数列的概念经典试题(含答案) 百度文库

数列的概念经典试题(含答案) 百度文库
数列的概念经典试题(含答案) 百度文库

一、数列的概念选择题

1.若数列的前4项分别是

1111,,,2345

--,则此数列的一个通项公式为( ) A .1(1)n n --

B .(1)n n -

C .1

(1)1

n n +-+

D .(1)1

n n -+

2.已知数列{}n a 满足: 12a =,11

1n n

a a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007

B .1008

C .1009.5

D .1010

3.已知数列{}n a 满足12a =,11

1n n

a a +=-,则2018a =( ). A .2

B .

12 C .1-

D .12

-

4.在数列{}n a 中,10a =

,1n a +,则2020a =( ) A .0

B .1

C

.D

5.已知数列2233331131357135

1,,,,,,,...,,,,...2222222222n n n

,则该数列第2019项是( ) A .

1019892 B .

10

2019

2 C .

11

1989

2 D .

11

2019

2 6.已知数列{}n a 的前n 项和为n S ,且2

1n S n n =++,则{}n a 的通项公式是( )

A .2n a n =

B .3,1

2,2n n a n n =?=?

≥?

C .21n a n =+

D .3n a n =

7.在数列{}n a 中,11a =,对于任意自然数n ,都有12n

n n a a n +=+?,则15a =( )

A .151422?+

B .141322?+

C .151423?+

D .151323?+

8.数列23451,,,,,3579

的一个通项公式n a 是( ) A .

21n

n + B .

23

n

n + C .

23

n

n - D .

21

n

n - 9.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( )

A .存在正整数0N ,当0n N >时,都有n a n ≤.

B .存在正整数0N ,当0n N >时,都有n a n ≥.

C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.

D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥. 10.在数列{}n a 中,()11

11,1(2)n

n n a a n a --==+

≥,则5a 等于

A .

3

2

B .

53 C .85

D .

23

11.下列命题中错误的是( ) A .()(

)21f n n n N

+

=-∈是数列的一个通项公式

B .数列通项公式是一个函数关系式

C .任何一个数列中的项都可以用通项公式来表示

D .数列中有无穷多项的数列叫作无穷数列

12.在数列{}n a 中,114a =-,1

11(1)n n a n a -=->,则2019a 的值为( ) A .

4

5

B .14

-

C .5

D .以上都不对

13.已知数列{}n a 的前n 项和为n S ,若*1

n S n N n =∈,,则2a =( ) A .12

-

B .16

-

C .

16

D .

12

14.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45

B .46

C .47

D .48

15.在数列{}n a 中,2

1

n n a n +=+,则{}n a ( ) A .是常数列

B .不是单调数列

C .是递增数列

D .是递减数列

16.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第40项为( ). A .648

B .722

C .800

D .882

17.已知数列{}n a 满足2122

1

1

1,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92

B .102

C .

81

82

D .112

18.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),(

)*

3n n N

≥∈,,此数列在现代物理及化学等领域有着广泛的应用,

若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( )

A .3

B .2

C .1

D .0

19.在数列{}n a 中,11

(1)1,2(2)n

n n a a n a --==+≥,则3a =( ) A .0

B .

53

C .

73

D .3

20.数列{}n a 满足11

1n n

a a +=-,12a =,则2a 的值为( ) A .1

B .-1

C .

13

D .13

-

二、多选题

21.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =

C .135********a a a a a +++

+= D .222

2123202020202021a a a a a a ++++=

22.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:

1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列

数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数

C .202020182022

3a a a =+

D .123a a a +++…20202022a a +=

23.已知数列{}n a 满足()

*11

1n n

a n N a +=-∈,且12a =,则( ) A .31a =- B .201912

a =

C .332

S =

D . 2 0192019

2

S =

24.已知数列{}n a 中,11a =,1111n n a a n n +??

-=+ ???

,*n N ∈.若对于任意的[]1,2t ∈,不等式

()22212n

a t a t a a n

<--++-+恒成立,则实数a 可能为( ) A .-4 B .-2

C .0

D .2

25.若不等式1(1)(1)2n n

a n

+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .2

26.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的

数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =

C .135********a a a a a +++

+=

D .

222

122019

20202019

a a a a a +++= 27.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )

A .数列{}n a 的公差d <0

B .数列{}n a 中S n 的最大项为S 10

C .S 10>0

D .S 11>0

28.(多选)在数列{}n a 中,若2

2

1(2,,n n a a p n n N p *

--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .

(){}1n

- 是等方差数列

C .{}2

n

是等方差数列.

D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 29.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )

A .1d =-

B .413a a =

C .n S 的最大值为8S

D .使得0n S >的最大整数15n = 30.定义11222n n

n a a a H n

-++

+=

为数列{}n a 的“优值”.已知某数列{}n a 的“优

值”2n

n H =,前n 项和为n S ,则( )

A .数列{}n a 为等差数列

B .数列{}n a 为等比数列

C .

20202023

20202

S = D .2S ,4S ,6S 成等差数列

31.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <

C .80a =

D .n S 的最大值是8

S 或者9S

32.数列{}n a 满足11,121

n

n n a a a a +=

=+,则下列说法正确的是( )

A .数列1n a ??

?

???

是等差数列 B .数列1n a ???

???

的前n 项和2

n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列

33.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >

B .数列1n a ??

????

