钻柱
第二章 2-钻柱

二、钻柱的工作状态及受力
(一)钻柱的工作状态
钻柱主要是在起下钻和正常钻进这两种条件下工作的。 起下钻时,钻柱处于受拉伸的直线稳定状态。 正常钻进时,上部钻柱受拉伸而下部钻柱受压缩。
小钻压且井眼直时,钻柱是直的; 压力达到钻柱的临界压力值,下 部钻柱将失去直线稳定状态而发生弯 曲并与井壁接触于某个点(称为“切 点”),这是钻柱的第一次弯曲 (Bulkling of the first oder); 增大钻压,则会出现钻柱的第二 次弯曲或更多次弯曲。
级
105(G) 723.95 105000 930.79 135000 792.90 115000
135(S) 930.70 135000 1137.64 165000 999.74 145000
(3)钻杆接头及丝扣 钻杆接头是钻杆的组成部分,分公接头和母接头 钻杆接头壁厚较大,接头外径大于管体外径,用强度更
3、弯曲力矩(Bending Moment) 其大小与钻柱的刚度、 弯曲变形部分的长度及最大挠度等因 素有关。 4、离心力(Centrifugal force) 5、外挤压力(Collapsing Pressure):中途测试和卡瓦悬持。 6、纵向振动(Axial Vibration):钻柱中性点附近产生交变的 轴向应力。纵向振动和钻头结构、所钻地层性质、泵量不均匀、钻 压及转速当等因素有关。
式中: Fw —钻进时(有钻压)钻柱任一
截面上的轴向拉力,kN;
w —钻压,kN。
图2-36 钻柱轴向力分布
中性点:钻柱上轴向力为零的点(N点)(亦称中和点, Neutral Point )。
垂直井眼中钻柱的中性点高度可按下式确定:
LN
W qc K
式中: LN —中性点距井底的高度,m。
钻柱失效分析及与预防措施

04
钻柱失效预防技术发展
新材料应用
总结词
新材料的应用为钻柱失效的预防提供了新的解决方案,能够有效提高钻柱的强度、耐腐 蚀性和耐磨性。
详细描述
随着科技的不断发展,新型材料如高强度合金钢、钛合金、陶瓷等逐渐应用于钻柱的制 造中。这些新材料具有更高的强度、耐腐蚀性和耐磨性,能够显著提高钻柱的使用寿命,
详细描述
通过改进钻柱的结构设计,提高其承载能力和耐久性,可以降低失效风险。例 如,优化钻柱的壁厚、直径和材料选择,以及采用更先进的连接方式等。
制造质量控制
总结词
严格控制制造质量是防止钻柱失效的关键环节。
详细描述
确保钻柱在制造过程中符合相关标准和规范,对每个生产环节进行质量检查和控制,以消除潜在的缺陷和隐患。 同时,可以采用无损检测技术对钻柱进行全面检测,确保其质量和可靠性。
磨损
钻柱与井壁、钻头等之间的摩擦会 导致钻柱磨损,影响其使用寿命。
失效原因
01
02
03
设计不合理
钻柱结构设计不合理,如 壁厚不均、连接方式不当 等,可能导致钻柱失效。
制造缺陷
钻柱制造过程中可能存在 的材料缺陷、加工误差等, 也是导致钻柱失效的重要 原因。
操作不当
钻井过程中操作不当,如 过载、转速过高、钻压过 大等,可能加速钻柱的磨 损和疲劳。
使用维护保养
总结词
合理使用和维护保养可以有效延长钻柱的使用寿命。
详细描述
在使用过程中,应遵循操作规程,避免超载和过载情况的发生。同时,定期对钻柱进行检查和维护, 及时发现并处理潜在问题,以保持其良好的工作状态。此外,对于使用环境恶劣的钻柱,应采取相应 的保护措施,以减缓其老化过程。
03
钻柱失效案例分析
钻柱力学分析

钻柱力学分析读者朋友,欢迎你来到这篇文章,这篇文章将为你提供一个深入的分析,关于叫做钻柱力学(Drilling Column Mechanics)的话题。
