Ⅱ)∵AC=2,∴AB=BC=AH=,DH=,建立以A 为原点,AH ,AB ,AP 分别为x ,y ,z 轴的空间直角坐标系如图:则A (0,0,0),B (0,,0),C (,,0),P (0,0,2),E (0,0,1),D (,﹣,0),=(﹣,﹣,1),=(,0,0),=(0,﹣2,0)设平面BPC的一个法向量为=(x,y,z),则,则x=0,令y=,则z=2,即=(0,,2),设平面PCD的一个法向量为=(x,y,z),,则y=0,令x=,则z=2,=(,0,2),则cos<,>====,即二面角B﹣CE﹣D的余弦值是.19.已知等差数列{a n}的公差d=2,其前n项和为S n,数列{a n}的首项b1=2,其前n项和为T n,满足.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{|a n b n﹣14|}的前n项和W n.【考点】数列的求和;等差数列的通项公式.【分析】(I)由,可得=T1+2=22,解得a1.利用等差数列的通项公式及其前n项和公式可得a n,S n.可得2n+1=T n+2,利用递推关系可得b n.(II)令c n=a n b n﹣14=(2n﹣1)•2n﹣14.可得:c1=﹣12,c2=﹣2,n≥3,c n>0.n≥3,W n=c1+c2+…+c n ﹣2c1﹣2c2.W n=1×2+3×22+…+(2n﹣1)2n﹣14n+28,令Q n=1×2+3×22+…+(2n﹣1)2n,利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(I)∵,∴=T1+2=2+2=4=22,∴+1=2,解得a1=1.∴a n=1+(n﹣1)×2=2n﹣1.∴S n==n2.∴2n+1=T n+2,∴当n≥2时,2n+1﹣2n=T n+2﹣(T n+2)=b n,﹣1∴b n=2n,当n=1时也成立.∴b n=2n.(II)令c n=a n b n﹣14=(2n﹣1)•2n﹣14.∴c1=﹣12,c2=﹣2,n≥3,c n>0.∴n≥3,W n=﹣c1﹣c2+c3+…+c n=c1+c2+…+c n﹣2c1﹣2c2.W n=1×2+3×22+…+(2n﹣1)2n﹣14n+28,令Q n=1×2+3×22+…+(2n﹣1)2n,2Q n=1×22+3×23+…+(2n﹣3)•2n+(2n﹣1)•2n+1,∴﹣Q n=2(2+22+…+2n)﹣2﹣(2n﹣1)•2n+1=2×﹣2﹣(2n﹣1)•2n+1=(3﹣2n)•2n+1﹣6,∴Q n=(2n﹣3)•2n+1+6.∴W n=.20.已知椭圆E: +=1,A、B分别是椭圆E的左、右顶点,动点M在射线1:x=4(y>0)上运动,MA交椭圆E于点P,MB交椭圆E于点Q.(1)若△MAB垂心的纵坐标为﹣4,求点的P坐标;(2)试问:直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【考点】椭圆的简单性质.【分析】(1)设M(4,m),由A(﹣2,0),B(2,0),垂心H(4,﹣4),由BH⊥MA,运用直线斜率公式和斜率之积为﹣1,可得m,再由直线MA与椭圆求得交点P;(2)设M(4,m),由A(﹣2,0),B(2,0),可得MA的方程为y=(x+2),代入椭圆方程,运用韦达定理,解得P的坐标;同理求得Q的坐标,运用直线的斜率公式可得PQ的斜率,由点斜式方程可得PQ的方程,再由恒过定点思想,即可得到所求定点.【解答】解:(1)设M(4,m),由A(﹣2,0),B(2,0),垂心H(4,﹣4),由BH⊥MA,可得k BH•k MA=﹣1,即有•=﹣1,可得m=,由MA的方程:y=(x+2),代入椭圆方程,可得8x2+4x﹣48=0,解得x=﹣2,或,即有P(,);(2)设M(4,m),由A(﹣2,0),B(2,0),可得MA的方程为y=(x+2),代入椭圆方程,可得(36+m2)x2+4m2x+8m2﹣288=0,由﹣2x P=,可得x P=,y P=(x P+2)=;又MB:y=(x﹣2),代入椭圆方程,可得(4+m2)x2﹣4m2x+8m2﹣32=0,由2+x Q=,可得x Q=,y Q=(x Q﹣2)=﹣,即有直线PQ的斜率为k==,则直线PQ:y﹣=(x﹣),化简即有y=(x﹣1),由x﹣1=0,解得x=,y=0.故直线PQ恒过定点(,0).21.已知函数f(x)=sinx﹣ax.(Ⅰ)对于x∈(0,1),f(x)>0恒成立,求实数a的取值范围;(Ⅱ)当a=1时,令h(x)=f(x)﹣sinx+lnx+1,求h(x)的最大值;(Ⅲ)求证:.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式求出a的范围即可;(Ⅱ)求出h(x)的导数,解关于导函数的不等式求出h(x)的单调区间,从而求出h(x)的最大值即可;(Ⅲ)构造函数f(x)=ln(1+x)﹣x,利用导数法可证得ln(1+x)≤x(当x≠0时,ln(1+x)<x),令x=,利用对数函数的运算性质及累加法求和即可证得结论成立.【解答】解:(Ⅰ)f(x)=sinx﹣ax,f′(x)=cosx﹣a,若对于x∈(0,1),f(x)>0恒成立,即a<cosx在(0,1)恒成立,故a≤0;(Ⅱ)a=1时,h(x)=lnx﹣x+1,(x>0),h′(x)=﹣1=,令h′(x)>0,解得:0<x<1,令h′(x)<0,解得:x>1,∴h(x)在(0,1)递增,在(1,+∞)递减,∴h(x)的最大值是h(1)=0;证明:(Ⅲ)构造函数g(x)=ln(1+x)﹣x,则g′(x)=﹣1=,当﹣1<x<0时,g′(x)>0,g(x)在(﹣1,0)上单调递增;当x>0时,g′(x)<0,g(x)在(0,+∞)上单调递减;所以,当x=0时,g(x)=ln(1+x)﹣x取得极大值,也是最大值,所以,g(x)≤g(0)=0,即ln(1+x)≤x,当x≠0时,ln(1+x)<x.令x=,则ln(1+)=ln(n+1)﹣lnn<,即ln(n+1)﹣lnn<,∴ln2﹣ln1<1,ln3﹣ln2<,…,lnn﹣ln(n﹣1)<,ln(n+1)﹣lnn<,以上n个不等式相加得:ln(n+1)﹣ln1<1+++…+,即.。

山东省济南市2018届高三第二次模拟考试理数试题word含答案

山东省济南市2018届高三第二次模拟考试理数试题word含答案

山东省济南市2018届高三第二次模拟考试理数试题word含答案山东省济南市2018届高三第二次模拟(5月)考试理科数学参考公式:锥体的体积公式:V=1/3Sh,其中S为锥体的底面积,h为锥体的高。

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

21.设全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分表示的集合为()小幅度改写:已知全集U=R,集合A={x|x-1≤0},集合B={x|x-x-6<0},则下图中阴影部分为集合A和集合B的交集。

2.设复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是()小幅度改写:已知复数z满足z(1-i)=2(其中i为虚数单位),则下列说法正确的是z=-1+i。

3.已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα等于()小幅度改写:已知角α的终边经过点(m,-2m)(其中m≠0),则sinα+cosα=±3/5.4.已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为()小幅度改写:已知F1、F2分别为双曲线2-2/b2=1(a>0,b>0)的左、右焦点,P为双曲线上一点,PF2与x轴垂直,∠PF1F2=30°,且虚轴长为2b2,则双曲线的标准方程为x2/b2-y2/a2=1.5.某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。

则中奖的概率为()小幅度改写:某商场举行有奖促销活动,抽奖规则如下:从装有形状、大小完全相同的2个红球、3个蓝球的箱子中,任意取出两球,若取出的两球颜色相同则中奖,否则不中奖。

2018年全国普通高等学校招生高考数学模拟试卷(理科)(一)

2018年全国普通高等学校招生高考数学模拟试卷(理科)(一)