是递增数列

C .0n S <时,n 的最小值为13

D .数列n n S a ??

????

中最小项为第7项

34.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列 B .数列{}n na 是递增数列 C .数列{

}n

a n

是递增数列 D .数列{}3n a nd +是递增数列

35.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <

D .613S S =

【参考答案】***试卷处理标记,请不要删除

一、数列的概念选择题 1.C 解析:C 【分析】

根据数列的前几项的规律,可推出一个通项公式. 【详解】

设所求数列为{}n a ,可得出()11

1

111

a

+-=

+,()21

2

121

a

+-=

+,()31

3

131

a

+-=

+,()41

4

141

a

+-=

+,

因此,该数列的一个通项公式为()1

11

n n

a n +-=

+.

故选:C. 【点睛】

本题考查利用数列的前几项归纳数列的通项公式,考查推理能力,属于基础题.

2.D

解析:D 【分析】

根据题设条件,可得数列{}n a 是以3为周期的数列,且313

2122

S =+-=,从而求得2017S 的值,得到答案. 【详解】

由题意,数列{}n a 满足: 12a =,11

1n n

a a +=-, 可得23411

1,121,1(1)2,22

a a a =-

==-=-=--=,

可得数列{}n a 是以3为周期的数列,且3132122

S =+-= 所以20173

672210102

S =?+=. 故选:D. 【点睛】

本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.

3.B

解析:B 【分析】

利用递推关系可得数列{}n a 是以3为周期的周期数列,从而可得2018a . 【详解】 在数列{}n a 中,

11

1n n

a a +=-,且12a =, 211112

a a ∴=-

=, 32

1

1121a a =-=-=- , ()413

1

1112a a a =-

=--== ∴数列{}n a 是以3为周期的周期数列,

201867232=?+,

201821

2

a a ∴==.

故选:B 【点睛】

本题考查了由数列的递推关系式研究数列的性质,考查了数列的周期性,属于基础题.

4.A

解析:A 【分析】

写出数列的前几项,找寻规律,求出数列的周期,问题即可解. 【详解】

10a =

,1n a +1n =

时,2a 2n =

时,3a 3n =

时,4a ; ∴ 数列{}n a 的周期是3

20206733110a a a ?+∴===

故选:A. 【点睛】

本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.

5.C

解析:C 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ????????

? ??? ?????????

项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号

里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ????????

? ??? ?????????

,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,

故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为

11

21

2m -,

所以第12个括号里的第995项是11

1989

2. 故选:C. 【点睛】

本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.

6.B

解析:B 【分析】

根据11,1

,2n n

S n a S S n -=?=?-≥?计算可得;

【详解】

解:因为2

1n S n n =++①,

当1n =时,2

11113S =++=,即13a =

当2n ≥时,()()2

1111n S n n -=-+-+②,

①减②得,()()2

2

11112n n n n n n a ??++--+-+=?

=?

所以3,1

2,2n n a n n =?=?≥?

故选:B 【点睛】

本题考查利用定义法求数列的通项公式,属于基础题.

7.D

解析:D 【分析】

在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减

法求15a . 【详解】

12n n n a a n +=+?, 12n n n a a n +-=?,

12112a a ∴-=?, 23222a a -=?,

34332a a -=?

11(1)2n n n a a n ---=-?,

以上1n -个等式,累加得123

11122232(1)2n n a a n --=?+?+?++-?①

2341122122232(2)2(1)2n n n a a n n --=?+?+?++-?+-?②

①- ②得23

112222(1)2n n n a a n --=++++--?

12(12)(1)2(2)2212n n n n n --=--?=-?--,

(2)23n n a n ∴=-?+ ,

151515(152)231323a ∴=-?+=?+,

故选:D 【点睛】

本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.

8.D

解析:D 【分析】

根据数列分子分母的规律求得通项公式. 【详解】

由于数列的分母是奇数列,分子是自然数列,故通项公式为21

n n

a n =-. 故选:D 【点睛】

本小题主要考查根据数列的规律求通项公式,属于基础题.

9.A

解析:A 【分析】

运用数列的单调性和不等式的知识可解决此问题. 【详解】

数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,

121n n n n a a a a +++∴≥--,

设1n n n d a a +=-,则1n n d d +≥,

∴数列{}n d 是递减数列.

对于A ,由11a =,20192019a =, 则201911220182019a a d d d =+++=,

所以1220182018d d d ++

+=,又1232018d d d d ≥≥≥

≥,

所以1122018201820182018d d d d d ≥++

+≥,

故120181d d ≥≥,2018n ∴≥时,1n d ≤,

02019N ?=,2019n >时, 20192019202012019111n n a a d d d n -=+++

≤++++=

即存在正整数0N ,当0n N >时,都有n a n ≤,故A 正确;

结合A ,故B 不正确;

对于C ,当n →+∞,且0n d >时,数列{}n a 为递增数列, 则n a 无最大值,故C 不正确;

对于D ,由数列{}n d 是递减数列,当存在0n d <时,则n a 无最小值,故D 不正确; 故选:A 【点睛】

本题考查了数列的单调性以及不等式,属于基础题.

10.D

解析:D 【解析】

分析:已知1a 逐一求解2345122323a a a a ====,,,. 详解:已知1a 逐一求解234512

2323

a a a a ==

==,,,.故选D 点睛:对于含有()1n

-的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律.