本文将概述钻柱力学的基本原理和它的在石油钻探中的应用,还将分析钻柱力学的可行性以及它在钻探方面的发展前景。
一、钻柱力学的基本原理钻柱力学的主要原理来自于两个优秀的物理原理:力的平衡和圆柱曲线力学。
力的平衡是指钻柱的各种力,如系统重力、钻柱扭矩、钻柱圆柱曲线力学及系统抗拉力,需要相互抵消,以维持力学稳定。
而圆柱曲线力学是指圆柱形轴向力的力学行为,可以用来计算钻柱的截面变形情况。
二、钻柱力学在石油钻探中的应用现代石油钻探技术中,钻柱力学是一个重要的因素,可以帮助工程师理解钻探过程中钻柱受力和变形的情况,以及如何确定在钻探过程中采取正确的措施。
此外,钻柱力学还可以用来估计井壁收敛变形,以及确定最佳钻柱尺寸,以减少钻井时间和成本。
三、钻柱力学的可行性在钻探过程中,钻柱受到各种不同的力,这些力会促使钻柱产生微小的变形,并在时间的推移中不断影响钻探过程的进展。
因此,利用钻柱力学可以有效地控制钻柱的受力状态,从而帮助钻探工程师在短时间内完成钻井。
此外,钻柱力学可以帮助建立仿真模型,以便工程师可以在实际钻探之前模拟出不同情况下的钻井受力和变形状况。
四、钻柱力学的发展前景由于石油钻探技术不断进步,钻柱力学在钻井过程中也将变得越来越重要。
目前,钻柱力学已经被广泛应用于石油钻探,但未来仍有很多空间可以改进和优化,如研发新型工具和材料,以及提高力学分析技术。
此外,研究人员正在尝试用钻柱力学来优化钻探布线,以减少钻探过程中的受力和变形。
总结以上是关于钻柱力学的详细介绍。
从上面可以看出,钻柱力学是一个非常重要的概念,它可以帮助工程师在短时间内完成钻井,而且在未来也会越来越受重视。
因此,为了提高石油钻探的效率,应该加强对钻柱力学的研究,以提升钻探技术水平。
第二节 钻柱

第二节钻柱一、钻柱的作用与组成二、钻柱的工作状态与受力分析三、钻柱设计一、钻柱的组成与作用(一)钻柱的组成钻柱(Drilling String)是水龙头以下、钻头以上钢管柱的总称。
它包括方钻杆(Square Kelly)、钻杆(Drill Pipe)、钻挺(Drill Collar)、各种接头(Joint)及稳定器(Stabilizer)等井下工具。
(一)钻柱组成(一)钻柱的组成钻柱是钻头以上,水龙头以下部分的钢管柱的总称.它包括方钻杆、钻杆、钻挺、各种接头(Joint)及稳定器等井下工具。
(二)钻柱的作用(见动画)(1)提供钻井液流动通道;(2)给钻头提供钻压;(3)传递扭矩;(4)起下钻头;(5)计量井深;(6)观察和了解井下情况(钻头工作情况、井眼状况、地层情况);(7)进行其它特殊作业(取芯、挤水泥、打捞等);(8)钻杆测试(Drill-Stem Testing),又称中途测试。
1. 钻杆(1)作用:传递扭矩和输送钻井液,延长钻柱。
(2)结构:管体+接头,由无缝钢管制成。
1. 钻杆(3)连接方式及现状:a.细丝扣连接,对应钻杆为有细扣钻杆。
b.对焊连接,对应钻杆为对焊钻杆。
1. 钻杆(4)管体两端加厚方式:常用的加厚形式有内加厚(a)、外加厚(b)、内外加厚(c)三种.(a) (b) (c)(5)规范壁厚:9 ~11mm 外径:长度:根据美国石油学会(American Petroleum Institute,简称API)的规定,钻杆按长度分为三类:"21,"21 ,"21,"87 ,835139.70 ,500.127 430.1144101.60390.88 273.00 230.60第一类 5.486~6.706米(18~22英尺);第二类8.230~9.144米(27~30英尺); 第三类11.582~13.716米(38~45英尺)。