2018年全国普通高等学校招生高考数学模拟试卷(理科)(一)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)x<1},则()1. 已知集合A={x|2−x>0},B={x|(12A.A∩B={x|0<x≤2}B.A∩B={x|x<0}C.A∪B={x|x<2}D.A∪B=R【答案】D【考点】交集及其运算【解析】化简集合A、B,根据交集与并集的定义判断选项是否正确即可.【解答】集合A={x|2−x>0}={x|x<2},)x<1}={x|x>0},B={x|(12则A∩B={x|0<x<2},A∪B=R.2. 已知i为虚数单位,a为实数,复数z满足z+3i=a+ai,若复数z是纯虚数,则()A.a=3B.a=0C.a≠0D.a<0【答案】B【考点】虚数单位i及其性质复数的运算复数的模复数的基本概念【解析】把已知等式变形,再结合已知条件即可求出a的值.【解答】由z+3i=a+ai,得z=a+(a−3)i,又∵复数z是纯虚数,∴{a=0,解得a=0.a−3≠03. 我国数学家邹元治利用如图证明勾股定理,该图中用勾(a)和股(b)分别表示直角三角形的两条直角边,用弦(c)表示斜边,现已知该图中勾为3,股为4,若从图中随机取一点,则此点不落在中间小正方形中的概率是()A.25 49B.2449C.47D.57【答案】B【考点】几何概型计算(与长度、角度、面积、体积有关的几何概型)【解析】由题意首先求得正方形的边长,然后利用几何概型计算公式即可求得最终结果.【解答】设直角三角形的长直角边为a=4,短直角边为b=3,由题意c=5,∵大方形的边长为a+b=3+4=7,小方形的边长为c=5,则大正方形的面积为49,小正方形的面积为25,∴满足题意的概率值为:1−2549=2449.4. 已知等差数列{a n}的前n项和为S n,且S9=6π,则tan a5=()A.√33B.√3 C.−√3 D.−√33【答案】C【考点】等差数列的前n项和【解析】由等差数列的性质可得:S9=9(a1+a9)2=9a5,解得a5,利用三角函数求值即可得出.【解答】由等差数列的性质可得:S9=6π=9(a1+a9)2=9a5,∴a5=2π3.则tan a5=tan2π3=−√3.5. 已知函数f(x)=x+ax(a∈R),则下列结论正确的是()A.∀a∈R,f(x)在区间(0, +∞)内单调递增B.∃a∈R,f(x)在区间(0, +∞)内单调递减C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数,且f(x)在区间(0, +∞)内单调递增【答案】D【考点】命题的真假判断与应用【解析】当a≤0时,函数f(x)=x+a在区间(0, +∞)内单调递增,当a>0时,函数f(x)=xx+a在区间(0, √a]上单调递减,在[√a, +∞)内单调递增,x∀a∈R,f(−x)=−f(x)均成立,故f(x)是奇函数,进而得到答案.【解答】在区间(0, +∞)内单调递增,当a≤0时,函数f(x)=x+ax在区间(0, √a]上单调递减,在[√a, +∞)内单调递增,当a>0时,函数f(x)=x+ax故A,B均错误,∀a∈R,f(−x)=−f(x)均成立,故f(x)是奇函数,故C错误,6. (1+x)(2−x)4的展开式中x项的系数为()A.−16B.16C.48D.−48【答案】A【考点】二项式定理的应用【解析】先求得(2−x)4的展开式的通项公式,考虑r=0和1,可得(1+x)(2−x)4的展开式中x项的系数.【解答】∵(2−x)4展开式的通项公式为T r+1=C4r⋅24−r(−x)r,∴(1+x)(2−x)4的展开式中x项的系数为−C41⋅23+24=−16,7. 如图是某个几何体的三视图,则这个几何体的表面积是()A.π+4√2+4B.2π+4√2+4C.2π+4√2+2D.2π+2√2+4【答案】B【考点】由三视图求体积【解析】由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体,分别计算各个面的面积,相加可得答案.【解答】由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体.其直观图如下所示:其表面积S=2×12π⋅12+2×12×2×1+12π×2×1+(√2+√2+2)×2−2×1=2π+4√2+4,8. 若a>1,0<c<b<1,则下列不等式不正确的是()A.log2018a>log2018bB.log b a<log c aC.(a−c)a c>(a−c)a bD.(c−b)a c>(c−b)a b【答案】C【考点】不等式的概念与应用【解析】根据对数函数的单调性可判断A,B,根据指数函数的单调性和不等式的性质可判断C,D【解答】根据对数函数的单调性可得log2018a>log2018b正确,log b a<log c a正确,∵a>1,0<c<b<1,∴a c<a b,a−c>0,∴(a−c)a c<(a−c)a b,故C不正确,∵c−b<0,∴(c−b)a c>(c−b)a b正确,9. 执行如图所示的程序框图,若输出的n值为11,则判断框中的条件可以是()A.S<1022?B.S<2018?C.S<4095?D.S>4095?【答案】C【考点】程序框图【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】第1次执行循环体,S=3,应不满足输出的条件,n=2,第2次执行循环体,S=7,应不满足输出的条件,n=3,第3次执行循环体,S=15,应不满足输出的条件,n=4,第4次执行循环体,S=31,应不满足输出的条件,n=5,第5次执行循环体,S=63,应不满足输出的条件,n=6,第6次执行循环体,S=127,应不满足输出的条件,n=7,第7次执行循环体,S=255,应不满足输出的条件,n=8,第8次执行循环体,S=511,应不满足输出的条件,n=9,第9次执行循环体,S=1023,应不满足输出的条件,n=10,第10次执行循环体,S =2047,应不满足输出的条件,n =11 第11次执行循环体,S =4095,应满足输出的条件, 故判断框中的条件可以是S <4095?,10. 已知函数f(x)=2sin(ωx +φ)(ω>0,|φ|≤π2)的部分图象如图所示,将函数f(x)的图象向左平移π12个单位长度后,所得图象与函数y =g(x)的图象重合,则( )A.g(x)=2sin (2x +π3)B.g(x)=2sin (2x +π6)C.g(x)=2sin 2xD.g(x)=2sin (2x −π3)【答案】 A【考点】由y=Asin (ωx+φ)的部分图象确定其解析式 【解析】 此题暂无解析 【解答】解:根据函数f(x)=2sin (ωx +φ)(ω>0,|φ|≤π2)的部分图象可得3T 4=34⋅2πω=2π3−(−π12)=3π4,则ω=2.∵ 2sin (2×2π3+φ)=−2,∴ 4π3+φ=3π2+2kπ,k ∈Z ,则φ=π6+2kπ,k ∈Z .∵ |φ|≤π2,∴ φ=π6,即函数f(x)=2sin (2x +π6).∵ 将函数f(x)的图象向左平移π12个单位长度后, 所得图象与函数y =g(x)的图象重合, ∴ g(x)=2sin [2(x +π12)+π6]=2sin (2x +π3). 故选A .11. 已知抛物线C:y 2=4x 的焦点为F ,过点F 作斜率为1的直线l 交抛物线C 与P 、Q 两点,则1|PF|+1|QF|的值为( ) A.12B.78C.1D.2【答案】 C【考点】直线与抛物线的位置关系 【解析】求出直线方程,联立直线与抛物线方程,利用韦达定理求解即可. 【解答】抛物线C:y 2=4x 的焦点为F(1, 0),过点F 作斜率为1的直线l:y =x −1, 可得{y 2=4xy =x −1, 消去y 可得:x 2−6x +1=0,可得x P +x Q =6,x P x Q =1, |PF|=x P +1,|QF|=x Q +1,|PF||QF|=x Q +x P +x P x Q +1=6+1+1=8, 则1|PF|+1|QF|=|PF|+|QF||QF||FP|=6+21+6+1=1.12. 已知数列{a n }中,a 1=2,n(a n+1−a n )=a n +1,n ∈N ∗,若对于任意的a ∈[−2, 2],n ∈N ∗,不等式an+1n+1<2t 2+at −1恒成立,则实数t 的取值范围为( )A.(−∞, −2]∪[2, +∞)B.(−∞, −2]∪[1, +∞)C.(−∞, −1]∪[2, +∞)D.[−2, 2] 【答案】 A【考点】 数列递推式 【解析】由题意可得an+1n+1−a n n=1n(n+1)=1n −1n+1,运用裂项相消求和可得an+1n+1,再由不等式恒成立问题可得2t 2+at −4≥0,设f(a)=2t 2+at −4,a ∈[−2, 2],运用一次函函数的性质,可得t 的不等式,解不等式即可得到所求t 的范围. 【解答】根据题意,数列{a n }中,n(a n+1−a n )=a n +1, 即na n+1−(n +1)a n =1,则有an+1n+1−a n n =1n(n+1)=1n −1n+1,则有an+1n+1=(an+1n+1−a nn)+(ann −a n−1n−1)+(an−1n−1−a n−2n−2)+...+(12a 2−a 1)+a 1 =(1n −1n+1)+(1n−1−1n )+(1n−2−1n−1)+...+(1−12)+2=3−1n+1<3,a n+1n+1<2t 2+at −1即3−1n+1<2t 2+at −1, ∵ 对于任意的a ∈[−2, 2],n ∈N ∗,不等式an+1n+1<2t 2+at −1恒成立,∴ 2t 2+at −1≥3, 化为:2t 2+at −4≥0,设f(a)=2t 2+at −4,a ∈[−2, 2], 可得f(2)≥0且f(−2)≥0,即有{t 2+t −2≥0t 2−t −2≥0 即{t ≥1或t ≤−2t ≥2或t ≤−1,可得t ≥2或t ≤−2,则实数t 的取值范围是(−∞, −2]∪[2, +∞).二、填空题(每题5分,满分20分,将答案填在答题纸上)已知向量a →=(1, λ),b →=(3, 1),c →=(1,2),若向量2a →−b →与c →共线,则向量a →在向量c →方向上的投影为________. 【答案】 0【考点】平面向量数量积的性质及其运算律 【解析】 此题暂无解析 【解答】解:a →=(1,λ),b →=(3,1),2a →−b →=(−1,2λ−1),∵ 向量2a →−b →与c →=(1,2)共线,∴ 2λ−1=−2, 即λ=−12. ∴ a →=(1,−12),∴ 向量a →在向量c →方向上的投影为 |a →|⋅cos⟨a →,c →⟩=a →⋅c →|c →|=1−2×12√5=0.故答案为:0.若实数x ,y 满足{x +y =4x ≤2y x ≥1 ,则z =x −3y +1的最大值是________.【答案】−13【考点】 简单线性规划 【解析】作出不等式组对应的平面区域,利用目标函数z =x −3y +1中,z 的几何意义,通过直线平移即可得到z 的最大值; 【解答】实数x ,y 满足{x +y =4x ≤2y x ≥1,对应的可行域如图:线段AB ,z =x −3y +1化为:y =13x +1−z 3,如果z 最大,则直线y =13x +1−z 3在y 轴上的截距1−z 3最小,作直线l:y =13x ,平移直线y =13x 至C 点时z =x −3y +1取得最大值,联立{x +y =4x =2y ,解得B(83, 43).所以z =x −3y +1的最大值是:83−3×43+1=−13. 过双曲线y 2a 2−x 2b 2=1(a >0, b >0)的下焦点F 1作y 轴的垂线,交双曲线于A ,B 两点,若以AB 为直径的圆恰好过其上焦点F 2,则双曲线的离心率为________. 【答案】 1+√2 【考点】 双曲线的特性 【解析】利用双曲线的通经求出AB ,利用以AB 为直径的圆恰好过其上焦点F 2,列出关系式,然后求解双曲线的离心率即可. 【解答】 过双曲线y 2a 2−x 2b 2=1(a >0, b >0)的下焦点F 1作y 轴的垂线, 交双曲线于A ,B 两点,则|AB|=2b 2a,以AB 为直径的圆恰好过其上焦点F 2, 可得:b 2a=2c ,∴ c 2−a 2−2ac =0,可得e 2−2e −1=0,解得e =1+√2,e =1−√2舍去.一底面为正方形的长方体各棱长之和为24,则当该长方体体积最大时,其外接球的体积为________. 【答案】 4√3π 【考点】球的体积和表面积 【解析】设该项长方体底面边长为x 米,求出其高是6−2x ,(0<x <3)则长方体的体积V(x)=x 2(6−2x),(0<x <3),由导数性质求出体积函数V(x)在x =2处取得唯一的极大值,即为最大值,此时长方体的高为6−2x =2,由此能求出其外接球的体积. 【解答】设该项长方体底面边长为x米,由题意知其高是:24−8x4=6−2x,(0<x<3)则长方体的体积V(x)=x2(6−2x),(0<x<3),V′(x)=12x−6x2=6x(2−x),由V′(x)=0,得x=2,且当0<x<2时,V′(x)>0,V(x)单调递增;当2<x<3时,V′(x)<0,V(x)单调递减.∴体积函数V(x)在x=2处取得唯一的极大值,即为最大值,此时长方体的高为6−2x=2,∴其外接球的直径2R=√22×3=2√3,∴R=√3,∴其外接球的体积V=4πR33=4√3π.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)如图,在△ABC中,角A,B,C所对的边分别为a,b,c,若2acosA=bcosC+ccosB.(1)求角A的大小;(2)若点D在边AC上,且BD是∠ABC的平分线,AB=2,BC=4,求AD的长.【答案】∵2acosA=bcosC+ccosB,∴2sinAcosA=sinBcosC+sinCcosB=sin(B+C)=sinA,∵sinA≠0,∴cosA=12,∴A=π3.在△ABC中,由余弦定理的cosA=4+AC2−164AC =12,解得AC=1+√13或AC=1−√13(舍).∵BD是∠ABC的平分线,∴ADCD =ABBC=12,∴AD=13AC=1+√133.【考点】正弦定理【解析】(1)利用正弦定理将边化角,根据三角恒等变换即可得出cosA=12,从而得出A的大小;(2)利用余弦定理计算AC,根据角平分线的性质得出AD的长.【解答】∵2acosA=bcosC+ccosB,∴2sinAcosA=sinBcosC+sinCcosB=sin(B+C)=sinA,∵sinA≠0,∴cosA=12,∴A=π3.在△ABC中,由余弦定理的cosA=4+AC2−164AC =12,解得AC=1+√13或AC=1−√13(舍).∵BD是∠ABC的平分线,∴ADCD =ABBC=12,∴AD=13AC=1+√133.如图,在三棱柱ABC−A1B1C1中,侧棱CC1⊥底面ABC,且CC1=2AC=2BC,AC⊥BC,D是AB的中点,点M在侧棱CC1上运动.(1)当M是棱CC1的中点时,求证:CD // 平面MAB1;(2)当直线AM与平面ABC所成的角的正切值为32时,求二面角A−MB1−C1的余弦值.【答案】(1)证明:取线段AB的中点E,连接DE,EM.∵AD=DB,AE=EB,∴DE // BB1,ED=12BB1,又M为CC1的中点,∴CM // BB1,CM=12BB1.∴四边形CDEM是平行四边形.∴CD // EM,又EM⊂MAB1,CDMAB1∴CD // 平面MAB1;(2)解:∵CA,CB,CC1两两垂直,∴ 以C 为原点,CA ,CB ,CC 1所在直线分别为x 、y 、z 轴建立空间直角坐标系.∵ 在三棱柱ABC −A 1B 1C 1中,侧棱CC 1⊥底面ABC , 可得∠MAC 为直线AM 与平面ABC 所成的角, 设AC =1,tan∠MAC =32,得CM =32∴ C(0, 0, 0),A(1, 0, 0),B(0, 1, 0),B 1(0, 1, 2), M(0, 0, 32),AM →=(−1,0,32),AB 1→=(−1,1,2)设AMB 1的法向量为n →=(x,y,z),{AM →⋅n →=−x +32z =0AB 1→⋅n →=−x +y +2z =0 可取n →=(3,−1,2)又平面B 1C 1CB 的法向量为CA →=(1,0,0). cos <n →,CA →>CA →⋅n→|n →||CA →|=3√1414. ∵ 二面角A −MB 1−C 1为钝角,∴ 二面角A −MB 1−C 1的余弦值为−3√1414.