物理化学第9章可逆电池
物理化学——第9章-可逆电池复习题

ln K zFE /RT 9.1782 K 9.68 103
2 96485 (0.3402 0.2223) 8.314 298.15
计算题
3. 25℃时,电池 Pt|H2(p )|HCl(0.1molkg-1)|AgCl,Ag 的电动势为0.3522V, (1)求反应H2(g)+2AgCl(s)=2Ag+2H++2Cl- ,在25℃的 标准平衡常数。(已知0.1molkg-1 HCl的 =0.798); (2)求金属银在1molkg-1 HCl溶液中产生H2的平衡压 力。(已知25℃时1molkg-1 HCl的 =0.809)。
概念简答
4、为什么燃料电池的效率比热机高? 答: 比较极限值:可逆热机和可逆电池。
Tc 根据热力学第二定律,可逆热机的效率为 1 Th
所以热机效率不可能达到100%。然而可逆电池的 能量转化是可逆的,化学能全部转化为电能,效 率为100%。
选择题
1.25℃时电池反应 H2(g) + ½O2(g) = H2O(l) 对应 的电池标准电动势为 E1ϴ,则反应2H2O(l) = 2H2(g) + O2(g) 所对应的电池的标准电动势 E2 ϴ是: (C) (A) E2 ϴ = - 2 E1 ϴ ; (B) E2 ϴ = 2E1 ϴ ; (C) E2 ϴ = - E1 ϴ ; (D) E2 ϴ = E1 ϴ 。 2. 某电池在标准状况下,放电过程中, (B) 当Qr = -200 J 时,其焓变ΔH为: (A) ΔH = -200 J ; (B) ΔH < -200 J ; (C) ΔH = 0 ; (D) ΔH > -200 J 。
(2) 计算该原电池在25℃时的电动势E;
09可逆电池电动势及其应用

电池反应: 电池反应:Hg2SO4(s)+Cd(Hg)(a)+8/3H2O→CdSO48/3H2O(s)+2Hg(l)
优点: 优点: 电动势稳定,随温度改变小. 电动势稳定,随温度改变小.
ET/V = 1.01845 – 4.05× 10-5(T/K –293.15) × – 9.5× 10-7(T/K –293.15)2 × + 1× 10-8 (T/K –293.15)3 ×
三 设计原电池 设计电池基本思路: 设计电池基本思路: (1)根据元素氧化数的变化,确定氧还电对,写出电 根据元素氧化数的变化,确定氧还电对, 极反应. 极反应. (必要时可在方程式两边加同一物质) 必要时可在方程式两边加同一物质) (2)设计可逆电池, 写出电池简式.考虑电极材料, 设计可逆电池, 写出电池简式.考虑电极材料, 溶液浓度,相界面(双液电池必须加盐桥) 溶液浓度,相界面(双液电池必须加盐桥)等实际因 素. (3)检查所设计电池反应是否与原给反应吻合. 检查所设计电池反应是否与原给反应吻合.