常用钻杆规范(内径、外径、壁厚、线密度等)见表2-12(6)钢级与强度钻 杆 钢 级物 理 性 能D E95(X)105(G)135(S)MPa379.21517.11655.00723.95930.70最小屈服强度lb/in2550007500095000105000135000 MPa586.05723.95861.85930.791137.64最大屈服强度lb/in285000105000125000135000165000 MPa655.00689.48723.95792.90999.74最小抗拉强度lb/in295000100000105000115000145000钢级:钻杆钢材等级,由钻杆最小屈服强度决定。
钻柱工作状态及受力分析

钻柱工作状态及受力分析一、钻柱的工作状态在钻井过程中,钻柱主要是在起下钻和正常钻进这两种条件下工作。
在起下钻时,整个钻柱被悬挂起来,在自重力的作用下,钻柱处于受拉伸的直线稳定状态。
实际上,井眼并非是完全竖直的,钻柱将随井眼倾斜和弯曲。
在正常钻进时,部分钻柱(主要是钻铤)的重力作为钻压施加在钻头上,使得上部钻柱受拉伸而下部钻柱受压缩。
在钻压小和直井条大钻压,则会出现钻柱的第一次弯曲或更多次弯曲(图1)。
目前,旋转钻井所用钻压一般都超过了常用钻铤的临界压力值,如果不采取措施,下部钻柱将不可避免地发生弯曲。
在转盘钻井中,整个钻柱处于不停旋转的状态,作用在钻柱上的力,除拉力和压力外,还有由于旋转产生的离心力。
离心力的作用有可能加剧下部钻柱的弯曲变形。
钻柱上部的受拉伸部分,由于离心力的作用也可能呈现弯曲状态。
在钻进过程中,通过钻柱将转盘扭矩传送给钻头。
在扭矩的作用下,钻柱不可能呈平面弯曲状态,而是呈空间螺旋形弯曲状态。
根据井下钻柱的实际磨损情况和工作情况来分析,钻柱在井眼内的旋转运动形式可能是自转,钻柱像一根柔性轴,围绕自身轴线旋转;也可能是公转,钻柱像一个刚体,围绕着井眼轴线旋转并沿着井壁滑动;或者是公转与自转的结合及整个钻柱或部分钻柱做无规则的旋转摆动。
从理论上讲,如果钻柱的刚度在各个方向上是均匀一致的,那么钻柱是哪种运动形式取决于外界阻力(如钻井液阻力、井壁摩擦力等)的大小,但总以消耗能量最小的运动形式出现。
因此,一般认为弯曲钻柱旋转的主要形式是自转,但也可能产生公转或两种运动形式的结合,既有自转,也有公转。
在钻柱自转的情况下,离心力的总和等于零,对钻柱弯曲没有影响。
这样,钻柱弯曲就可以简化成不旋转钻柱弯曲的问题。
在井下动力钻井时,钻头破碎岩石的旋转扭矩来自井下动力钻具,其上部钻柱一般是不旋转的,故不存在离心力的作用。
另外,可用水力荷载给钻头加压,这就使得钻柱受力情况变得比较简单。
二、钻柱的受力分析钻柱在井下受到多种荷载(轴向拉力及压力、扭矩、弯曲力矩)作用,在不同的工作状态下,不同部位的钻柱的受力的情况是不同的。
钻柱(Drill String)