【考点】二面角的平面角及求法 直线与平面平行的判定 【解析】(1)取线段AB 的中点E ,连接DE ,EM .可得四边形CDEM 是平行四边形,CD // EM ,即可证明CD // 平面MAB 1;(2)以C 为原点,CA ,CB ,CC 1所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用向量法二面角A −MB 1−C 1的余弦值. 【解答】(1)证明:取线段AB 的中点E ,连接DE ,EM .∵ AD =DB ,AE =EB ,∴ DE // BB 1,ED =12BB 1, 又M 为CC 1的中点,∴ CM // BB 1,CM =12BB 1.∴ 四边形CDEM 是平行四边形. ∴ CD // EM ,又EM ⊂MAB 1,CDMAB 1 ∴ CD // 平面MAB 1;(2)解:∵ CA ,CB ,CC 1两两垂直,∴ 以C 为原点,CA ,CB ,CC 1所在直线分别为x 、y 、z 轴建立空间直角坐标系.∵ 在三棱柱ABC −A 1B 1C 1中,侧棱CC 1⊥底面ABC , 可得∠MAC 为直线AM 与平面ABC 所成的角, 设AC =1,tan∠MAC =32,得CM =32∴ C(0, 0, 0),A(1, 0, 0),B(0, 1, 0),B 1(0, 1, 2), M(0, 0, 32),AM →=(−1,0,32),AB 1→=(−1,1,2)设AMB 1的法向量为n →=(x,y,z),{AM →⋅n →=−x +32z =0AB 1→⋅n →=−x +y +2z =0可取n →=(3,−1,2)又平面B 1C 1CB 的法向量为CA →=(1,0,0).cos <n →,CA →>CA →⋅n→|n →||CA →|=3√1414. ∵ 二面角A −MB 1−C 1为钝角, ∴ 二面角A −MB 1−C 1的余弦值为−3√1414.第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地区合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制),如茎叶图所示.(1)写出该样本的众数、中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数;(2)从所抽取的70分以上的学生中再随机选取4人. ①记X 表示选取4人的成绩的平均数,求P(X ≥87);②记ξ表示测试成绩在80分以上的人数,求ξ的分布和数学期望.【答案】众数为76,中位数为76,抽取的12人中,70分以下的有4人,不低于70分的有8人,故从该校学生中任选1人,这个人测试成绩在70分以上的概率为812=23, ∴ 该校这次测试成绩在70分以上的约有:3000×23=2000人. ①由题意知70分以上的有72,76,76,76,82,88,93,94, 当所选取的四个人的成绩的平均分大于87分时,有两类: 一类是:82,88,93,94,共1种; 另一类是:76,88,93,94,共3种. ∴ P(X ≥87)=4C 84=235.②由题意得ξ的可能取值为0,1,2,3,4, P(ξ=0)=C 40C44C 84=170, P(ξ=1)=C 41C43C 84=835, P(ξ=2)=C 42C42C 84=1835, P(ξ=3)=C 43C43C 84=835, P(ξ=4)=C 44C40C 84=170,∴ ξ的分布列为:∴E(ξ)=0×170+1×835+2×1835+3×835+4×170=2.【考点】离散型随机变量及其分布列离散型随机变量的期望与方差【解析】(1)众数为76,中位数为76,抽取的12人中,70分以下的有4人,不低于70分的有8人,从而求出从该校学生中任选1人,这个人测试成绩在70分以上的概率,由此能求出该校这次测试成绩在70分以上的人数.(2)①由题意知70分以上的有72,76,76,76,82,88,93,94,当所选取的四个人的成绩的平均分大于87分时,有两类:一类是:82,88,93,94,共1种;另一类是:76,88,93,94,共3种.由此能求出P(X≥87).②由题意得ξ的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出ξ的分布列和E(ξ).【解答】众数为76,中位数为76,抽取的12人中,70分以下的有4人,不低于70分的有8人,故从该校学生中任选1人,这个人测试成绩在70分以上的概率为812=23,∴该校这次测试成绩在70分以上的约有:3000×23=2000人.①由题意知70分以上的有72,76,76,76,82,88,93,94,当所选取的四个人的成绩的平均分大于87分时,有两类:一类是:82,88,93,94,共1种;另一类是:76,88,93,94,共3种.∴P(X≥87)=4C84=235.②由题意得ξ的可能取值为0,1,2,3,4,P(ξ=0)=C40C44C84=170,P(ξ=1)=C41C43C84=835,P(ξ=2)=C42C42C84=1835,P(ξ=3)=C43C43C84=835,P(ξ=4)=C44C40C84=170,∴ξ的分布列为:∴ E(ξ)=0×170+1×835+2×1835+3×835+4×170=2.已知椭圆C:x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,点P 在椭圆C 上,且△PF 1F 2的面积的最大值为2√2. (1)求椭圆C 的方程;(2)已知直线l:y =kx +2(k ≠0)与椭圆C 交于不同的两点M ,N ,若在x 轴上存在点G ,使得|GM|=|GN|,求点G 的横坐标的取值范围. 【答案】解:(1)由已知得,{c a=13,12×2c ×b =2√2,a 2−b 2=c 2, 解得{a 2=9,b 2=8,c 2=1,∴ 椭圆C 的方程为x 29+y 28=1.(2)联立方程组{y =kx +2,x 29+y 28=1, 消元得(8+9k 2)x 2+36kx −36=0,∵ 直线l 恒过点(0, 2),∴ 直线l 与椭圆始终有两个交点,设M(x 1, y 1),N(x 2, y 2),则x 1+x 2=−36k8+9k 2,设MN 的中点为E(x 0, y 0),则x 0=−18k 8+9k 2,y 0=kx 0+2=168+9k . ∵ |GM|=|GN|, ∴ GE ⊥MN , 设G(m, 0),则k GE =168+9k 2−18k8+9k 2−m =−1k ,∴ m =−2k8+9k =−29k+8k,当k >0时,9k +8k ≥2√72=12√2.当且仅当9k =8k ,即k =2√23时取等号;∴ −√212≤m <0,当k <0时,9k +8k ≤−2√72=−12√2,当且仅当9k =8k ,即k =−2√23时取等号;∴ 0<m ≤√212.∴ 点G 的横坐标的取值范围是[−√212, 0)∪(0, √212].【考点】直线与椭圆结合的最值问题椭圆的标准方程 【解析】(1)利用待定系数法求出椭圆方程;(2)联立方程组,利用根与系数的关系求出MN 的中点E 的坐标,根据GE ⊥MN 得出G 点横坐标m 的表达式,利用基本不等式得出m 的取值范围. 【解答】解:(1)由已知得,{c a=13,12×2c ×b =2√2,a 2−b 2=c 2, 解得{a 2=9,b 2=8,c 2=1, ∴ 椭圆C 的方程为x 29+y 28=1.(2)联立方程组{y =kx +2,x 29+y 28=1,消元得(8+9k 2)x 2+36kx −36=0,∵ 直线l 恒过点(0, 2),∴ 直线l 与椭圆始终有两个交点,设M(x 1, y 1),N(x 2, y 2),则x 1+x 2=−36k8+9k 2,设MN 的中点为E(x 0, y 0),则x 0=−18k 8+9k 2,y 0=kx 0+2=168+9k 2. ∵ |GM|=|GN|, ∴ GE ⊥MN , 设G(m, 0),则k GE =168+9k 2−18k8+9k 2−m =−1k,∴ m =−2k8+9k 2=−29k+8k,当k >0时,9k +8k ≥2√72=12√2.当且仅当9k =8k ,即k =2√23时取等号;∴ −√212≤m <0,当k <0时,9k +8k ≤−2√72=−12√2,当且仅当9k =8k ,即k =−2√23时取等号;∴ 0<m ≤√212.∴ 点G 的横坐标的取值范围是[−√212, 0)∪(0, √212].设函数f(x)=e x −2a −ln(x +a),a ∈R ,e 为自然对数的底数.(1)若a >0,且函数f(x)在区间[0, +∞)内单调递增,求实数a 的取值范围;(2)若0<a <23,试判断函数f(x)的零点个数. 【答案】∵ 函数f(x)在区间[0, +∞)内单调递增, ∴ f′(x)=e x −1x+a ≥0在区间[0, +∞)恒成立,即a≥e−x−x在[0, +∞)恒成立,记g(x)=e−x−x,则g′(x)=−e−x−1<0恒成立,故g(x)在[0, +∞)递减,故g(x)≤g(0)=1,a≥1,故实数a的范围是[1, +∞);∵0<a<23,f′(x)=e x−1x+a,记ℎ(x)=f′(x),则ℎ′(x)=e x+1(x+a)2>0,知f′(x)在区间(−a, +∞)递增,又∵f′(0)=1−1a <0,f′(1)=e−11+a>0,∴f′(x)在区间(−a, +∞)内存在唯一的零点x0,即f′(x0)=e x0−1x0+a=0,于是x0=−ln(x0+a),当−a<x<x0时,f′(x)<0,f(x)递减,当x>x0时,f′(x)>0,f(x)递增,故f(x)min=f(x0)=e x0−2a−ln(x0+a)=x0+a+1x0+a−3a≥2−3a,当且仅当x0+a=1时取“=”,由0<a<23得2−3a>0,∴f(x)min=f(x0)>0,即函数f(x)无零点.【考点】利用导数研究函数的单调性函数的零点与方程根的关系【解析】(1)求出函数的导数,问题转化为a≥e−x−x在[0, +∞)恒成立,记g(x)=e−x−x,根据函数的单调性求出a的范围即可;(2)求出f′(x)=e x−1x+a,记ℎ(x)=f′(x),根据函数的单调性得到f′(x)在区间(−a, +∞)递增,从而求出f(x)的最小值大于0,判断出函数无零点即可.【解答】∵函数f(x)在区间[0, +∞)内单调递增,∴f′(x)=e x−1x+a≥0在区间[0, +∞)恒成立,即a≥e−x−x在[0, +∞)恒成立,记g(x)=e−x−x,则g′(x)=−e−x−1<0恒成立,故g(x)在[0, +∞)递减,故g(x)≤g(0)=1,a≥1,故实数a的范围是[1, +∞);∵0<a<23,f′(x)=e x−1x+a,记ℎ(x)=f′(x),则ℎ′(x)=e x+1(x+a)2>0,知f′(x)在区间(−a, +∞)递增,又∵ f′(0)=1−1a <0,f′(1)=e −11+a >0, ∴ f′(x)在区间(−a, +∞)内存在唯一的零点x 0, 即f′(x 0)=e x 0−1x0+a=0,于是x 0=−ln(x 0+a),当−a <x <x 0时,f′(x)<0,f(x)递减, 当x >x 0时,f′(x)>0,f(x)递增,故f(x)min =f(x 0)=e x 0−2a −ln(x 0+a)=x 0+a +1x 0+a−3a ≥2−3a ,当且仅当x 0+a =1时取“=”, 由0<a <23得2−3a >0,∴ f(x)min =f(x 0)>0,即函数f(x)无零点.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]已知在平面直角坐标系xOy 中,椭圆C 的方程为y 216+x 24=1,以O 为极点,x 轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为ρsin(θ+π3)=3. (1)求直线l 的直角坐标方程和椭圆C 的参数方程;(2)设M(x, y)为椭圆C 上任意一点,求|2√3x +y −1|的最大值. 【答案】根据题意,椭圆C 的方程为y 216+x 24=1,则其参数方程为{x =2cosαy =4sinα,(α为参数);直线l 的极坐标方程为ρsin(θ+π3)=3,变形可得ρsinθcos π3+ρcosθsin π3=3,即12ρsinθ+√32ρcosθ=3,将x =ρcosθ,y =ρsinθ代入可得√3x +y −6=0,即直线l 的普通方程为√3x +y −6=0;根据题意,M(x, y)为椭圆一点,则设M(2cosθ, 4sinθ), |2√3x +y −1|=|4√3cosθ+4sinθ−1|=|8sin(θ+π3)−1|, 分析可得,当sin(θ+π3)=−1时,|2√3x +y −1|取得最大值9.【考点】椭圆的参数方程 【解析】(1)根据题意,由参数方程的定义可得椭圆的参数方程,直线l 的极坐标方程可以变形为ρsinθcos π3+ρcosθsin π3=3,即12ρsinθ+√32ρcosθ=3,将x =ρcosθ,y =ρsinθ代入可得直线l 的普通方程;(2)根据题意,设M(2cosθ, 4sinθ),进而分析可得|2√3x +y −1|=|4√3cosθ+4sinθ−1|=|8sin(θ+π3)−1|,由三角函数的性质分析可得答案.【解答】根据题意,椭圆C 的方程为y 216+x 24=1,则其参数方程为{x =2cosαy =4sinα,(α为参数);直线l 的极坐标方程为ρsin(θ+π3)=3,变形可得ρsinθcos π3+ρcosθsin π3=3,即12ρsinθ+√32ρcosθ=3,将x =ρcosθ,y =ρsinθ代入可得√3x +y −6=0, 即直线l 的普通方程为√3x +y −6=0;根据题意,M(x, y)为椭圆一点,则设M(2cosθ, 4sinθ), |2√3x +y −1|=|4√3cosθ+4sinθ−1|=|8sin(θ+π3)−1|,分析可得,当sin(θ+π3)=−1时,|2√3x +y −1|取得最大值9. [选修4-5:不等式选讲]已知函数f(x)=|x −2|.(1)求不等式f(x)+f(2+x)≤4的解集;(2)若g(x)=f(x)−f(2−x)的最大值为m ,对任意不相等的正实数a ,b ,证明:af(b)+bf(a)≥m|a −b|. 【答案】不等式f(x)+f(2+x)≤4, 即为|x −2|+|x|≤4,当x ≥2时,2x −2≤4,即x ≤3,则2≤x ≤3;当0<x <2时,2−x +x ≤4,即2≤4,则0<x <2; 当x ≤0时,2−x −x ≤4,即x ≥−1,则−1≤x ≤0. 综上可得,不等式的解集为{x|−1≤x ≤3}; 证明:g(x)=f(x)−f(2−x)=|x −2|−|x|,由|x −2|−|x|≤|x −2−x|=2,当且仅当x ≤0时,取得等号, 即g(x)≤2,则m =2,任意不相等的正实数a ,b ,可得 af(b)+bf(a)=a|b −2|+b|a −2| =|ab −2a|+|ab −2b|≥|ab −2a −ab +2b|=|2a −2b|=2|a −b|=m|a −b|, 当且仅当(a −2)(b −2)≤0时,取得等号, 即af(b)+bf(a)≥m|a −b|. 【考点】绝对值不等式的解法与证明 【解析】(1)原不等式即为|x −2|+|x|≤4,分当x ≥2时,当0<x <2时,当x ≤0时去绝对值,解不等式,最后求并集即可;(2)运用绝对值不等式的性质可得m=2,再由绝对值不等式的性质,化简变形即可得证.【解答】不等式f(x)+f(2+x)≤4,即为|x−2|+|x|≤4,当x≥2时,2x−2≤4,即x≤3,则2≤x≤3;当0<x<2时,2−x+x≤4,即2≤4,则0<x<2;当x≤0时,2−x−x≤4,即x≥−1,则−1≤x≤0.综上可得,不等式的解集为{x|−1≤x≤3};证明:g(x)=f(x)−f(2−x)=|x−2|−|x|,由|x−2|−|x|≤|x−2−x|=2,当且仅当x≤0时,取得等号,即g(x)≤2,则m=2,任意不相等的正实数a,b,可得af(b)+bf(a)=a|b−2|+b|a−2|=|ab−2a|+|ab−2b|≥|ab−2a−ab+2b|=|2a−2b|=2|a−b|=m|a−b|,当且仅当(a−2)(b−2)≤0时,取得等号,即af(b)+bf(a)≥m|a−b|.。