丹尼尔( 丹尼尔(Daniel)电池
放电时:
A Zn (-): Zn →Zn2+ + 2e: Cu(+): Cu2+ + 2e- →Cu : 电池反应: 电池反应: Zn + Cu2+ →Zn2+ + Cu + Zn (+) : Zn2+ + 2e- → Zn Cu (-) : Cu → Cu2+ + 2e电池反应: 电池反应: Zn2+ + Cu → Zn + Cu2+
4.计算原电池可逆放电时的反应热 4.计算原电池可逆放电时的反应热 对于可逆电池, 对于可逆电池,有 rSm = QR/T
物理化学---可逆电池电动势

1 2
可逆电池和可逆电极 电动势产生的机理
9.3 可逆电池及电动势
将化学能转化为电能的装置称为电池,若此转化是 以热力学可逆方式进行的,则称为“可逆电池”。 在可逆电池中 (ΔrGm)T,p,=Wr’ =-nFE 其中E: 电池两电极间的电势差,在可逆条件下, 达最大值,称为电池的电动势。 (ΔrGm)T,p=Wr’=-nFE ——热力学与电化学联系的桥梁
可逆电池必须同时满足上述两个条件
9.3 可逆电池及电动势
电池Ⅰ:
放电:E>V V
A
充电:加外加电压V>E V
A
Zn
ZnSO4
Cu
CuSO4
Zn
ZnSO4
Cu
CuSO4
Cu极电势高为正 Cu极 Cu2++2e Cu Zn极 Zn 2e Zn2+
Cu 2e Cu2+ Zn2++2e Zn Zn2++Cu Zn+Cu2+
(a=1) (a 1)
金属汞齐-金属离子电极:
Na+|Na–Hg Na+ + e Na(Hg齐) (a) Cd2+|Cd –Hg Cd2+ + 2e Cd(Hg齐)(a)
气体电极: 酸性氢电极
碱性氢电极
Pt(s) H2(P)H+(c) Pt(s) H2(P)OH-(c) 2H+ + 2e- H2
“盐桥”中电解质的采用原则:
* 正负离子的运动速率及迁移数很接近,如KCl, NH4NO3, 保证液接电势差非常小。 * 盐桥物质的浓度要高,且不能 与电解质溶液发生反应。
物理化学下

根据迁移数的定义:
表明离子迁移的速率越大,所承担运载的电量的比例越大。 根据离子迁移率的定义,
t + = U + / (U + + U - ) t - = U- / (U + + U - ) t+ + t- =1 表明迁移数大的离子对运载电量的贡献越大。
离子的电迁移率反映出离子在一定电场条件下的定向移动的快慢程度; 迁移数反映出离子承担运载电量的比例; 离子的电迁移率越大,该离子的迁移数就越大; 总之:
§ 8.2 离子的电迁移率和迁移数
电解质溶液在电场中如何导电? 阴离子向阳极移动;阳离子向阴极移动。
离子的电迁移 离子在外电场作用下发生定向移动。
离子浓度在迁移过程中发生怎样的变化? 把电解质溶液分成本体区域和电极区域(阳极区域和阴极区域): 在溶液本体区域内任意位置无论正、负离子的迁移,都会有相邻位置
原电池
化学能
电能
电解池
溶液的导电性 ——— 第八章内容;
电极电势的产生 —— 第九章内容;
外加电动势与可逆的偏差——第十章内容
电化学在科学研究和国民经济中的重要作用
1、电化学测试 pH、电导、离子选择电极(直接测定离子浓度) 、 电位滴定、 电导滴定、极谱分析、库仑分析、电化学传感器
2、电化学工业 电解(冶炼、精炼)、电镀、化学电源(燃料电池、锂离子电池) 电催化、电合成反应
电导率:电阻率的倒数称为电导率,单位是 S • m-1 ( 或Ω-1 • m-1 ) κ = 1/ρ
G= κA/l 电导率的物理意义是指长 1m、截面积为 1m2 的导体的电导; 电导率值越大,说明该导体越容易导电。
《物理化学(第五版)》第九章复习题答案

复习题
(1).H2O(1)的标准摩尔生成Gibbs自由能ΔfGmΘ (H2O,1); 电池:Pt|H2(pH2) | H+或OH-(aq) | O2(pO2)|Pt 净反应:H2(pΘ) + 1/2O2(pΘ) = H2O(l)
ΔfGmΘ (H2O,1)=-zEΘF
(2).H2O(1)的离子积常数KΘ; 电池:Pt|H2(pH2)|H+(aH+)||OH-(aOH-)|H2(pH2)|Pt 净反应:H2O(l) ⇔ H+(aH+) + OH-(aOH-)
RT a H aCl E E ln zF a 1 2 H2 E RT ln m zF m
复习题
(6)Ag2O(s)的标准摩尔生成焓ΔfHmΘ 和分解压。 电池:Ag(s)+Ag2O(s)|OH-(aOH-)|O2(pΘ )|Pt 净反应:Ag2O(s)→1/2O2(pΘ )+2Ag(s) E r H m zE F zFT T p
RT m RT m E j= t -t ln = 2t -1 ln F m' F m'
E=E c+E j=
F
m ln m'
高价型:Mz+Az-(m1)|Mz+Az-(m2)
t t- RT m1 E j= - ln m2 z z- F
基本公式
用可逆电池的测定值计算热力学函数变化
值
r Gm zFE , r Gm zFE
RT E ln K a zF r Gm E r S m ( ) p zF ( ) p T T E QR T r Sm zFT ( ) p T
【通用】《物理化学(第五版)》第九章复习题答案.ppt

演示课件
复习题
7.在公式ΔrGmΘ=-zEΘF中,ΔrGmΘ是否表示 该电池各物都处于标准态时,电池反应的 Gibbs自由能变化值?