(6)扭转振动(Torsiona1 vibration) 当井底对钻头旋转的阻力不断变化时,会引 起钻柱的扭转振动,因而产生交变剪应力。扭转振动和钻头结构、所钻岩石性质是否均匀 一致、钻压及转速等等许多因素有关。特别是使用刮刀钻头钻软硬交错地层时,钻柱的扭 转振动最为严重。 (7)动载(Dynamic 1oads) 起下钻作业中,由于钻柱运动速度的变化会引起纵 向动载,因而在钻柱中产生间歇的纵向应力变化。这主要和操作状况有关。 综上所述,转盘钻井时,钻柱的受力是比较复杂的。但所有这些载荷就性质来讲可分 为不变的和交变的两大类。属于不变应力的有拉应力、压应力和剪应力;而属于交变应力 的有弯曲应力,扭转振动所引起的剪应力以及纵向振动作用所产生的拉应力和压应力。在 整个钻柱长度内,载荷作用的特点是在井口处主要是不变载荷的影响,而靠近井底处主要 是交变负荷的影响。这种交变载荷的作用正是钻柱疲劳破坏的主要原因。 从上述分析也不难看出,钻柱受力严重部位是: (1)钻进时钻柱的下部受力最为严重。固为钻柱同时受到轴向压力、扭矩和弯曲力矩 的作用,更为严重的是自转时存在着剧烈的交变应力循环,以及钻头突然遇阻遇卡,会使 钻柱受到的扭矩大大增加。 (2)钻进时和起下钻时,井口处钻柱受力复杂。起下钻时井口处钻柱受到最大拉力, 如果起下钻时猛提、猛刹,会使井口处钻柱受到的轴向拉力大大增加。钻进时,井口处钻 柱所受拉力和扭力都最大,受力情况也比较严重。 (3)由于地层岩性变化、钻头的冲击和纵向振动等因素的存在,使得钻压不均匀,因 而使中和点位置上下移动。这样,在中和点附近的钻柱就受到交变载荷作用。 总的来说,为了完成正常钻进、起下钻及其他工艺操作,根据上述的受力状况,钻柱 所有部分都必须有足够强度,以承受各种可能的载荷,同时,要保证建立所需的钻压,钻 柱的循环阻力要小,密封性要好,并且钻柱的重量应尽可能轻,以实现经济的合理性。
第5章钻柱

第五章 钻柱第一节 钻柱的工作状态及受力分析一、工作状态起下钻时:钻柱处于悬持状态--受拉伸(自重),直线稳定状态正常钻进:P<P1 直线稳定P1≤P<P2 一次弯曲P2≤P<P3 二次弯曲钻柱旋转→扭矩离心力→下部弯曲半波缩短上部弯曲半波增长(上部受拉)结论:变节距的空间螺旋弯曲曲线形状钻柱在井内可能有4种旋转形式:(P96)a.自转:b.公转:沿井壁滑动。
c.自转和公转的结合:沿井壁滚动。
d.整个钻柱作无规则的摆动:二、钻柱在井下的受力分析(1) 轴向拉应力与压应力拉应力:由钻柱自重产生,井口最大,起钻和卡钻时产生附加拉力。
压应力:由钻压产生,井底最大。
应力分布(P97,图3-2) 轴向力零点:钻柱上即不受拉也不受压的一点。
中和点:该点以下钻柱在液体中的重量等于钻压。
(2) 剪应力(扭矩):旋转钻柱和钻头所需的力,井口最大。
(3) 弯曲应力:钻柱弯曲并自转时产生交变的拉压应力。
井眼弯曲→钻柱弯曲 132(4) 纵向、横向、扭转振动(5) 其他外力:起下钻动载(惯性),井壁磨擦力,钻柱旋转时因离心力引起的弯曲。
综合以上分析:工况不同,应力作用不同,需根据实际工况确定应力状态。
(1) 钻进时钻柱下部:轴向压力、扭矩、弯曲力矩、交变应力;(2) 钻进和起下钻时井口钻柱:拉力、扭力最大+动载(3) 钻压、地层岩性变化引起中和点位移产生交变载荷。
第二节 钻井过程中各种应力的计算一、轴向应力计算(一)上部拉应力计算1、钻柱在泥浆中空悬浮力:αρ⋅⋅⋅⋅=F L g B mα——考虑钻杆接头和加厚影响的重量修正系数,1.05~1.10 钻柱在空气中的重力:αρ⋅⋅⋅⋅=F L g Q s a井口拉力:B Q Q a -=a f Q K Q ⋅=浮力系数:)1(s m f K ρρ-=ρs --钢的密度,7.85 g/cm 3拉应力:FQ t =σ 注意计算井口以下任一截面上的拉力不能直接用浮力系数法计算。
钻柱受力分析及强度校核

1
钻柱的工作状态
一、起下钻
整个钻柱被悬挂起来,在自重力的作 用下,处于拉伸的直线稳定状态
二、正常钻进
在部分自重压力、公转离心力和旋转 扭矩等因素的作用下,钻柱处于弯曲状态。