11.C

解析:C 【分析】

根据通项公式的概念可以判定AB 正确;不难找到一些规律性不强的数列,找不到通项公式,由此判定C 错误,根据无穷数列的概念可以判定D 正确. 【详解】

数列的通项公式的概念:将数列{} n a 的第n 项用一个具体式子(含有参数n )表示出来,称作该数列的通项公式,

故任意一个定义域为正整数集合的或者是其从1开始的一个子集的函数都可以是数列的通项公式,

它是一个函数关系,即对于任意给定的数列,各项的值是由n 唯一确定的,故AB 正确; 并不是所有的数列中的项都可以用一个通项公式来表示,比如所有的质数从小到大排在一起构成的数列,

至今没有发现统一可行的公式表示,圆周率的各位数字构成的数列也没有一个通项公式可以表达,还有很多规律性不强的数列也找不到通项公式,故C 是错误的; 根据无穷数列的概念,可知D 是正确的. 故选:C.

本题考查数列的通项公式的概念和无穷数列的概念,属基础题,数列的通项公式是一种定义在正整数集上的函数,有穷数列与无穷数列是根据数列的项数来分类的.

12.A

解析:A 【分析】

根据递推式可得{}n a 为一个周期为3的数列,求{}n a 中一个周期内的项,利用周期性即可求2019a 的值 【详解】

由114

a =-,111(1)n n a n a -=->知 211

15a a =-= 321415

a a =-

= 41311

14

a a a =-

=-= 故数列{}n a 是周期为3的数列,而2019可被3整除 ∴201934

5

a a == 故选:A 【点睛】

本题主要考查递推数列,考查数列的周期性,考查合情推理,属于基础题

13.A

解析:A 【分析】

令1n =得11a =,令2n =得2121

2

S a a =+=可解得2a . 【详解】 因为1n S n =

,所以111

11

a S ===, 因为21212S a a =+=,所以211

122

a =-=-. 故选:A

14.C

解析:C 【分析】

利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解

当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47. 故选C

15.D

解析:D 【分析】

由21

111

n n a n n +=

=+++,利用反比例函数的性质判断即可. 【详解】

在数列{}n a 中,21

111

n n a n n +=

=+++, 由反比例函数的性质得:{}n a 是*n N ∈时单调递减数列, 故选:D

16.C

解析:C 【分析】

由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:2

22n a n =,即可得

出. 【详解】

由0,2,4,8,12,18,24,32,40,50…,可得偶数项的通项公式:2

22n a n =.

则此数列第40项为2220800?=. 故选:C

17.B

解析:B 【分析】

本题先根据递推公式进行转化得到21

112n n n n a a a a +++=.然后令1n n n

a b a +=,可得出数列{}n b 是等比数列.即11322n

n n a a +??

= ???

.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】

解:由题意,可知: 21

112n n n n

a a a a +++=.

令1n n n a b a +=,则11

2

n n b b +=. 2

11

16a b a =

=, ∴数列{}n b 是以16为首项,

1

2

为公比的等比数列. 1

11163222n n

n b -??

??

∴== ?

???

??

∴11322n

n n a a +??

= ???

. ∴1

211322a

a ??

= ???

, 2

3

21322a a ??

= ???

1

11322n n n a a --??

= ???

各项相乘,可得: 1

2

1

11

111(32)222n n n

a a --??????=? ? ? ???????

(1)

2

511()22n n n --??

= ?

?? 2115(1)

22

1122n n n ---????= ? ?????

211

5522

12n n n --+??= ???

2

1(1110)2

12n n -+??= ???

令2()1110f n n n =-+,

则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-?+=-,()2661161020f =-?+=-,

()f n ∴的最小值为20-. ∴2

11

(1110)(20)10

2

2

101112222n n -+?--??

????=== ? ? ???

??

??

∴数列{}n a 的最大项为102.

故选:B . 【点睛】

本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;

18.A

解析:A 【分析】

根据条件得出数列{}n b 的周期即可. 【详解】

由题意可知“兔子数列”被4整除后的余数构成一个新数列为:1,1,2,3,1,0,1,1,2,3,1,0,……

则可得到周期为6,所以b 2020=b 4=3, 故选:A

19.B

解析:B 【分析】

由数列的递推关系式以及11a =求出2a ,进而得出3a . 【详解】

11a =,21123a a ∴=+

=,321523

a a -=+= 故选:B

20.B

解析:B 【分析】

根据数列的递推公式,代入计算可得选项. 【详解】 因为11

1n n a a +=-,12a =,所以21111112

a a =

==---, 故选:B. 【点睛】

本题考查由数列递推式求数列中的项,属于基础题.

二、多选题 21.BCD 【分析】

根据题意写出,,,从而判断A ,B 的正误;写出递推关系,对递推关系进行适

当的变形,利用累加法即可判断C ,D 的正误. 【详解】

对A ,,,故A 不正确; 对B ,,故B 正确; 对C ,由,,

解析:BCD 【分析】

根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】

对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;

对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得

135********a a a a a +++???+=,故C 正确;

对D ,该数列总有21n n n a a a ++=+,2

121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222

123202*********a a a a a a +++???+=,故D 正确.

故选:BCD 【点睛】

关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.

22.AC 【分析】

由该数列的性质,逐项判断即可得解. 【详解】

对于A ,,,,故A 正确;

对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误; 对于C ,,故C 正确; 对于D ,,,, , 各式相加

解析:AC 【分析】

由该数列的性质,逐项判断即可得解.