答:在公式ΔrGmΘ=-zEΘF中,ΔrGmΘ表示该 电池各物都处于标准态时,在T,p保持不变 的条件下,按电池反应进行1mol的反应时 系统的Gibbs自由能变化值。
ln
m m'
高价型:Mz+Az-(m1)|Mz+Az-(m2)
E
j=
t z
- t- z 演示课-件
RT F
ln
m1 m2
基本公式
用可逆电池的测定值计算热力学函数变化
值
rGm zFE , rGm zFE
E
RT zF
ln
K
a
r Sm
( r Gm T
)p
E zF (T ) p
E
QR
T rSm
答:可逆电极有三种类型: (1)金属气体电极 如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极 如:
Ag(s)|AgCl(s)|Cl-(m) AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极 如: Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极
反应所依附的惰性金属。
演示课件
复习题
2.什么叫电池的电动势?用伏特表侧得的电 池的端电压与电池的电动势是否相同?为何 在测电动势时要用对消法?
物理化学第九章可逆电池的电动势及其应用
rHm
=
Δ
r Gm
+TΔ
r Sm
=
− zEF
+
zFT
⎛ ⎝⎜
∂E ∂T
⎞ ⎟⎠ p
QR
= TΔ
r Sm
=
zFT
⎛ ⎜⎝
∂E ∂T
⎞ ⎟⎠ p
(1) 求298K时,下列电池的温度系数:
Pt H(2 pθ)H2SO(4 0.01mol ⋅ kg-1) O2(pθ ) Pt
已知该电池的电动势E = 1.228V , H2O(l )的标准摩尔
Δ
G(\ 1)=
rm
1 2
Δ
G(\ 2)
rm
E1\
=
E
\ 2
,
E 1
=
E2
ΔrG(m\ 1)=-RTlnK\a (1)
Δ
r
G(\ 2)=-RTlnK m
\ a
(
2)
K\a (1) = K\a (2)
三、由电动势E及其温度系数求反应的ΔrHm和ΔrSm
Δ
r Sm
=
zF
⎛ ⎜⎝
∂E ∂T
⎞ ⎟⎠ p
Δ
Hg(l )
电池反应:
(阳极, -) Cd(Hg) -2e- →Cd2++Hg(l)
(阴极, +) Hg2SO4(s)+2e-→2Hg(l)+SO42-
净反应:
Hg2SO4(s)+Cd(Hg)(a)+8/3H2O→CdSO4·8/3H2O(s)+3Hg(l)
或 Hg2SO4(s)+Cd(Hg)(a) →Cd2++ SO42- +3Hg(l)
物理化学——第9章-可逆电池
3
2
4
2
§ 9.2 电动势的测定
Cell
Cell
V 不可逆电池的端电压
电位 差计 可逆电池的电动势
§ 9.2 电动势的测定
对消法测定可逆 电池电动势 (P65)
§ 9.3 可逆电池的书写方法
规定: 负极|电解质溶液|正极 负极|负极溶液| |正极溶液|正极
1. “|” 表示相界面,有电势差存在。 2.“||”表示盐桥,使液接电势降到可以忽略不计。 3. 要注明温度,不注明就是298.15 K; 要注明物态;气体要注明压力;溶液要注明浓度。
p77
1/2H2 (p ) H (aH =1) e
规定:
θ
H / H2 g
=0
氢电极
用途
测其它电极的相对电势 方法:
标准氢电极 || 任意电极x ( =?)