2
钻柱的受力分析
钻柱承受的基本载荷主要有以下几种:
(1)轴向力和压力: 钻柱在垂直井眼中处于悬挂状态,由于其自身的重量 ,钻柱受到拉伸,最下端的拉力最小(等于 0),最上端 的拉力最大。当井眼内充满钻井液时,钻柱还受到钻井液 对其产生的浮力,而作用在钻柱内外表面的侧向静液压力 ,虽然合力为零,但对钻柱管体形成侧向挤压作用,两种 力综合作用相当于使钻柱的线重减轻。 正常钻进时,部分钻柱的重力加到钻头上作为钻压。 钻压使钻柱的轴向拉力都减小一个相应数值,且下部钻柱 受压缩应力的作用。鲁宾斯基在此提出了中性点的概念
y d p Ks d p Ks 1 t 2 LS 2 LS
2
1 2
12
钻柱的强度校核
三是拉力余量法。考虑钻柱被卡时的上提解卡力,以钻柱 的最大允许静拉力小于最大安全拉伸力的一个合适余量来确保 钻柱不被拉断。
Fa FP MOP
4
钻柱的受力分析
1、钻柱的轴向应力计算 (1) 钻柱在空气中悬空时(图a) 分析:受重力、拉力 任一截面的拉力: ……………………(1) 式中: Fo——空气中任一截面上的拉力,kN; qp、qc——分别为钻杆、钻铤单位长度的重力,kN; Lc、——钻铤长度,m; Lp——截面以下钻杆长度,m;
5
9
钻柱的受力分析
6、纵向振动 n 在中性点处会产生交变的轴向应力; n 当纵向振动的周期和钻柱本身固有的振动周期相同(或成整 数倍时),就会产生共振,称之为“跳钻”。后果是严重的。 7、扭转振动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fw = 0.9 Fy
Fw :钻柱工作时允许受到的最大轴向载荷
Fy :材料最小屈服强度下的抗拉力
2. 钻柱允许的最大静拉载荷 Fa
Fa :钻柱在钻井液中重量产生的轴向载荷。
Fa < Fw
钻柱设计
2. 钻柱允许的最大静拉载荷 Fa 1)安全系数法 Fw Fa = Sp
S p :设计安全系数 S p = 1.3 ~ 1.6
钻柱设计
1. 钻具尺寸的选择: 钻具组合书写表示方法: 215毫米钻头(钻头高度,m)+420×520(长度,m)+178毫 米钻铤(长度,m) +521×410 (长度,m) +159毫米钻铤 (长度,m) +127毫米钻杆(长度,m) +411×520 (长度 ,m) +133毫米方钻杆(方入,m)+水龙头(631反)
钻柱设计
2.钻铤长度的确定: 原则: 钻铤在泥浆中的重量为所需最大钻压的1.2~1.3倍。
S n ⋅ Wmax 计算公式为: Lc = qc ⋅ K b ⋅ cos α
Lc ——钻铤长度,米;
α ——井斜角,度
Wmax ——最大钻压,牛;
qc
Kb
Sn
——钻铤的每米重量,牛/米 ——浮力系数 ——设计安全系数
钻柱设计
1. 钻具尺寸的选择: 常用钻具组合: 12 ¼” 以上井眼: 钻头+9”钻铤+8”钻铤+7”钻铤+5”钻杆+5 ¼”方钻杆 8 1/2” 井眼: 钻头+ 6 1/2”钻铤+6 1/4”钻铤+5”钻杆+5 ¼”方钻杆 6” 井眼: 钻头+ 4 3/4”钻铤+3 1/2”钻杆+ 3 1/2”方钻杆
Fw1 1584.28 = = = 1115.69 KN 安全系数法: F St 1.42
' a1
拉力余量法: 取:
Fa1" = Fw1 − 200 =1584.28 − 200 =1384.28KN
Fa1 = 1115.69 KN
钻柱设计
(三)、钻柱强度设计实例 ⑵钻杆设计
第一段钻杆许用长度