2018年全国一般高等学校招生高考数学模拟试卷理科一及答案

2018年全国一般高等学校招生高考数学模拟试卷理科一及答案

2018年全国一般高等学校招生高考数学模拟试卷(理科)(一)一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)已知集合A={x|2﹣x>0},B={x|()x<1},那么()A.A∩B={x|0<x≤2} B.A∩B={x|x<0} C.A∪B={x|x<2} D.A∪B=R2.(5分)已知i为虚数单位,a为实数,复数z知足z+3i=a+ai,假设复数z 是纯虚数,那么()A.a=3 B.a=0 C.a≠0 D.a<03.(5分)我国数学家邹元治利用如图证明勾股定理,该图顶用勾(a)和股(b)别离表示直角三角形的两条直角边,用弦(c)表示斜边,现已知该图中勾为3,股为4,假设从图中随机取一点,那么此点不落在中间小正方形中的概率是()A. B.C.D.4.(5分)已知等差数列{a n}的前n项和为S n,且S9=6π,那么tan a5=()A. B.C.﹣D.﹣5.(5分)已知函数f(x)=x+(a∈R),那么以下结论正确的选项是()A.∀a∈R,f(x)在区间(0,+∞)内单调递增B.∃a∈R,f(x)在区间(0,+∞)内单调递减C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数,且f(x)在区间(0,+∞)内单调递增6.(5分)(1+x)(2﹣x)4的展开式中x项的系数为()A.﹣16 B.16 C.48 D.﹣487.(5分)如图是某个几何体的三视图,那么那个几何体的表面积是()A.π+4+4 B.2π+4+4 C.2π+4+2 D.2π+2+4 8.(5分)假设a>1,0<c<b<1,那么以下不等式不正确的选项是()A.log2018a>log2018b B.log b a<log c aC.(a﹣c)a c>(a﹣c)a b D.(c﹣b)a c>(c﹣b)a b9.(5分)执行如下图的程序框图,假设输出的n值为11,那么判定框中的条件能够是()A.S<1022?B.S<2018?C.S<4095?D.S>4095?10.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤)的部份图象如下图,将函数f(x)的图象向左平移个单位长度后,所得图象与函数y=g (x)的图象重合,那么()A.g(x)=2sin(2x+)B.g(x)=2sin(2x+)C.g(x)=2sin2x D.g(x)=2sin(2x﹣)11.(5分)已知抛物线C:y2=4x的核心为F,过点F作斜率为1的直线l交抛物线C与P、Q两点,那么+的值为()A.B.C.1 D.212.(5分)已知数列{an }中,a1=2,n(an+1﹣an)=an+1,n∈N*,假设关于任意的a∈[﹣2,2],n∈N*,不等式<2t2+at﹣1恒成立,那么实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]二、填空题(每题5分,总分值20分,将答案填在答题纸上)13.(5分)已知向量=(1,λ),=(3,1),假设向量2﹣与=(1,2)共线,那么向量在向量方向上的投影为.14.(5分)假设实数x,y知足,那么z=x﹣3y+1的最大值是.15.(5分)过双曲线﹣=1(a>0,b>0)的下核心F1作y轴的垂线,交双曲线于A,B两点,假设以AB为直径的圆恰好于其上核心F2,那么双曲线的离心率为.16.(5分)一底面为正方形的长方体各棱长之和为24,那么当该长方体体积最大时,其外接球的体积为.三、解答题(本大题共5小题,共70分.解许诺写出文字说明、证明进程或演算步骤.)17.(12分)如图,在△ABC中,角A,B,C所对的边别离为a,b,c,假设2acosA=bcosC+ccosB.(1)求角A的大小;(2)假设点D在边AC上,且BD是∠ABC的平分线,AB=2,BC=4,求AD的长.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱CC1⊥地面ABC,且CC1=2AC=2BC,AC⊥BC,D是AB的中点,点M在侧棱CC1上运动.(1)当M是棱CC1的中点时,求证:CD∥平面MAB1;(2)当直线AM与平面ABC所成的角的正切值为时,求二面角A﹣MB1﹣C1的余弦值.19.(12分)第一届“一带一路”国际合作顶峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地域合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情形,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,取得其测试成绩(百分制),如茎叶图所示.(1)写出该样本的众数、中位数,假设该校共有3000名学生,试估量该校测试成绩在70分以上的人数;(2)从所抽取的70分以上的学生中再随机选取1人.①记X表示选取4人的成绩的平均数,求P(X≥87);②记ξ表示测试成绩在80分以上的人数,求ξ的散布和数学期望.20.(12分)已知椭圆C:+=1(a>b>0)的左、右核心为F1,F2,离心率为,点P在椭圆C上,且△PF1F2的面积的最大值为2.(1)求椭圆C的方程;(2)已知直线l:y=kx+2(k≠0)与椭圆C交于不同的两点M,N,假设在x轴上存在点G,使得|GM|=|GN|,求点G的横坐标的取值范围.21.(12分)设函数f(x)=e x﹣2a﹣ln(x+a),a∈R,e为自然对数的底数.(1)假设a>0,且函数f(x)在区间[0,+∞)内单调递增,求实数a的取值范围;(2)假设0<a<,试判定函数f(x)的零点个数.请考生在2二、23两题中任选一题作答,若是多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知在平面直角坐标系xOy中,椭圆C的方程为+=1,以O 为极点,x轴的非负半轴为极轴,取相同的长度单位成立极坐标系,直线l的极坐标方程为ρsin(θ+)=3.(1)求直线l的直角坐标方程和椭圆C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|2x+y﹣1|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|.(1)求不等式f(x)+f(2+x)≤4的解集;(2)假设g(x)=f(x)﹣f(2﹣x)的最大值为m,对任意不相等的正实数a,b,证明:af(b)+bf(a)≥m|a﹣b|.2018年全国一般高等学校招生高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)已知集合A={x|2﹣x>0},B={x|()x<1},那么()A.A∩B={x|0<x≤2} B.A∩B={x|x<0} C.A∪B={x|x<2} D.A∪B=R【解答】解:集合A={x|2﹣x>0}={x|x<2},B={x|()x<1}={x|x>0},那么A∩B={x|0<x<2},A∪B=R.应选:D.2.(5分)已知i为虚数单位,a为实数,复数z知足z+3i=a+ai,假设复数z 是纯虚数,那么()A.a=3 B.a=0 C.a≠0 D.a<0【解答】解:由z+3i=a+ai,得z=a+(a﹣3)i,又∵复数z是纯虚数,∴,解得a=0.应选:B.3.(5分)我国数学家邹元治利用如图证明勾股定理,该图顶用勾(a)和股(b)别离表示直角三角形的两条直角边,用弦(c)表示斜边,现已知该图中勾为3,股为4,假设从图中随机取一点,那么此点不落在中间小正方形中的概率是()A. B. C.D.【解答】解:设直角三角形的长直角边为a=4,短直角边为b=3,由题意c=5,∵大方形的边长为a+b=3+4=7,小方形的边长为c=5,那么大正方形的面积为49,小正方形的面积为25,∴知足题意的概率值为:1﹣=.应选:B.4.(5分)已知等差数列{an }的前n项和为Sn,且S9=6π,那么tan a5=()A. B.C.﹣D.﹣【解答】解:由等差数列的性质可得:S9=6π==9a5,∴a=.5=tan=﹣.那么tan a5应选:C.5.(5分)已知函数f(x)=x+(a∈R),那么以下结论正确的选项是()A.∀a∈R,f(x)在区间(0,+∞)内单调递增B.∃a∈R,f(x)在区间(0,+∞)内单调递减C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数,且f(x)在区间(0,+∞)内单调递增【解答】解:当a≤0时,函数f(x)=x+在区间(0,+∞)内单调递增,当a>0时,函数f(x)=x+在区间(0,]上单调递减,在[,+∞)内单调递增,故A,B均错误,∀a∈R,f(﹣x)=﹣f(x)均成立,故f(x)是奇函数,故C错误,应选:D.6.(5分)(1+x)(2﹣x)4的展开式中x项的系数为()A.﹣16 B.16 C.48 D.﹣48【解答】解:∵(2﹣x)4展开式的通项公式为 T=•24﹣r(﹣x)r,r+1∴(1+x)(2﹣x)4的展开式中x项的系数为﹣•23+24=﹣16,应选:A.7.(5分)如图是某个几何体的三视图,那么那个几何体的表面积是()A.π+4+4 B.2π+4+4 C.2π+4+2 D.2π+2+4【解答】解:由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体.其直观图如下所示:其表面积S=2×π•12+2××2×1++﹣2×1=2π+4+4,应选:B8.(5分)假设a>1,0<c<b<1,那么以下不等式不正确的选项是()A.log2018a>log2018b B.logba<logcaC.(a﹣c)a c>(a﹣c)a b D.(c﹣b)a c>(c﹣b)a b【解答】解:依照对数函数的单调性可得log2018a>log2018b正确,logba<logca正确,∵a>1,0<c<b<1,∴a c<a b,a﹣c>0,∴(a﹣c)a c<(a﹣c)a b,故C不正确,∵c﹣b<0,∴(c﹣b)a c>(c﹣b)a b正确,应选:C.9.(5分)执行如下图的程序框图,假设输出的n值为11,那么判定框中的条件能够是()A.S<1022?B.S<2018?C.S<4095?D.S>4095?【解答】解:第1次执行循环体,S=3,应不知足输出的条件,n=2,第2次执行循环体,S=7,应不知足输出的条件,n=3,第3次执行循环体,S=15,应不知足输出的条件,n=4,第4次执行循环体,S=31,应不知足输出的条件,n=5,第5次执行循环体,S=63,应不知足输出的条件,n=6,第6次执行循环体,S=127,应不知足输出的条件,n=7,第7次执行循环体,S=255,应不知足输出的条件,n=8,第8次执行循环体,S=511,应不知足输出的条件,n=9,第9次执行循环体,S=1023,应不知足输出的条件,n=10,第10次执行循环体,S=2047,应不知足输出的条件,n=11第11次执行循环体,S=4095,应知足输出的条件,故判定框中的条件能够是S<4095?,应选:C.10.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤)的部份图象如下图,将函数f(x)的图象向左平移个单位长度后,所得图象与函数y=g (x)的图象重合,那么()A.g(x)=2sin(2x+)B.g(x)=2sin(2x+)C.g(x)=2sin2x D.g(x)=2sin(2x﹣)【解答】解:依照函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤)的部份图象,可得==+,∴ω=2,依照+φ=2•(﹣)+φ=0,∴φ=,故f(x)=2sin(2x+).