p78
标准氢电极做负极 待测电极做正极
θ E电池 = +– - = +– H
/ H2 g
= +
2、可逆电极
第二类电极(the second-class electrode)
金属表面覆盖一层该金属的难溶盐,然 后再浸入含有该盐的相同阴离子溶液中组成 的电极。
甘汞电极(calomel electrode) 电极符号: Hg, Hg2Cl 2 (s) KCl (a)
电极反应: Hg2Cl2 2e 2Hg Cl
1和3可消除或忽略,E只与2和4有关
即: E只和2个电极电势有关 E电池 = 2 + 4
§ 9.6 电极电势和电池的电动势
(1) 标准氢电极
傅献彩《物理化学》(第5版)(下册)课后习题-可逆电池的电动势及其应用(圣才出品)
可逆的热效应为
十万种考研考证电子书、题库视频学习平台
。
(3)若在相同温度压力下,热化学方程式的热效应为
。
7.一个可逆电动势为 1.70 V 的原电池,在恒温槽中恒温至 293 K。当此电池短路时
(即直接发生化学反应,不作电功),相当于有 1000℃的电荷量通过。假定电池中发生的反
T
T
T
所以 S (总) = S (槽) + S (电池) = − Qp + Qp +Wf = Wf = 10001.70 = 5.8J gK−1。
TT
T
293
如果分别求算恒温槽和电池的熵变,还需要知道电池反应的焓变值,或者与电池反应相
同的化学反应的等压热效应。
8.分别写出下列电池的电极反应、电池反应,列出电动势 E 的计算公式,并计算电池 的标准电动势 设活度因子均为 1,气体为理想气体。所需的标准电极电势从电极电势表中 查阅。
(9) Pb(s)| PbO(s)|OH − (aq)| HgO(s)| Hg (l )
( ) ( ) ( ) ( ) (10) Pt | Sn4+ aSn4+ ,Sn2+ aSn2+ ||Tl3+ aTl3+ ,Tl+ aTl+ | Pt
3.从饱和 Weston 电池的电动势与温度的关系式,试求在 298.15 K,当电池可逆地产 生 2 mol 电子的电荷量时,电池反应的△rGm,△rHm 和△rSm。已知该关系式为
应与可逆放电时的反应相同,试求以此电池和恒温槽都看作系统时总的熵变。如果要分别求
算恒温槽和电池的熵变,还,则热效应 Q=
,恒温槽热量得失为-Qp,
故有
大学物理化学第09章 可逆电池电动势及其应用(1)
B、E1>E2
C、E1=E2
D、不能确定
6. 已知电池
(1) Cu|Cu2+(a2)||Cu2+(a1)|Cu
E1
(2) Pt|Cu2+(a2),Cu+(a’)||Cu2+(a1),Cu+(a’) |Pt E2=(
)
A、E1=E2/2
B、E1=2E2
C、E1=E2 D、E1E2
7. 有电池反应
在 25℃,a=0.1 时的电动势 E= 1.135V
a=0.01 时的电动势 E=
V
-2-
)
A、铁粉,镉粉皆会溶解;
B、铁粉,镉粉皆不会溶解;
C、铁粉溶解,镉粉不溶;
D、镉粉溶解,铁粉不溶。
10.298K,要使下列电池成为自发电池,Na(Hg)(a1)|Na+(aq)|Na(Hg)(a2)则必须使两个活度满足
()
A、a1=a2
B、a1> a2
C、a1< a2
D、可取任意值
-1-
11. 298K,已知θ(Fe3+/Fe2+)=0.771V, θ(Sn4+/Sn2+)=0.150V, 则反应
D、无法判断
14.某电池反应为 2Hg l + O2 + 2H2O l = 2Hg2+ + 4OH−,当电池反应达平衡时,电池的 E
()
A、>0
B、 E = Eθ
C、<0
D、=0
15.一个充满电的蓄电池以 1.7V 的输出电压放电,然后以 2.3V 的电压充电使其恢复原来状态,