L1 Fa1 ×103 / 0.85 − 54 ×1606 − 135 ×1212 = 3730m 284.78
钻柱工作状态及受力分析
(一)钻柱的工作状态 2. 钻进时 工作状态: 平面弯曲 扭矩 钻柱处于空间变节距的 螺旋弯曲状态。
钻柱工作状态及受力分析
(一)钻柱的工作状态 3.钻柱的旋转运动形式 (1)自转 (2)公转 围绕自身轴线旋转。 围绕着井眼轴线旋转产生偏磨。
(3)自转加公转 弯曲钻柱围绕自身轴线运动,同时围绕 井眼轴线旋转。 (4)纵向振动 (5)扭转振动
钻柱工作状态及受力分析
(二)钻柱的受力分析 2. 扭矩(Moment of Torsion) 扭矩分布: 井口最大;井底最小。(转盘钻/顶驱) 3. 弯矩(Bending Moment) 钻柱弯曲的原因: 加压弯曲 井眼弯曲 离心力弯曲
钻柱工作状态及受力分析
(二)钻柱的受力分析 4. 离心力(Centrifugal Force) 公转时产生。 5. 纵向振动(Axial Vibration)
纵向振动周期= N· 钻柱固有振动周期 → 产生共振(称为跳钻)。
6. 扭转振动(Torsional Vibration)
扭转振动产生交变剪切应力。
7. 动载(Dynamic Loads)
速度变化产生动载,动载将产生纵向应力变化。
第三节 钻柱设计
钻柱设计
(一)、钻柱组合设计 1. 钻具尺寸的选择: 影响因素: 钻头尺寸; 钻机提升能力; 地质条件,井身结构; 钻具供应。
2)拉力余量法
F = Fw − FM a
FM :拉力余量
FM = 200 ~ 500 KN
最大静拉载荷取安全系数法与拉力余量法二者中的最小值
钻柱设计
3. 钻杆最大允许长度的确定 原则: 钻杆受到的最大轴向载荷等于钻杆最大允许静拉载荷。 设: 钻杆以下钻铤长度为 Lc 钻铤每米重量为 q c 钻杆每米重量为 q p 则:
钻柱的组成及规范
(四)钻杆(drilling pipe) 接头丝扣(扣型)的表示方法: 数字表示法(国内):
该数字表示公/母扣 该数字表示接头类型 该数字表示与接头相配的钻杆直径
如:421,310
钻柱的组成及规范
(四)钻杆(drilling pipe) 数字型接头:
结构:“V”形,夹角60°,顶宽0.065″,螺纹根部为0.038R, 锥度:1:4 & 1:6 特点:只要基面节圆直径相同就可连接。 表示方法:NC XX V-0.038R
钻柱的组成及规范
(四)钻杆(drilling pipe) 各类型接头特点: 外径 内平接头 贯眼接头 正规接头 大 中 小 流阻 强度 磨损 用途 小 中 大 小 中 大 大 中 小 一般钻杆 小尺寸钻杆,工具 打捞工具
钻柱的组成及规范
(四)钻杆(drilling pipe) 接头丝扣: 形状: 顶宽: “V”形扣,夹角60°;
丝扣顶切平后的宽度。0.040″,0.050″,0.065″ 切平目的:减小应力集中,提高丝扣强度。
锥度:
1:4 ﹠ 1:6
丝扣种类: 根据锥度和顶宽划分为甲、乙、丙、丁四种扣。 不同种类的丝扣不能相连。
钻柱的组成及规范
(四)钻杆(drilling pipe) 接头的连接: 规定:一定尺寸和接头类型的钻杆只采用一种螺纹类型。 丝扣连接准则: 尺寸相同 接头类型相同 公母相配
钻柱的组成及规范
(四)钻杆(drilling pipe)
作用: 传递扭矩,构成泥浆流动通道;增加井深 结构: 钻杆管体+一付钻杆接头。
钻杆结构示意图
钻柱ቤተ መጻሕፍቲ ባይዱ组成及规范
(四)钻杆(drilling pipe)
规范: 有细扣钻杆; 无细扣对焊钻杆。 通称尺寸: 钻杆本体外径。