将函数f(x)的图象向左平移个单位长度后,所得图象与函数y=g(x)的图象重合,故g(x)=2sin(2x++)=2sin(2x+).应选:A.11.(5分)已知抛物线C:y2=4x的核心为F,过点F作斜率为1的直线l交抛物线C与P、Q两点,那么+的值为()A.B.C.1 D.2【解答】解:抛物线C:y2=4x的核心为F(1,0),过点F作斜率为1的直线l:y=x﹣1,可得,消去y可得:x2﹣6x+1=0,可得xP +xQ=6,xPxQ=1,|PF|=xP +1,|QF|=xQ+1,|PF||QF|=xQ +xP+xPxQ+1=6+1+1=8,则+===1.应选:C.12.(5分)已知数列{an }中,a1=2,n(an+1﹣an)=an+1,n∈N*,假设关于任意的a∈[﹣2,2],n∈N*,不等式<2t2+at﹣1恒成立,那么实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]【解答】解:依照题意,数列{a n }中,n (a n+1﹣a n )=a n +1, 即na n+1﹣(n+1)a n =1,那么有﹣==﹣,那么有=(﹣)+(﹣)+(﹣)+…+(a 2﹣a 1)+a 1=(﹣)+(﹣)+(﹣)+…+(1﹣)+2=3﹣<3,<2t 2+at ﹣1即3﹣<2t 2+at ﹣1,∵关于任意的a ∈[﹣2,2],n ∈N *,不等式<2t 2+at ﹣1恒成立,∴2t 2+at ﹣1≥3, 化为:2t 2+at ﹣4≥0,设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 可得f (2)≥0且f (﹣2)≥0,即有即,可得t ≥2或t ≤﹣2,那么实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞). 应选:A .二、填空题(每题5分,总分值20分,将答案填在答题纸上)13.(5分)已知向量=(1,λ),=(3,1),假设向量2﹣与=(1,2)共线,那么向量在向量方向上的投影为0 .【解答】解:向量=(1,λ),=(3,1),向量2﹣=(﹣1,2λ﹣1),∵向量2﹣与=(1,2)共线,∴2λ﹣1=﹣2,即λ=.∴向量=(1,﹣),∴向量在向量方向上的投影为||•cos<,>===0.故答案为:0.14.(5分)假设实数x,y知足,那么z=x﹣3y+1的最大值是.【解答】解:实数x,y知足,对应的可行域如图:线段AB,z=x﹣3y+1化为:y=,若是z最大,那么直线y=在y轴上的截距最小,作直线l:y=,平移直线y=至B点时,z=x﹣3y+1取得最大值,联立,解得B(,).因此z=x﹣3y+1的最大值是:.故答案为:﹣.15.(5分)过双曲线﹣=1(a>0,b>0)的下核心F作y轴的垂线,交1,那么双曲线的双曲线于A,B两点,假设以AB为直径的圆恰好于其上核心F2离心率为.作y轴的垂线,【解答】解:过双曲线﹣=1(a>0,b>0)的下核心F1交双曲线于A,B两点,那么|AB|=,,以AB为直径的圆恰好于其上核心F2可得:,∴c2﹣a2﹣2ac=0,可得e2﹣2e﹣1=0,解得e=1+,e=1﹣舍去.故答案为:1+.16.(5分)一底面为正方形的长方体各棱长之和为24,那么当该长方体体积最大时,其外接球的体积为4.【解答】解:设该项长方体底面边长为x米,由题意知其高是:=6﹣2x,(0<x<3)那么长方体的体积V(x)=x2(6﹣2x),(0<x<3),V′(x)=12x﹣6x2=6x(2﹣x),由V′(x)=0,得x=2,且当0<x<2时,V′(x)>0,V(x)单调递增;当2<x<3时,V′(x)<0,V(x)单调递减.∴体积函数V(x)在x=2处取得唯一的极大值,即为最大值,现在长方体的高为6﹣2x=2,∴其外接球的直径2R==2,∴R=,∴其外接球的体积V==4.故答案为:4.三、解答题(本大题共5小题,共70分.解许诺写出文字说明、证明进程或演算步骤.)17.(12分)如图,在△ABC中,角A,B,C所对的边别离为a,b,c,假设2acosA=bcosC+ccosB.(1)求角A的大小;(2)假设点D在边AC上,且BD是∠ABC的平分线,AB=2,BC=4,求AD的长.【解答】解:(1)∵2acosA=bcosC+ccosB,∴2sinAcosA=sinBcosC+sinCcosB=sin(B+C)=sinA,∵sinA≠0,∴cosA=,∴A=.(2)在△ABC中,由余弦定理的cosA==,解得AC=1+或AC=1﹣(舍).∵BD是∠ABC的平分线,∴=,∴AD=AC=.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱CC1⊥地面ABC,且CC1=2AC=2BC,AC⊥BC,D是AB的中点,点M在侧棱CC1上运动.(1)当M是棱CC1的中点时,求证:CD∥平面MAB1;(2)当直线AM与平面ABC所成的角的正切值为时,求二面角A﹣MB1﹣C1的余弦值.【解答】证明:(1)取线段AB的中点E,连接DE,EM.∵AD=DB,AE=EB,∴DE∥BB1,ED=,又M为CC1的中点,∴.∴四边形CDEM是平行四边形.∴CD∥EM,又EM⊂MAB1,CD⊄MAB1∴CD∥平面MAB1;解(2)∵CA,CB,CC1两两垂直,∴以C为原点,CA,CB,CC1所在直线别离为x、y、z轴成立空间直角坐标系.∵在三棱柱ABC﹣A1B1C1中,侧棱CC1⊥地面ABC,可得∠MAC为直线AM与平面ABC所成的角,设AC=1,tan,得CM=∴C(0,0,0),A(1,0,0),B(0,1,0),B1(0,1,2),M(0,0,)设AMB1的法向量为,可取又平面B1C1CB的法向量为.cos==.∵二面角A﹣MB1﹣C1为钝角,∴二面角A﹣MB1﹣C1的余弦值为﹣.19.(12分)第一届“一带一路”国际合作顶峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地域合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情形,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,取得其测试成绩(百分制),如茎叶图所示.(1)写出该样本的众数、中位数,假设该校共有3000名学生,试估量该校测试成绩在70分以上的人数;(2)从所抽取的70分以上的学生中再随机选取1人.①记X表示选取4人的成绩的平均数,求P(X≥87);②记ξ表示测试成绩在80分以上的人数,求ξ的散布和数学期望.【解答】解:(1)众数为76,中位数为76,抽取的12人中,70分以下的有4人,不低于70分的有8人,故从该校学生中任选1人,那个人测试成绩在70分以上的概率为=,∴该校这次测试成绩在70分以上的约有:3000×=2000人.(2)①由题意知70分以上的有72,76,76,76,82,88,93,94,当所选取的四个人的成绩的平均分大于87分时,有两类:一类是:82,88,93,94,共1种;另一类是:76,88,93,94,共3种.∴P(X≥87)==.②由题意得ξ的可能取值为0,1,2,3,4,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,∴ξ的散布列为:ξ 0 1 2 3 4P∴E(ξ)==2.20.(12分)已知椭圆C:+=1(a>b>0)的左、右核心为F1,F2,离心率为,点P在椭圆C上,且△PF1F2的面积的最大值为2.(1)求椭圆C的方程;(2)已知直线l:y=kx+2(k≠0)与椭圆C交于不同的两点M,N,假设在x轴上存在点G,使得|GM|=|GN|,求点G的横坐标的取值范围.【解答】解:(1)显然当点P位于短轴端点时,△PF1F2的面积取得最大值,∴,解得,∴椭圆的方程为=1.(2)联立方程组,消元得(8+9k2)x2+36kx﹣36=0,∵直线l恒过点(0,2),∴直线l与椭圆始终有两个交点,设M(x1,y1),N(x2,y2),那么x1+x2=,设MN的中点为E(x0,y),那么x=,y=kx+2=.∵|GM|=|GN|,∴GE⊥MN,设G(m,0),那么kGE==﹣,∴m==,当k>0时,9k+≥2=12.当且仅当9k=,即k=时取等号;∴﹣≤m<0,当k<0时,9k+≤﹣2=﹣12,当且仅当9k=,即k=﹣时取等号;∴0<m≤.∴点G的横坐标的取值范围是[﹣,0)∪(0,].21.(12分)设函数f(x)=e x﹣2a﹣ln(x+a),a∈R,e为自然对数的底数.(1)假设a>0,且函数f(x)在区间[0,+∞)内单调递增,求实数a的取值范围;(2)假设0<a<,试判定函数f(x)的零点个数.【解答】解:(1)∵函数f(x)在区间[0,+∞)内单调递增,∴f′(x)=e x﹣≥0在区间[0,+∞)恒成立,即a≥e﹣x﹣x在[0,+∞)恒成立,记g(x)=e﹣x﹣x,那么g′(x)=﹣e﹣x﹣1<0恒成立,故g(x)在[0,+∞)递减,故g(x)≤g(0)=1,a≥1,故实数a的范围是[1,+∞);(2)∵0<a<,f′(x)=e x﹣,记h(x)=f′(x),那么h′(x)=e x+>0,知f′(x)在区间(﹣a,+∞)递增,又∵f′(0)=1﹣<0,f′(1)=e﹣>0,,∴f′(x)在区间(﹣a,+∞)内存在唯一的零点x即f′(x)=﹣=0,于是x0=﹣ln(x+a),当﹣a<x<x时,f′(x)<0,f(x)递减,当x>x时,f′(x)>0,f(x)递增,故f(x)min =f(x)=﹣2a﹣ln(x+a)=x+a+﹣3a≥2﹣3a,当且仅当x+a=1时取“=”,由0<a<得2﹣3a>0,∴f(x)min =f(x)>0,即函数f(x)无零点.请考生在2二、23两题中任选一题作答,若是多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知在平面直角坐标系xOy中,椭圆C的方程为+=1,以O 为极点,x轴的非负半轴为极轴,取相同的长度单位成立极坐标系,直线l的极坐标方程为ρsin(θ+)=3.(1)求直线l的直角坐标方程和椭圆C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|2x+y﹣1|的最大值.【解答】解:(1)依照题意,椭圆C的方程为+=1,那么其参数方程为,(α为参数);直线l的极坐标方程为ρsin(θ+)=3,变形可得ρsinθcos+ρcosθsin =3,即ρsinθ+ρcosθ=3,将x=ρcosθ,y=ρsinθ代入可得x+y﹣6=0,即直线l的一般方程为x+y﹣6=0;(2)依照题意,M(x,y)为椭圆一点,那么设M(2cosθ,4sinθ),|2x+y﹣1|=|4cosθ+4sinθ﹣1|=|8sin(θ+)﹣1|,分析可得,当sin(θ+)=﹣1时,|2x+y﹣1|取得最大值9.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|.(1)求不等式f(x)+f(2+x)≤4的解集;(2)假设g(x)=f(x)﹣f(2﹣x)的最大值为m,对任意不相等的正实数a,b,证明:af(b)+bf(a)≥m|a﹣b|.【解答】(1)解:不等式f(x)+f(2+x)≤4,即为|x﹣2|+|x|≤4,当x≥2时,2x﹣2≤4,即x≤3,那么2≤x≤3;当0<x<2时,2﹣x+x≤4,即2≤4,那么0<x<2;当x≤0时,2﹣x﹣x≤4,即x≥﹣1,那么﹣1≤x≤0.综上可得,不等式的解集为{x|﹣1≤x≤3};(2)证明:g(x)=f(x)﹣f(2﹣x)=|x﹣2|﹣|x|,由|x﹣2|﹣|x|≤|x﹣2﹣x|=2,当且仅当x≤0时,取得等号,即g(x)≤2,那么m=2,任意不相等的正实数a,b,可得af(b)+bf(a)=a|b﹣2|+b|a﹣2|=|ab﹣2a|+|ab﹣2b|≥|ab﹣2a﹣ab+2b|=|2a﹣2b|=2|a﹣b|=m|a﹣b|,当且仅当(a﹣2)(b﹣2)≤0时,取得等号,即af(b)+bf(a)≥m|a﹣b|.。