则充放电的全过程中,以电池为体系,则 W 和 Q 的符号分别为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章可逆电池本章用化学热力学得观点讨论电极反应得可逆行为.原电池就是将化学能转变为电能得装置,两个电极与电解质溶液就是电池最重要得组成部分。
电极电势就是本章主要概念之一,它就是相对于标准氢电极而言得电势,就是一种相对值,即把一个电极与标准氢电极组成一个已消除了液接电势得原电池,其电动势就就是给定电极得标准电极电势.对于一个可逆化学电池,电极两极间得电势差称电池得电动势,可用电池反应得能斯特方程计算.因为电池电动势与热力学量之间密切相关,所以本章内容就是围绕电动势而展开。
一、基本内容(一) =-zFE式中为电池反应得摩尔吉布斯自由能变;z就是电池反应得电子得物质得量;E 为电池得电动势。
此式运用于等温等压得可逆过程,所以E为可逆电池得电动势。
此式表明,在可逆电池中,化学反应得化学能()全部转变成了电能zFE。
该式将化学反应得性质与电池得性质联系起来,就是电化学得基本公式之一。
若参与电池反应得所有物质均处于各自得标准态,则上式成为=-zFE$其中E$称为电池得标准电动势,对于指定得电池,E$只就是温度得函数.(二)电池反应得能斯特公式若电池反应为aA+bB=gG+hHE=E$—㏑此式表明,电池得电动势取决于参加反应得各物质得状态,它对如何改变电池电动势具有指导得意义,计算时首先要正确写出电池反应式。
(三)电极反应得能斯特公式若电极反应为aA+bB+ze-=gG+hHE=E —㏑式中E与E 分别为该电极得电极电势与标准电极电势。
此式表明,一个电极得电势取决于参与电极还原得各物质得状态。
计算得关键就是要正确写出电极上得还原反应.(四)E=,E =式中E与E$分别为可逆电池得电动势与标准电动势;()与()分别为正极与负极得电极电势(标准电极电势).(五)标准电动势E$与标准平衡常数K$得关系(六)电池反应得熵变就是与电池电动势得温度系数关系(七)电池反应得焓变与电池电动势E与电池电动势得温度系数得关系(八)可逆电池得反应热效应QR与电池电动势得温度系数得关系(九) 液接电势E1得计算公式E1=㏑[(a±)负/(a±)正]式中z+,z-代表正、负离子得价数,t+与t—分别代表在液-液界面处正、负离子得迁移数,一般认为就是两溶液中迁移数得平均值,即t+=1/2(t+,负+ t+,正)t-=1/2(t-,负+t-,正)(十)膜电势E m计算公式式中E m就是离子B得膜电势;zB就是离子B得价数;aB,左与a B,右分别为膜左右两侧离子B得活度。
此式表明,Em取决于透过性离子在两侧溶液中得活度差异,活度差异越大,︱E m︱越大。
二、重点与难点1、电化学主要研究电能与化学能之间得相互转化及转化过程中得有关规律。
必须将电池表示式与电池反应“互译”,即将化学反应与电池反应相关联,尤其就是将已知化学反应,设计成电池表示式,读者往往难以入手,这里除了熟悉几类典型得电极反应外,还需善于分析反应中有关元素在反应前后氧化态有无变化。
2、可逆电池热力学.可逆电池必须满足两个条件:一就是电极反应可逆,另一就是充电放电能量可逆。
电池电动势就是组成电池得各相界面上能产生电势差得代数与,用热力学可推导出电池电动势得能斯特方程,它表明电动势与物质得本性有关外,还与温度与离子得活度有关。
电池电动势与热力学函数得关系就是必须掌握得重点内容之一。
3、电极电势得定义,参比电极,指示电极(玻璃电极、离子选择电极、化学修饰电极)得构造与作用,电极电势与温度与活度得关系等,尤其就是对标准氢电极更要深入了解。
4、电动势测定得主要应用。
判断电池反应方向、测定溶液得pH值,求难溶盐得活度积,测定电解质离子得平均活度系数,电势-pH图及生物电化学等。
这里涉及得计算较多,需熟练运用有关概念与基础知识.5、各类电池,尤其就是新型高能电池应有所了解。