【详解】

对于A ,821a =,9211334a =+=,10213455a =+=,故A 正确; 对于B ,由该数列的性质可得只有3的倍数项是偶数,故B 错误;

对于C ,20182022201820212020201820192020202020203a a a a a a a a a a +=++=+++=,故C 正确; 对于D ,202220212020a a a =+,202120202019a a a =+,202020192018a a a =+,

32121,a a a a a ???=+=,

各式相加得()2022202120202021202020192012182a a a a a a a a a ++???+=+++???++, 所以202220202019201811a a a a a a =++???+++,故D 错误. 故选:AC. 【点睛】

关键点点睛:解决本题的关键是合理利用该数列的性质去证明选项.

23.ACD 【分析】

先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】

由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错; ,D 正确. 故选:ACD . 【点睛】 本

解析:ACD 【分析】

先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】

由题意211122a =-=,31

1112a =-=-,A 正确,313

2122

S =+-=,C 正确;

41

121

a =-

=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ?===-,B 错;

201932019

67322

S =?=,D 正确.

故选:ACD . 【点睛】

本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的

性质:周期性,然后利用周期函数的定义求解.

24.AB 【分析】

由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,

上述式子累加可得:,, 对于任意的恒成立

解析:AB 【分析】 由题意可得

111

11n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n

=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为

()()210t a t a --+≤????对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.

【详解】

111

n n n a a n n

++-

=,11111(1)1n n a a n n n n n n +∴-==-+++,

11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111

122

a a -=-, 上述式子累加可得:111n a a n n -=-,1

22n a n n

∴=-<,

()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,

整理得()()210t a t a --+≤????对于任意的[]1,2t ∈恒成立,

对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42??

-????

,包含[]1,2,故A 正确;

对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22??-????

,包含[]1,2,故B 正确;

对C ,当0a =时,不等式()210t t +≤,解集1,02??-????

,不包含[]1,2,故C 错误;

对D ,当2a =时,不等式()()2120t t -+≤,解集12,2

??-???

?

,不包含[]1,2,故D 错误,

故选:AB. 【点睛】

本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,

考查了转化与划归的思想,属于中档题.

25.ABC 【分析】

根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】

根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立, 由递减

解析:ABC 【分析】

根据不等式1(1)(1)2n n

a n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n

-<恒成立,当n 为偶数时有1

2a n

<-恒成立,分别计算,即可得解. 【详解】

根据不等式1(1)(1)2n n

a n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:1

2+a n

-<恒成立,

由12+

n 递减,且1

223n

<+≤, 所以2a -≤,即2a ≥-, 当n 为偶数时有:1

2a n

<-恒成立, 由12n -

第增,且31

222n ≤-<, 所以3

2

a <

, 综上可得:322

a -≤<, 故选:ABC . 【点睛】

本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.

26.ABD 【分析】

根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确.

【详解】

依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不

解析:ABD 【分析】

根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,

342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正

确;根据2121a a a =,222312312()a a a a a a a a =-=-,2

33423423()a a a a a a a a =-=-,

244534534()a a a a a a a a =-=-,,2

20192019202020182019202020182019()a a a a a a a a =-=-,

累加可知D 正确. 【详解】

依题意可知,11a =,21a =,21n n n a a a ++=+,

312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以

712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;

由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,

可得

13572019a a a a a ++++

+=242648620202018a a a a a a a a a +-+-+-++-2020a =,

故C 不正确;

2121a a a =,222312312()a a a a a a a a =-=-,2

33423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,

,2

20192019202020182019202020182019()a a a a a a a a =-=-,

所以

2222

2

12342019

a a a a a ++++

+122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,

所以

222

122019

20202019

a a a a a +++=,故D 正确. 故选:ABD. 【点睛】

本题考查了数列的递推公式,考查了累加法,属于中档题.

27.AC 【分析】

由,可得,且,然后逐个分析判断即可得答案 【详解】

解:因为,所以,且,

所以数列的公差,且数列中Sn 的最大项为S5,所以A 正确,B 错误, 所以,,

所以C 正确,D 错误, 故选:AC

解析:AC 【分析】

由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】

解:因为564S S S >>,所以650,0a a ,且650a a +>,

所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()

5()02a a S a a +=

=+>,11111611()1102

a a S a +==<, 所以C 正确,D 错误, 故选:AC

28.BD 【分析】

根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】

对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数,是等方差数列,故

解析:BD 【分析】

根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】

对于A ,若{}n a 是等差数列,如n a n =,则12222

(1)21n n a a n n n --=--=-不是常数,故

{}n

a 不是等方差数列,故A 错误;

对于B ,数列

(){}1n

-中,222121[(1)][(1)

]0n n n n a

a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;

对于C ,数列{}2n 中,()()2

2

2211

1

2234n n n n n a a ----=-=?不是常数,{}2n ∴不是等方差数列,故C 错误;

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

(完整版)数列经典试题(含答案)

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).