2018年普通高等学校招生全国统一考试仿真卷 理科数学(五) Word版含解析

2018年普通高等学校招生全国统一考试仿真卷 理科数学(五) Word版含解析

绝密 ★ 启用前 2018年普通高等学校招生全国统一考试仿真卷 理科数学(五) 本试题卷共2页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★ 注意事项: 1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.[2018·菏泽期末]已知集合{}2|5 A x x x =>,{}=1,3,7B -,则A B =( ) A .{}1- B .{}7 C .{}1,3- D .{}1,7- 【答案】D 【解析】{}{}2|5|05A x x x x x x ==<或>>,{}=1,3,7B -,{}1,7A B ∴=-. 故选D . 2.[2018·宁波期末]已知a b >,则条件“0c ≥”是条件“ac bc >”的( )条件. A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件班级姓名准考证号考场号座位号此卷只装订不密封【答案】B【解析】当210a b c ==⎧⎨=⎩>时,ac bc >不成立,所以充分性不成立,当 ac bc a b ⎧⎨⎩>>时0c >成立,0c ≥也成立,所以必要性成立,所以“0c ≥”是条件“ac bc >”的必要不充分条件,选B .3.[2018·赣州期末]元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的0x =,则一开始输入的x 的值为( )A .34B .78C .1516D .3132【答案】C 【解析】1i =,(1)21,2x x i =-=,(2)()221143,3x x x i =--=-=, (3)()243187,4x x x i =--=-=, (4)()28711615,5x x x i =--=-=, 所以输出16150x -=,得1516x =,故选C .。

普通高等学校2018届高三招生全国统一考试模拟试题(一)数学(理)试题word含答案

普通高等学校2018届高三招生全国统一考试模拟试题(一)数学(理)试题word含答案

普通高等学校招生全国统一考试模拟试题理科数学(一)本试卷满分150分,考试时间120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上.2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题纸上,写在本试卷上无效.3.考试结束后,将本试卷和答题纸一并交回.一、选择题:本题共12小题,每小题5分。