现常用有: 89毫米(3 1/2”)、127毫米(5”)。
钻柱设计
(三)、钻柱强度设计实例 ⑴钻铤设计
选用177.8mm钻铤(1606N/m)54米+158.8mm钻铤(1212N/m )组成塔式钻具
ρm 1.2 1 1 0.85 = − = − = K 浮力系数 b 7.8 ρs
1.2 ×180 ×103 = Lc ( − 54 ×1606) = /1212 138m 158.8mm钻铤长度 0.85
S n = 1.2 ~ 1.3
钻柱设计
(二)、钻柱受力计算 1. 悬空时井口处的轴向力
Q0 = F0 − B
Q0 :井口截面轴向载荷;(N) F0 :井口截面以下钻柱在空气中的重量;(N)
B :泥浆浮力。(N)
钻柱设计
1. 悬空时井口处的轴向力
Q0 = F0 − B
F0 = V ⋅ ρ s ⋅ g = L0 ⋅ A ⋅ ρ s ⋅ g
钻柱的组成及规范
(三)方钻杆(Kelly)
钻柱的组成及规范
(三)方钻杆(Kelly)
作用: 传递扭矩,承受钻柱重量,构成泥浆流动通道。 结构: 断面为中空的多边形(多为正方形); 上端为左旋扣(反扣),下端为右旋扣(正扣) 有细扣方钻杆; 规范: 无细扣方钻杆。 通称尺寸: 方形边宽。
现常用有:89毫米(3 1/2”)、108毫米(4 1/4”)、 133毫米(5 1/4”)。 有效长度﹥钻杆长度+2~3米。
显然,还需增加一段较高强度钻杆。
钻柱设计
(三)、钻柱强度设计实例 ⑵钻杆设计
第二段钻杆选用127mm,内径108.6mm,每米重量为284.78N/m 的105级钻杆,最小抗拉力 Fy 2 = 2464.39 KN 钻杆最大允许工作载荷 钻杆最大允许静拉载荷
Q0 = F0 − B − W
W - 钻压
3. 起钻时的轴向载荷
Q0 = F0 − B + Fm + Fd
Fm - 摩擦力 Fd
- 动载
Fm = (0.2 ~ 0.3)( F0 − B) = Fd (0.2 ~ 0.3)( F0 − B)
Q0 = (1.4 ~ 1.6)( F0 − B)
钻柱设计
(三)、钻柱强度设计 1. 钻柱允许的最大工作载荷 Fw
Fa − L ⋅ q K c c b Lp = qp
L p :钻杆最大许用长度
钻柱设计
4. 复合钻柱强度设计 复合钻柱: 由不同尺寸、壁厚、钢级钻杆组成的钻柱。 设计方法: 从下至上,逐段设计。
钻柱设计
(四)、钻柱强度设计实例 设计条件: 井深5000m; 井径215.9mm 钻井液密度1.2g/cm3 钻压180KN 拉力余量200KN 设计安全系数1.42
第二章 钻柱
本章主要内容:
钻柱的组成及规范 钻柱的工作状态及受力分析 钻柱设计
第一节 钻柱的组成及规范
钻柱的组成及规范
(一)钻柱的组成
钻柱:钻头以上,水龙头以 下部分的钢管柱的总称。 主要组成: 方钻杆 钻杆 钻铤 配合接头
钻柱的组成及规范
(二)钻柱的主要功用
(1)传递扭矩(转盘/顶驱); (2)给钻头提供钻压; (3)构成钻井液流动通道,传递水力能量; (4)增加井深; (5)传递信息; (6)进行其它特殊作业(取芯、挤水泥、打捞等)。
钻柱的组成及规范
(四)钻杆(drilling pipe)
本体两端加厚形式: 内加厚 外加厚 内外加厚
内加厚
外加厚
内外加厚
钻柱的组成及规范
(四)钻杆(drilling pipe)
钻杆接头: 有细扣钻杆接头 无细扣钻杆接头 钻杆接头类型: 内平接头 贯眼接头 正规接头
钻杆接头与钻杆本体用细丝扣连接。 钻杆接头与钻杆本体对焊连接。