精品高考数列经典大题

精品高考数列经典大题 2020-12-12 【关键字】条件、满足 1.等比数列{}n a 的各项均为正数,4352,,4a a a 成等差数列,且2322a a =. (1)求数列{}n a 的通项公式; (2)设()()25 2123n n n b a n n += ++,求数列{}n b 的前n 项和n S . 2.已知数列{}n a 满足:11a =,且对任意∈n N *都有 n a ++ += . (Ⅰ)求2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式; n n a a ++∈n N *). 3.已知数列}{n a 满足且01=a *)(),1(2 1 21N n n n S S n n ∈++=+ (1)求23,,a a :并证明12,(*);n n a a n n N +=+∈ (2)设*),(1N n a a b n n n ∈-=+求证:121+=+n n b b ; (3)求数列*)}({N n a n ∈的通项公式。 4.设b>0,数列}{n a 满足b a =1,)2(1 11 ≥-+= --n n a nba a n n n .(1)求数列}{n a 的通项公 式;(2)证明:对于一切正整数n ,121+≤+n n b a . 5: 已知数列{}n a 是等差数列,() *+∈-=N n a a c n n n 21 2 (1)判断数列{}n c 是否是等差数列,并说明理由;(2)如果 ()为常数k k a a a a a a 13143,130********-=+++=+++ ,试写出数列{}n c 的 通项公式;(3)在(2)的条件下,若数列{}n c 得前n 项和为n S ,问是否存在这样的实数k ,使n S 当且仅当12=n 时取得最大值。若存在,求出k 的取值范围;

等差数列经典试题(含答案) 百度文库

一、等差数列选择题 1.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103 B .107 C .109 D .105 2.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21 2 ,则该数列的项数是( ) A .8 B .4 C .12 D .16 3.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10- B .8 C .12 D .14 4.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50 C .60 D .80 5.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n - B .n C .21n - D .2n 6.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了 3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 7.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10 B .9 C .8 D .7 8.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A . 4 7 B . 1629 C . 815 D . 45 9.已知各项不为0的等差数列{}n a 满足2 6780a a a -+=,数列{}n b 是等比数列,且 77b a =,则3810b b b =( ) A .1 B .8 C .4 D .2 10.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( ) A .9 B .12 C .15 D .18 11.已知数列{}n a 中,11a =,22a =,对*n N ?∈都有333 122n n n a a a ++=+,则10a 等于

数列的概念经典试题(含答案) 百度文库

一、数列的概念选择题 1.若数列的前4项分别是 1111,,,2345 --,则此数列的一个通项公式为( ) A .1(1)n n -- B .(1)n n - C .1 (1)1 n n +-+ D .(1)1 n n -+ 2.已知数列{}n a 满足: 12a =,11 1n n a a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007 B .1008 C .1009.5 D .1010 3.已知数列{}n a 满足12a =,11 1n n a a +=-,则2018a =( ). A .2 B . 12 C .1- D .12 - 4.在数列{}n a 中,10a = ,1n a +,则2020a =( ) A .0 B .1 C .D 5.已知数列2233331131357135 1,,,,,,,...,,,,...2222222222n n n ,则该数列第2019项是( ) A . 1019892 B . 10 2019 2 C . 11 1989 2 D . 11 2019 2 6.已知数列{}n a 的前n 项和为n S ,且2 1n S n n =++,则{}n a 的通项公式是( ) A .2n a n = B .3,1 2,2n n a n n =?=? ≥? C .21n a n =+ D .3n a n = 7.在数列{}n a 中,11a =,对于任意自然数n ,都有12n n n a a n +=+?,则15a =( ) A .151422?+ B .141322?+ C .151423?+ D .151323?+ 8.数列23451,,,,,3579 的一个通项公式n a 是( ) A . 21n n + B . 23 n n + C . 23 n n - D . 21 n n - 9.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( ) A .存在正整数0N ,当0n N >时,都有n a n ≤. B .存在正整数0N ,当0n N >时,都有n a n ≥. C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.

数列典型例题(含答案)

《2.3 等差数列的前n项和》测试题 一、选择题 1.(2008陕西卷)已知是等差数列,,,则该数列前10项和 等于( ) A.64 B.100 C.110 D.120 考查目的:考查等差数列的通项公式与前项和公式及其基本运算. 答案:B 解析:设的公差为. ∵,,∴两式相减,得,.∴,. 2.(2011全国大纲理)设为等差数列的前项和,若,公差, ,则( ) A.8 B.7 C.6 D.5 考查目的:考查等差数列通项公式的应用、前项和的概念. 答案:D 解析:由得,,即,将, 代入,解得. 3.(2012浙江理)设是公差为的无穷等差数列的前项和,则下列命题错误的是( ) A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 考查目的:考查等差数列的前项和公式及其性质. 答案:C 解析:根据等差数列的前项和公式,可得,因为,所以其图像表示的一群孤立的点分布在一条抛物线上. 当时,该抛物线开口向下,所以这群孤立的点中一定有最高点,即数列有最大项;反之也成立,故选项A、B的两个命题是正确的. 选项C的命题是错误的,举出反例:等差数列-1,1,3,5,7,…满足数列是 递增数列,但.对于选项D的命题,由,得, 因为此式对任意都成立,当时,有;若,则,与矛盾,所以一定有,这就证明了选项D的命题为真. 二、填空题

4.(2011湖南理)设是等差数列的前项和,且,,则 . 考查目的:考查等差数列的性质及基本运算. 答案:81. 解析:设的公差为. 由,,得,. ∴,故. 5.(2008湖北理)已知函数,等差数列的公差为. 若 ,则 . 考查目的:考查等差数列的通项公式、前项和公式以及对数的运算性质,考查运算求解能力. 答案:. 解析:∵是公差为的等差数列,∴,∴ ,∴,∴ . 6.(2011广东理)等差数列前9项的和等于前4项的和. 若,,则 ____. 考查目的:考查等差数列的性质及基本运算. 答案:10. 解析:设等差数列前项和为. ∵,∴;∵ ,∴. ∴,故. 三、解答题 7.设等差数列的前项和为,且,求: ⑴的通项公式及前项和; ⑵. 考查目的:考查等差数列通项公式、前项和的基本应用,考查分析问题解决问题的能力. 答案:⑴;.⑵ 解析:设等差数列的公差为,依题意,得,解得. ⑴; ⑵由,得.