共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的.1.已知集合{}{}260,,1,0,1,2,A x x x x N B A B =-++>∈=-⋂=则A .{1,2}B .{0,1,2)C .(0,1}D .{-1,0,1,2}2.已知i 为虚数单位,复数z z z ==A .2--B .2-+C .4-+D .1--3.已知双曲线C :()2210C x my m -=>:的一条渐近线方程为x =2y ,则该双曲线的实轴长与虚轴长之差为 A .12-B .12C .1-D .14.已知随机变量X ~N(2,1),其正态分布密度曲线如图所示,若向长方形ABCD 中随机投掷一点,则该点恰好落在阴影部分的概率为(附:若随机变量()2~,N ξμσ,则()(0.6827,2P P μσξμσμσξ-≤≤+≈-≤≤)20.9545.μσ+≈A .0.1359B .0.170625C .0.829325D .0.86415.执行如图所示的程序框图,若输入的4x =,则输出的n 的值为 A .5 B .6 C .7 D .86.杨辉是中国南宋时期的一位杰出的数学家、数学教育家,杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图,在由二项式系数所构成的杨辉三角形中,按从上到下、从左到右的顺序数,把第1个1记为(1,1),第2个1记为(2,1),第3个1记为(2,2),第4个1记为(3,1),第5个1记为(3,2),依次类推,第21个1应记作A .(10,2)B .(11,1)C .(11,2)D .(12,1)7.已知命题2:,210p x R mx mx ∀∈-+>,命题q :指数函数()()0,1x f x m m m =>≠且为减函数,则p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知函()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图像如图所示,则函数4f x π⎛⎫- ⎪⎝⎭的图像的一个对称中心是A .,03π⎛⎫-⎪⎝⎭B .,012π⎛⎫-⎪⎝⎭C .7,012π⎛⎫⎪⎝⎭D .3,04π⎛⎫⎪⎝⎭9.已知一个几何体的三视图如图所示,若该几何体的体积为8163π+,则正视图中线段AB 的长为 A .2B .4C .6D .810.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12,F F ,点P 在椭圆C 上,且212PF F F ⊥,过点P 作1F P 的垂线交x 轴于一点A ,若212AF c =,记椭圆C 的离心率为e ,则2e =AB.3C .12D111.已知ABC ∆的内角A ,B ,C 的对边分别为,,4,3,sin cos a b c b c a A C ==+,且sin cos cos c A A A =,点M 在边BC 上,且AB AC AM xyxy ABAC=+,则的最大值为 A.3B.4C.8D.912.已知函数()3291,0,1,0,x x x x f x ex -⎧-++≤⎪=⎨->⎪⎩若函数()()()222g x f x f x t =-+⎡⎤⎣⎦恰有8个不同的零点,则实数t 的取值范围为 A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .11,32⎛⎫⎪⎝⎭D .11,43⎛⎫⎪⎝⎭二、填空题:本题共4小题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考模拟数学试卷(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}252140A x x x =-+-<,{}36B x Z x =∈-<<,则()U C A B I 的元素的个数为( ) A.3B.4C.5D.62.若一个复数的实部与虚部互为相反数,则称此复数为“理想复数”.已知() 12az bi a b R i=+∈-,为“理想复数”,则( ) A.350a b +=B.350a b -=C.50a b +=D.50a b -=3.已知角α的终边经过点(3 m m ,,若73πα=,则m 的值为( ) A.27B.127C.9D.194.已知()f x 为奇函数,当0x <时,()()2log f x a x x =++-,其中()4 5a ∈-,,则()40f >的概率为( )A.13B.49C.59D.235.若直线22py x =+与抛物线()220x py p =>相交于 A B ,两点,则AB 等于( ) A.5pB.10pC.11pD.12p6.《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即222222142c a b S c a ⎡⎤⎛⎫+-⎢⎥=- ⎪⎢⎥⎝⎭⎣⎦现有周长为225ABC △满足))sin :sin :sin 21521A B C =,试用以上给出的公式求得ABC △的面积为( ) 3355 7.某程序框图如图所示,其中t Z ∈,该程序运行后输出的2k =,则t 的最大值为( )A.11B.2057C.2058D.20598.已知函数()sin 432sin 23x f x x ππ⎛⎫+⎪⎝⎭=⎛⎫+ ⎪⎝⎭的图象与()g x 的图象关于直线12x π=对称,则()g x 的图象的一个对称中心可以为( ) A. 06π⎛⎫⎪⎝⎭,B. 03π⎛⎫⎪⎝⎭,C. 04π⎛⎫⎪⎝⎭,D. 02π⎛⎫⎪⎝⎭, 9.设0a >,若关于 x y ,的不等式组202020ax y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,表示的可行域与圆()2229x y -+=存在公共点,则2z x y =+的最大值的取值范围为( ) A.[]8 10,B.()6 +∞,C.(]6 8,D.[)8 +∞,10.过双曲线()2222:10 0x y C a b a b-=>>,的右焦点F 作x 轴的垂直,交双曲线C 于 M N ,两点.A 为左顶点,设MAN θ∠=,双曲线C 的离心率为()f θ,则233f f ππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭等于( )A.23B.3C.3D.6 11.某几何体的三视图如图所示,已知三视图中的圆的半径均为2,则该几何体的体积为( )A.203πB.12πC.443πD.16π12.若函数()()12ln x f x a x e x x=-++在()0 2,上存在两个极值点,则a 的取值范围是( )A.21 4e ⎛⎫-∞- ⎪⎝⎭,B.()21 1 4e e ⎛⎫-+∞ ⎪⎝⎭U ,,C.1 e ⎛⎫-∞- ⎪⎝⎭,D.2111 4e e e ⎛⎫⎛⎫-∞--- ⎪ ⎪⎝⎭⎝⎭U ,,第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.在()()54123x x ---的展开式中,常数项为 .14.某设备的使用年数x 与所支出的维修总费用y 的统计数据如下表:根据上表可得回归直线方程为$1.3y x a=+.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用 年.15.设向量 a b r r ,满足3a b +=r r ,2a b -=r r,则aa b⋅r r r 的取值范围为 . 16.在底面是菱形的四棱锥P ABCD -中,PA ⊥底面ABCD ,120BAD ∠=︒,点E 为棱PB 的中点,点F 在棱AD 上,平面CEF 与PA 交于点K ,且3PA AB ==,2AF =,则点K 到平面PBD 的距离为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{}n a 的前n 项和为n S ,数列n S n ⎧⎫⎨⎬⎩⎭是公差为1的等差数列,且233 5a a ==,.(1)求数列{}n a 的通项公式;(2)设3n n n b a =⋅,求数列{}n b 的前n 项和n T .18.以下是新兵训练时,某炮兵连8周中炮弹对同一目标的命中情况的柱状图:(1)计算该炮兵连这8周中总的命中频率0p ,并确定第几周的命中频率最高;(2)以(1)中的0p 作为该炮兵连炮兵甲对同一目标的命中率,若每次发射相互独立,且炮兵甲发射3次,记命中的次数为X ,求X 的数学期望;(3)以(1)中的0p 作为该炮兵连炮兵对同一目标的命中率,试问至少要用多少枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99?(取lg0.40.398=-) 19.如图,在四棱锥P ABCD -中,侧面PAB ⊥底面ABCD ,PAB △为正三角形,AB AD ⊥,CD AD ⊥,点E ,M 分别为线段BC 、AD 的中点,F 、G 分别为线段PA 、AE 上一点,且2AB AD ==,2PF FA =.(1)确定点G 的位置,使得FG ∥平面PCD ;(2)试问:直线CD 上是否存在一点Q ,使得平面PAB 与平面PMQ 所成锐二面角的大小为30︒,若存在,求DQ 的长;若不存在,请说明理由.20.已知焦距为2的椭圆()2222:10x y W a b a b +=>>的左、右顶点分别为12 A A ,,上、下顶点分别为12 B B ,.点()00 M x y ,为椭圆W 上不在坐标轴上的任意一点,且四条直线1212 MA MA MB MB ,,,的斜率之积为14.(1)求椭圆W 的标准方程;(2)如图所示,点 A D ,是椭圆W 上两点,点A 与点B 关于原点对称,AD AB ⊥,点C 在x 轴上,且AC 与x 轴垂直,求证: B C D ,,三点共线.21.已知函数221284x m f x x m ⎛⎫=-+- ⎪⎝⎭,()()22112cos 2g x x mx a x x x m =-++++-.(1)若曲线()y f x =仅在两个不同的点()()11 A x f x ,,()()22 B x f x ,处的切线都经过点()2 t ,,求证:38t m =-,或2212273t m m m =-+-; (2)当[]0 1x ∈,时,若()()f x g x ≥恒成立,求a 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.在平面直角坐标系xOy 中,曲线C 的方程为23815y x x =-+-(1)写出曲线C 的一个参数方程;(2)在曲线C 上取一点P ,过点P 作x 轴、y 轴的垂线,垂足分别为 A B ,,求矩形OAPB 的周长的取值范围.23.已知函数()252f x x x x =+--+. (1)求不等式()0f x <的解集;(2)若关于x 的不等式()f x m ≤的整数解仅有11个,求m 的取值范围.高三数学试卷参考答案(理科)一、选择题1.C ∵()(){}()14150 5 4A x x x ⎛⎫=--<=-∞+∞ ⎪⎝⎭U ,,,∴1 54R C A ⎡⎤=⎢⎥⎣⎦,,∴(){}1 2 3 4 5R C A B =I ,,,,. 2.A ∵()12212555a i a a a z bi bi b i i +⎛⎫=+=+=++ ⎪-⎝⎭,∴2055a a b ⎛⎫++= ⎪⎝⎭,∴350a b +=.3.B ∵1113267tan 3m m π--===16m -=,∴6127m -==,∴127m =. 4.D ∵()244log 42f a a -=-+=-,∴()()44202f f a a =--=->⇒<, 故由几何概型可知所求概率为()()242543--=--. 5.B 联立22py x =+与22x py =得2240x px p --=,设()11 A x y ,,()22 B x y ,,则124x x p +=,∴12249y y p p p +=⨯+=,又直线22py x =+过抛物线的焦点,∴1210AB y y p p =++=. 