三、习题得主要类型1、书写各类电极反应及由其组成得电池反应,由化学反应书写出其对应得电池电池反应得书写应注意(1)负极写在左边,起氧化作用;正极写在右边,起还原作用;(2)“|"表示相界面,有电势差存在;(3)“||”表示盐桥,使液接电势降到可以忽略不计;(4)要注明温度,不注明就就是298、15 K;要注明物态,气体要注明压力;溶液要注明浓度;(5)气体电极与氧化还原电极要写出导电得惰性电极,通常就是铂电极.在由化学反应书写出其对应得电池时,要注意:左侧得负极发生氧化反应,右侧得正极发生还原反应,(例9-1、例9-2、例9—3、例9—4)2、应用Nernst方程计算电池得电动势与电极电势,应用电动势与温度系数计算电化学反应得热力学函数(△rGm、△r H m、△rSm、Q R)(例9-5、例9-6、例9—9、例9—19)3、应用Nernst方程计算电池反应得平衡常数(1)根据公式:,其中得计算就是这类问题得关键,根据公式(例9-7、例9—15、例9-18)(2)根据Nernst方程E=E -㏑,求得E ,由zFE =RT㏑K ,得到平衡常数K$(例9-8、例9-9、例9-18、例9-20,例9-28)4、应用Nernst方程计算电池反应得pH值(例9-8、例9-9、例9—18、例9—20,例9-28)5、正负离子迁移数得计算:正负离子迁移数就是正负离子迁移电量得与通过溶液得总电量之比,所以迁移数得计算就就是电量得衡算.可以根据液接电势E1=㏑[(a±)/(a±)正]来计算正负离子迁移数(例9—23、例9—24、例9-25)负四、精选题及解答例9-1写出下列中各电极上得反应与电池反应(1)Pt,H2(p H2)︱HCl (a)︱Cl2(p Cl2),Pt(2)Ag(s)+AgI(s)︱I—(a I-)‖Cl-(a Cl-)︱AgCl(s)+Ag(s)(3)Pb(s)+PbSO4(s)︱()‖Cu2+(a Cu2+)︱Cu(s)(4)Na(Hg)(a)︱Na+(a Na+)‖OH—(aOH-)︱HgO(s)+Hg(l)→2H+﹢2e—解(1)负极H2正极Cl2﹢2e—→2Cl-电池反应H2(p H2)﹢Cl2(pCl2)→2HCl(a)(2)负极Ag﹢I-→AgI﹢e—正极AgCl﹢e-→Ag﹢Cl-电池反应AgCl(s)﹢I—(a I-)→AgI(s)﹢Cl-(aCl-)(3)负极Pb﹢→PbSO4﹢2e—正极Cu2+﹢2e-→Cu电池反应Pb(s)﹢Cu2+(aCu2+)﹢()→PbSO4(s)﹢Cu(s)(4)负极2Na(Hg)→2Na+﹢2e-正极HgO﹢H2O﹢2e—→Hg﹢2OH-电池反应2Na(Hg)(a)﹢HgO(s)﹢H2O(l)→2Na+(aNa+)﹢Hg(l)﹢2OH-(aOH—)例9-2将下列化学反应设计成电池,并求出电池得标准电动势:(1)H2(g)+1/2O2(g)===H2O(l)(2)Zn(s)+Ag2O(s)+H2O(l)===2Ag(s)+Zn(OH)2(s)(3)Mg(s)+1/2O2(g)+H2O(l)===Mg(OH)2(s)解:(1)(Pt)H2(p )∣OH-(aOH-=1)∣O2(p$)(Pt)复核负极H(p )+2OH-—2e—→2H2O2正极1/2O2(p )+H2O+2e-→2OH—电池反应H2(p )+1/2O2(p )===H2O(l)E =={0、401—(-0、828)}V=1、229V(2)Zn(s)︱Zn(OH)2(s)︱OH-(a OH—=1)∣Ag2O(s),Ag(s)复核负极Zn+2OH—-2e-→Zn(OH)2正极Ag2O+H2O+2e-→2OH-+Ag电池反应Zn(s)+Ag2O(s)+H2O(l)===2Ag(s)+Zn(OH)(s)2E$=={0、344—(-1、245)}V=1、589V(3)Mg(s),Mg(OH)2(s)︱OH—(aOH-=1)∣O2(p$)(Pt)复核负极Mg+2OH—-2e-→Mg(OH)2正极H2O+1/2O2(p )+2e-→2OH—电池反应Mg(s)+1/2O2(p$)+H2O(l)=== Mg(OH)2(s)E =={0、401-(-2、690)}V=3、091V例9-3根据标准电极电势及能斯特方程,计算下列电极得电极电势,以及将第(1)组与第(2)组电极分别组成电池后得电动势,并写出电池反应。