最新数列知识点大全及经典测试题

数列知识点回顾 第一部分:数列的基本概念 1.理解数列定义的四个要点 ⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列. ⑵在数列中同一个数可以重复出现. ⑶项a n 与项数n 是两个根本不同的概念. ⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列. 2.数列的通项公式 一个数列{ a n }的第n 项a n 与项数n 之间的函数关系,如果用一个公式a n =)(n f 来表示,就把这个公式叫做数列{ a n }的通项公式。若给出数列{ a n }的通项公式,则这个数列是已知的。若数列{ a n } 的前n 项和记为S n ,则S n 与a n 的关系是:a n =???≥-=-2 .1,11n S S n S n n 。 第二部分:等差数列 1.等差数列定义的几个特点: ⑴公差是从第一项起,每一项减去它前一项的差(同一常数),即d = a n -a 1-n (n ≥2)或d = a 1+n -a n (n ∈N +). ⑵要证明一个数列是等差数列,必须对任意n ∈N +,a n -a 1-n = d (n ≥2)或d = a 1+n -a n 都成立.一般采用的形式为: ① 当n ≥2时,有a n -a 1-n = d (d 为常数). ②当n +∈N 时,有a 1+n -a n = d (d 为常数). ③当n ≥2时,有a 1+n -a n = a n -a 1-n 成立.

若判断数列{ a n }不是等差数列,只需有a 3-a 2≠a 2-a 1即可. 2.等差中项 若a 、A 、b 成等差数列,即A=2b a +,则A 是a 与b 的等差中项;若A=2 b a +,则a 、A 、 b 成等差数列,故A= 2 b a +是a 、A 、 b 成等差数列,的充要条件。由于a n =211-++n n a a ,所以,等差数列的 每一项都是它前一项与后一项的等差中项。 3.等差数列的基本性质 ⑴公差为d 的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d . ⑵公差为d 的等差数列,各项同乘以常数k 所得数列仍是等差数列,其公差为kd . ⑶若{ a n }、{ b n }为等差数列,则{ a n ±b n }与{ka n +b}(k 、b 为非零常数)也是等差数列. ⑷对任何m 、n +∈N ,在等差数列{ a n }中有:a n = a m + (n -m)d ,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性. ⑸、一般地,如果l ,k ,p ,…,m ,n ,r ,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当{a n }为等差数列时,有:a l + a k + a p + … = a m + a n + a p + … . ⑹公差为d 的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k 为取出项数之差). ⑺如果{ a n }是等差数列,公差为d ,那么,a n ,a 1-n ,…,a 2、a 1也是等差数列,其公差为-d ;在等差数列{ a n }中,a l m +-a l = a k m +-a k = md .(其中m 、k 、l ∈+N ) ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项. ⑼当公差d >0时,等差数列中的数随项数的增大而增大;当d <0时,等差数列中的数随项数的减少而减小;d =0时,等差数列中的数等于一个常数. ⑽设a l ,a m ,a n 为等差数列中的三项,且a l 与a m ,a m 与a n 的项距差之比 n m m l --=λ(λ≠-1),

统计概率与数列结合经典考题

1.1统计概率与数列结合 1.(2019全国I 理21)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列; (2)若甲药、乙药在试验开始时都赋予4分,p i (i =0,1, ,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则p 0=0,p 8=1,p i =ap i -1+bp i +cp i +1(i =1,2, ,7),其中a =P (X =-1),b =P (X =0),c =P (X =1).假设α=0.5,β=0.8. (i)证明:{p i +1-p i }(i =0,1,2, ,7)为等比数列; (ii)求p 4,并根据p 4的值解释这种试验方案的合理性. 解:X 的所有可能取值为-1,0,1. P (X =-1)=(1-α)β,P (X =0)=αβ+(1-α)(1-β),P (X =1)=α(1-β),所以X 的分布列为 (2)(i )由(1)得0.4,0.5,0.1a b c ===. 因此11=0.4+0.5 +0.1i i i i p p p p -+,故()()110.10.4i i i i p p p p +--=-, 即()114i i i i p p p p +--=-. 因为1010p p p -=≠,所以{}1(0,1,2,,7)i i p p i +-= 为公比为4,首项为1p 的等比数列.