6.A因为))sin :sin :sin 11A B C =,所以由正弦定理得))::11a b c =+,又a b c ++=所以1a =,b =1c =,则211ac =-=,222651c a b +-=-=,故S .7.C 10k =,1S =,8k =;3S =,6k =;11S =,4k =,2059S =,2k =,由于输出的2k =,故计算结束,所以t 的最大值为2058.8.C ∵()sin 4sin 4332sin 2 662sin 2cos 2626x x k f x x x k Z x x ππππππππ⎛⎫⎛⎫++ ⎪ ⎪⎛⎫⎛⎫⎝⎭⎝⎭===+≠+∈ ⎪⎪⎛⎫⎛⎫⎝⎭⎝⎭+++ ⎪ ⎪⎝⎭⎝⎭,,∴()2sin 22cos 2 6662k g x f x x x x k Z ππππ⎡⎤⎛⎫⎛⎫⎛⎫=-=-+=≠-∈ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,的图象的一个对称中心为 04π⎛⎫ ⎪⎝⎭,. 9.D 作出不等式组大致表示的可行域,当直线20ax y -+=经过点()2 3,时,12a =,数形结合可得12a ≥, 当直线2z x y =+经过点()2 22A a +,时,z 取得最大值46a +,∵12a ≥,∴8z ≥.10.A ∵22b MN a =,AF c a =+,∴()()22212tan 12MN b c a c ae AF a c a a c a aθ--=====-++,∴()tan 12e f θθ==+,∴232331133f f ππ⎫⎛⎫⎛⎫-=-=⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. 11.B 由三视图可知,该几何体由半径为2的球的34及两个14圆柱组成,它的直观图如图所示,故其体积32341222212434V πππ=⨯⨯⨯+⨯⨯⨯⨯=.12.D ()()()2211'11x x x f x a x e x ae x x -⎛⎫=-+=-+ ⎪⎝⎭,令()'0f x =,得1x =或21xa x e=-, 设()21x g x x e =-,则()()()2222'x x e x x g x x e +=,当0x >时,()'0g x >,∴()g x 在()0 2,上递增, 当0x →时,()g x ∞→-,又()2124g e=-, ∴()21 4g x e ⎛⎫∈-∞- ⎪⎝⎭,,∴214a e <-,又()1a g ≠,∴1a e ≠-, ∴2111 4a e e e ⎛⎫⎛⎫∈-∞--- ⎪ ⎪⎝⎭⎝⎭U ,,.二、填空题13.27-,因为()523x -的展开式中4x 的系数为()3353270C -=-,所以()()54123x x ---的展开式中常数项为()5270327024327---=-+=-.14.9,∵ 4 5x y ==,,∴$5 1.34a =⨯+,∴$0.2a=-,∴$ 1.30.2y x =-,由$12y ≤得5913x ≤. 15.2 25⎡⎤⎢⎥⎣⎦,,∵224945a b a b a b +--=⋅=-=r r r r r r ,∴54a b ⋅=r r .∵[][]23 2 32 1 5a a b a b =++-∈-+=r r r r r ,,,∴15 22a ⎡⎤∈⎢⎥⎣⎦r ,,∴2 25a a b ⎡⎤∈⎢⎥⋅⎣⎦r r r ,. 16.95,延长CF 交BA 的延长线于点Q ,连接QE 交PA 于点K ,设QA x =,由AD BC ∥得QBC QAF △∽△,则233x x =+,∴6x =,取AB 的中点M ,则PA EM ∥,∴QAK QME △∽△,则323662AK =+,∴65AK =,∴633535PK PA -==,设BD AC O =I ,连接PO ,过A 作AH PO ⊥于H ,易证AH ⊥平面PBD ,在菱形ABCD 中,120BAD ∠=︒,3AB =,则32AO =,故2233352332AH ⨯==⎛⎫+ ⎪⎝⎭,∴点K 到平面PBD 的距离为3955AH =.三、解答题17.解:(1)∵32132S S -=, ∵11353132a a +++-=,∴11a =, ()111nS n n n=+-⨯=,∴2n S n =,∴()1212n n n a S S n n -=-=-≥,∵11a =,∴21n a n =-. (2)∵()213n n b n =-⋅,∴()21333213n n T n =⨯+⨯++-⋅…, ∴()23131333213n n T n +=⨯+⨯++-⋅…,∴()()231332333213n n n n T T n +-=+⨯+++--⋅…,即()()()2111133323221336123223613n n n n n n T n n n ++++-⨯-=+⨯--⋅=-+-⋅=-⋅--,故()1133n n T n +=-⋅+.18.解:(1)这8周总命中炮数为4045464947495352381+++++++=, 总未命中炮数为3234303235333028254+++++++=, ∴03810.6381254p ==+.∵52532830>,∴根据表中数据易知第8周的命中频率最高. (2)由题意可知()3 0.6X B ~,, 则X 的数学期望为()30.6 1.8E X =⨯=.(3)由()0110.99np -->即10.40.99n ->得0.40.01n <, ∴0.4lg0.0122log 0.01 5.025lg0.4lg0.40.398n >==-=≈, 故至少要用6枚这样的炮弹同时对该目标发射一次,才能使目标被击中的概率超过0.99. 19.解:(1)G 为线段AE 的靠近E 的三等分点.在线段AD 上取一点N ,使得2DN AN =,因为2PF FA =,∴FN PD ∥, 因为M 为AD 中点,∴23AN AM =, 当G 为线段AE 靠近E 的三等分点时,即23AG AE =,NG AE ∥,又易知ME CD ∥,∴NG CD ∥.又FN NG N =I ,所以平面FNG ∥平面PCD ,因为FG ⊂平面FNG ,所以FG ∥平面PCD .(2)取AB 中点O ,连接PO ,因为PAB △为正三角形,所以PO AB ⊥,又侧面PAB ⊥底面ABCD ,所以PO ⊥底面ABCD ,以OA 为x 轴,AB 的中垂线为y 轴,OP 为z 轴,建立空间直角坐标系O xyz -,如图所示,则(0 0 3P ,,,()1 1 0M ,,,设() 2 0Q t ,,, 则(1 1 3PM =u u u u r ,,,( 2 3PQ t =u u u r,,,设平面PMQ 的法向量为() n x y z =r,,, 则0PM n PQ n ⋅=⋅=u u u u r r u u u r r,即3230x y z tx y z +=+=, 令3x =PMQ 的一个法向量为))3 31 2n t t =--r,,.易得平面PAB 的一个法向量为()0 1 0m =u r,,, 所以()()22313cos cos303312tm n t t -<>==︒=+-+-u r r,, 解得3t =,故存在点Q ,且312DQ =-=.20.解:(1)由题可得22c =,∴1c =,∴221a b -=,∵点()00 M x y ,为椭圆W 上不在坐标轴上任意一点,∴2200221x y a b +=,∴()2222002b y a x a =-,()2222002a x b y b=-,∴1212222000000222000000MA MA MB MB y y y b y b y y b k k k k x a x a x x x a x -+-⋅⋅⋅=⋅⋅⋅=⋅+--()()222222202022222200214b a x y b b a a x a a b y b -⎛⎫-=⋅== ⎪-⎝⎭-,∴222a b =. 又221a b -=,∴22a =,21b =,故椭圆W 的标准方程为2212x y +=.(2)证明:设()11 A x y ,,()22 D x y ,,则()11 B x y --,,()1 0C x ,, ∵A ,D 都在M 上,∴221122222222x y x y ⎧+=⎪⎨+=⎪⎩, ∴()()()()1212121220x x x x y y y y -++-+=,即()121212122y y x xx x y y -+=--+,又AB AD ⊥,∴1AB AD k k ⋅=-, 即1121121y y y x x x -⋅=--,∴()11211212y x xx y y +⋅=+, ∴()1211122y y y x x x +=+,又1211212121121202BD BC y y y y y y y k k x x x x x x x +++-=-=-=+++,∴BD BC k k =,∴ B C D ,,三点共线.21.(1)证明:∵321284x m f x x m ⎛⎫=-+- ⎪⎝⎭,∴()32f x x mx m =-+-,∴()2'32f x x mx =-+,则曲线()y f x =在 A B ,两点处的切线的方程分别为:()()()3221111132y x mx m x mx x x --+-=-+-, ()()()3222222232y x mx m x mx x x --+-=-+-.将()2 t ,代入两条切线方程,得 ()()()32211111322t x mx m x mx x --+-=-+-, ()()()32222222322t x mx m x mx x --+-=-+-.由题可得方程()()()322322t x mx m x mx x --+-=-+-即()32264t x m x mx m =-++-有且仅有两个不相等的两个实根.设()()32264h x x m x mx m =-++-,()()()()2'6264232h x x m x m x m x =-++=--.①当6m =时,()()2'620h x x =-≥,∴()h x 单调递增,显然不成立. ②当6m ≠时,()'0h x =,解得2x =或3m x =. ∴()h x 的极值分别为()238h m =-,32123273m h m m m ⎛⎫=-+- ⎪⎝⎭.要使得关于x 的方程()32264t x m x mx m =-++-有且仅有两个不相等的实根, 则38t m =-或3212273t m m m =-+-. (2)解:()()()312cos 2x f x g x a x x x -=-+--212cos 2x x a x ⎛⎫=-+++ ⎪⎝⎭,设()22cos 2x G x x =+,则()'2sin G x x x =-,记()2sin H x x x =-,则()'12cos H x x =-,当[]0 1x ∈,时,()'0H x <,于是()'G x 在[]0 1,上是减函数, 从而当[]0 1x ∈,时,()()''00G x G ≤=,故()G x 在[]0 1,上是减函数, 于是()()02G x G ≤=,从而()13a G x a ++≤+,所以当30a +≤时,()()0f x g x -≥. 所以,当3a ≤-时,()()f x g x ≥在[]0 1,上恒成立, 因此,a 的取值范围是(] 3-∞-,.22.解:(1)由3y =+()()()223143y x y -=--≥,即()()()224313x y y -+-=≥,故曲线C 的一个参数方程为4cos 3sin x y θθ=+⎧⎨=+⎩(θ为参数,且[]0 θπ∈,). (2)由(1)可知点P 的坐标为()4cos 3sin θθ++,,[]0 θπ∈,,则矩形OAPB 的周长为()24cos 3sin 144C πθθθ⎛⎫=+++=++ ⎪⎝⎭,∵[]0 θπ∈,,∴5 444πππθ⎡⎤+∈⎢⎥⎣⎦,,∴sin 14πθ⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,,∴12 C ⎡∈⎣,.23.解:(1)()2223 02 3 057 5x x f x x x x x x ⎧-≤⎪=+-<<⎨⎪+≥⎩,,,,由不等式()0f x <,得2300x x ⎧-<⎨≤⎩或223005x x x ⎧+-<⎨<<⎩或2705x x ⎧+<⎨≥⎩,即0x ≤或01x <<或x ∈∅, 故不等式()0f x <的解集为()1,.(2)由(1)知()22222 3 3 02 3 012 3 157 5x x x x f x x x x x x x x x ⎧-≤⎪-≤⎪⎪=--+<<⎨⎪+-≤<⎪⎪+≥⎩,,,,,,当()532m f ==时,不等式()f x m ≤的整数解为5-,4-,…,4,5共有11个,当33m =时,不等式()f x m ≤的整数解为6-,5-,…,4,5共有12个,故[)32 33m ∈,.。

相关文档
最新文档