(1)Pt(s)︱Fe2+(a=1),Fe3+(a=0、1)Ag(s)︱AgCl(s)︱Cl-(a=0、001)(2)Zn(s)︱Zn(OH)2(s)︱OH—(a=2)Hg(l)︱HgO(s)︱OH-(a=2)解(1)={0、771-0、0592lg}V=0、712V={0、222-0、0592lg0、001}V=0、400V组成得电池为Ag (s)︱Ag Cl (s )︱Cl -(a =0、001)‖Fe 2+(a =1),F e3+(a =0、1)︱Pt(s )电池反应:Ag +F e3+(a =0、1)+Cl —(a=0、001)==Fe2+(a =1、0)+A gCl (s);E=={0、712-0、400}V=0、312V(2)V V a FRT E E OH Zn OH Zn Zn OH Zn 263.1}2lg 0592.0245.1{ln 22/)(/)(22-=--=-=-θ; V V a FRT E E OH Hg HgO Hg HgO 0806.0}2lg 0592.00984.0{ln 22//=-=-=-θ 组成得电池为Zn(s)︱Zn(OH )2(s )︱OH -(a=2)︱HgO(s )︱Hg (l) 电池反应为 :Zn (s)+HgO(s)+H2O(l)=Zn(OH)2(s)+Hg (l )E=={0、0806-(-1、263)}V=1、3436V例9-4 试根据下列电极反应得(电极)值Fe 2+(a=1)+2e —→Fe (s),=-0、440VFe 3+(a =1)+ e-→Fe 2+(a=1),=0、771V计算电极反应F e3+(a =1)+3e -→Fe(s )得得值。
解: F e2+(a =1)+2e -→Fe (s )F e3+(a =1)+e _→Fe 2+(a =1)(1)+(2)得:Fe 3+(a =1)+3e _→F e(s )例9-5 298、15K时,电池Cd(s)︱CdCl 2·2、5H 2O(饱与溶液)︱Ag Cl (s)︱Ag (s)得电动势为0、6753V ,温度系数为—6、5×10—4V·K—1,试计算此温度时电极反应得、、、值。
解:电池反应为Cd (s)+2AgCl(s )+H 2O==2Ag(s)+C dCl 2 H 2O(s )kJ/m ol 3.130kJ/m ol }6753.0964852{-=⨯⨯-=-=∆zFE G m rkJ/mol 1255.0kJ/mol )}105.6(964852{)(4-=⨯-⨯⨯=∂∂=∆-p m r TE zF S ={-130、3—0、1255×298}=-167、7k J/mol={298(-0、1255)}=—37、40k J/mol例9-6 下列电池Pt (s )∣H 2(p1)∣H 2SO 4(m )∣H2(p 2)∣Pt (s),假定H 2遵从得状态方程为: pVm =RT+a p,其中:a=0、0148dm 3·mol -1,且与温度、压力无关,当H 2得压力p 1=2026、5kPa ,p 2=101、325kPa 时;(1)计算以上电池在298、15K 时得电动势;(2)当电池可逆放电时,就是吸热还就是放热?为什么?解:(1)负极 H2(p1) →2H ++2e —正极 2H ++2e—→H2(p 2)电池反应:H 2(p 1) ===H 2(p 2)-zFE==,V m =-zFE=={[8、314)]ln[(2026、5)/(101、325103)]+[0、0148(2026、5}V=0、0385V(2)>0,所以,该电池可逆放电时吸热。