数列经典试题(含答案)

第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9

数列经典例题集锦

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=. (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++ ++=, 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高中数列经典习题(含答案)

1、在等差数列{a n }中,a 1=-250,公差d=2,求同时满足下列条件的所有a n 的和, (1)70≤n ≤200;(2)n 能被7整除. 2、设等差数列{a n }的前n 项和为S n .已知a 3=12, S 12>0,S 13<0.(Ⅰ)求公差d 的取值范围; (Ⅱ)指出S 1,S 2,…,S 12,中哪一个值最大,并说明理由. 3、数列{n a }是首项为23,公差为整数的等差数列,且前6项为正,从第7项开始变为负的,回答下列各问:(1)求此等差数列的公差d;(2)设前n 项和为n S ,求n S 的最大值;(3)当n S 是正数时,求n 的最大值. 4、设数列{n a }的前n 项和n S .已知首项a 1=3,且1+n S +n S =21+n a ,试求此数列的通项公式n a 及前n 项和n S . 5、已知数列{n a }的前n 项和31= n S n(n +1)(n +2),试求数列{n a 1}的前n 项和. 6、已知数列{n a }是等差数列,其中每一项及公差d 均不为零,设2122++++i i i a x a x a =0(i=1,2,3,…)是关于x 的一组方程.回答:(1)求所有这些方程的公共根; (2)设这些方程的另一个根为i m ,求证 111+m ,112+m ,113+m ,…, 1 1+n m ,…也成等差数列. 7、如果数列{n a }中,相邻两项n a 和1+n a 是二次方程n n n c nx x ++32=0(n=1,2,3…)的两个根,当a 1=2时,试求c 100的值. 8、有两个无穷的等比数列{n a }和{n a },它们的公比的绝对值都小于1,它们的各项和分别是1和2,并且对于一切自然数n,都有1+n a ,试求这两个数列的首项和公比. 9、有两个各项都是正数的数列{n a },{n b }.如果a 1=1,b 1=2,a 2=3.且n a ,n b ,1+n a 成等差数列,

数列经典必做题

数列试题 高中文数 1. 执行如图所示的程序框图,输出的值为() (注:框图中的赋值符号“=”也可以写成“←”或“﹕”) A.225B.196C.169D.144 2. 公差不为0的等差数列{}的前21项的和等于前8项的和.若,则k=() A.20B.21C.22D.23 3. 等差数列中, 则的值为() A. B. C. 21 D. 27 4. 已知等差数列的公差和首项都不等于0,且成等比数列,则() A.2 B.3 C.5 D. 7 6.已知函数,且,则 () A. B.0 C.100 D.10200 7.在递增等比数列中,,则公比= A.-1B.1C.2D.

8.计算() A. B. C. D. 9.已知等差数列中,,则的值是() A.6 B.18 C.26 D.54 10.设等差数列的前项和为、是方程的两个根,则等于() A. B.5 C. D.-5 11.已知为等比数列,是它的前项和.若,且与的等差中项为,则=() A. B. C. D. 12.函数的图像与x轴的交点的横坐标构成一个公差为 () 13.在等差数列{a n}中,已知公差d=2,且a1,a3,a4成等比数列,则a2=() (A)-4(B)-6(C)-8(D)-10 14.已知集合,其中,集合,则集合中的元素至多有() A.210 B.200 C.190 D.180 16.各项都是正数的等比数列中,成等差数列,则=()

17.设等差数列的前n项和为,若、是方程的两个根,则的值为()A.B.5C.D. 18.已知{a n}是等差数列, a4=15, S5=55, 则过点P(3, a3) , Q(4, a4) 的直线的斜率为() A. 4 B. C. -4 D. -14 19.在等差数列{a n}中, 前n项的和为S n, 若2a8=6+a11, 则S9=() A. 27 B. 36 C. 45 D. 54 20.已知等差数列1, a, b, 等比数列3, a+2, b+5, 则该等差数列的公差为() A. 3或-3 B. 3或-1 C. 3 D. -3 21.已知数列{a n}, 若点(n, a n) (n∈N*) 在经过点(8, 4) 的定直线l上, 则数列{a n}的前15项和S15=() A. 12 B. 32 C. 60 D. 120 22.已知等差数列{a n}的公差为-3, 若其前13项和S13=156, 则a2+a6+a10=() A. 36 B. 39 C. 42 D. 45 23.在等差数列{a n}中, 设S n为其前n项和, 已知=, 则等于() A. B. C. D. 24在等差数列{a n}中, 已知a4+a8=16, 则a2+a10=() A. 12 B. 16 C. 20 D. 24 25.设等差数列{a n}的公差d不为0, a1=9d. 若a k是a1与a2k的等比中项, 则k=() A. 2 B. 4 C. 6 D. 8 26.设等差数列{a n}的前n项为S n, 若S3=9, S6=36, 则a7+a8+a9=() A. 63 B. 45 C. 36 D. 27

高一数学数列部分经典习题及答案

.数 列 一.数列的概念: (1)已知* 2 ()156n n a n N n = ∈+,则在数列{}n a 的最大项为__(答:125 ); (2)数列}{n a 的通项为1 +=bn an a n ,其中 b a ,均为正数,则n a 与1+n a 的大小关系为__(答:n a <1+n a ); (3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-) ; 二.等差数列的有关概念: 1.等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。 设{}n a 是等差数列,求证:以b n = n a a a n +++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。 2.等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。 (1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +); (2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:8 33 d <≤) 3.等差数列的前n 和:1()2n n n a a S += ,1(1) 2 n n n S na d -=+ 。 (1)数列 {}n a 中,*11(2,)2n n a a n n N -=+ ≥∈,32n a =,前n 项和15 2 n S =-,求1a ,n (答:13a =-,10n =);

(2)已知数列 {}n a 的前n 项和2 12n S n n =-,求数列{||}n a 的前n 项和n T (答: 2* 2* 12(6,)1272(6,) n n n n n N T n n n n N ?-≤∈?=?-+>∈??). 三.等差数列的性质: 1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次 函数,且率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. 2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =, 则为常数列。 3.当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有 2m n p a a a +=. (1)等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =____ (答: 27) (2)在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则 A 、1210,S S S 都小于0,1112 ,S S 都大于0 B 、1219,S S S 都小于0,2021 ,S S 都 大于0 C 、125,S S S 都小于0,67,S S 都大于0 D 、1220,S S S 都小于0,2122 ,S S 都 大于0 (答:B )

等差数列经典试题(含答案)doc

一、等差数列选择题 1.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A . 47 B . 1629 C . 815 D . 45 2.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A . 825 两 B . 845 两 C . 865 两 D . 885 两 3.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4 D .-4 4.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50 C .60 D .80 5.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列 D .S 2,S 4+S 2,S 6+S 4必成等差数列 6.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231 n n a n b n =+,则2121S T 的值为( ) A . 13 15 B . 2335 C . 1117 D . 49 7.已知数列{}n a 的前n 项和2 21n S n n =+-,则13525a a a a +++ +=( ) A .350 B .351 C .674 D .675 8.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n n n S a b n =---?+,*n N ∈,则 存在数列{}n b 和{}n c 使得( ) A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列 B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列 C .· n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .· n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 9.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14 C .15 D .16 10.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( )

数列经典试题(含答案)

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41 的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ).

A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9 二、填空题 11.设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5) +f (6)的值为 . 12.已知等比数列{a n }中, (1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= . (2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= . (3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= . 13.在3 8和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 . 14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 . 15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (4)= ;当n >4时,f (n )= . 三、解答题 17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列. (2)已知 a 1, b 1, c 1成等差数列,求证a c b +,b a c +,c b a +也成等差数列.

数列经典题目集锦--答案

数列经典题目集锦一 一、构造法证明等差、等比 类型一:按已有目标构造 1、 数列{a n },{b n },{c n }满足:b n =a n -2a n +1,c n =a n +1+2a n +2-2,n ∈N *. (1) 若数列{a n }是等差数列,求证:数列{b n }是等差数列; (2) 若数列{b n },{c n }都是等差数列, 求证:数列{a n }从第二项起为等差数列; (3) 若数列{b n }是等差数列,试判断当b 1+a 3=0时, 数列{a n }是否成等差数列?证明你的结论. 类型二: 整体构造 2、设各项均为正数的数列{a n }的前n 项和为S n ,已知a 1=1,且(S n +1+λ)a n =(S n +1)a n +1对一切n ∈N *都成立. (1) 若λ=1,求数列{a n }的通项公式; (2) 求λ的值,使数列{a n }是等差数列. 二、两次作差法证明等差数列 3、设数列{}n a 的前n 项和为{}n S ,已知11,6,1321===a a a , 且* 1,)25()85(N n B An S n S n n n ∈+=+--+,(其中A ,B 为常数). (1)求A 与B 的值;(2)求数列{}n a 为通项公式; 三、数列的单调性 4.已知常数0λ≥,设各项均为正数的数列{}n a 的前n 项和为n S , 满足:11a =,() 1 1131n n n n n n a S S a a λ+++= +?+(*n ∈N ). (1)若0λ=,求数列{}n a 的通项公式; (2)若11 2 n n a a +<对一切*n ∈N 恒成立,求实数λ的取值范围. 5.设数列{}n a 是各项均为正数的等比数列,其前n 项和为n S ,若1564a a =,5348S S -=. (1)求数列{}n a 的通项公式; (2)对于正整数,,k m l (k m l <<),求证:“1m k =+且3l k =+”是“5,,k m l a a a 这三项经适当排序后 能构成等差数列”成立的充要条件; (3)设数列{}n b 满足:对任意的正整数n ,都有121321n n n n a b a b a b a b --+++ +13246n n +=?--, 且集合*| ,n n b M n n N a λ??=≥∈???? 中有且仅有3个元素,求λ的取值范围.

数列经典题型总结

一、直接(或转化)由等差、等比数列的求和公式求和 例1(07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列. (1)求数列{}n a 的等差数列. (2)令31ln 12n n b a n +== ,,,, 求数列{}n b 的前n 项和T . 练习:设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法 例2(07高考天津理21)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ; . 例3(07高考全国Ⅱ文21)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b += (Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ??? ??? 的前n 项和n S .

三、逆序相加法 例4(07豫南五市二联理22.)设函数2 22)(+=x x x f 的图象上有两点P 1(x 1, y 1)、P 2(x 2, y 2),若)(2 121OP OP +=,且点P 的横坐标为21. (I )求证:P 点的纵坐标为定值,并求出这个定值; (II )若;求,),()3()2()1 (*n n S N n n n f n f n f n f S ∈+?+++= 四、裂项求和法 例5 求数列???++???++,11 ,,321 ,211 n n 的前n 项和. 例6(06高考湖北卷理17)已知二次函数()y f x =的图像经过坐标原点,其导函数为'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上。 (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1 1n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m ; 五、分组求和法 例7数列{a n }的前n 项和12-=n n a S ,数列{b n }满)(,311*+∈+==N n b a b b n n n . (Ⅰ)证明数列{a n }为等比数列;(Ⅱ)求数列{b n }的前n 项和T n 。 例8求2222121234(1)n S n -=-+-++- (n N +∈) 六、利用数列的通项求和

相关主题
相关文档
最新文档