【量子物理学】量子力学基础

合集下载

第十六章量子力学基础

第十六章量子力学基础

第⼗六章量⼦⼒学基础第⼗六章量⼦⼒学基础⼀、基本要求1、了解波函数的概念及其统计意义,理解微观粒⼦的波动性2、了解⼀维定态的薛定谔⽅程及其波函数解⼀般必须满⾜的条件,以及量⼦⼒学中⽤薛定谔⽅程处理⼀维⽆限深势阱、⼀维谐振⼦等微观物理问题的⽅法。

3、了解量⼦⼒学对氢原⼦问题处理的基本⽅法,理解描述氢原⼦量⼦态的三个量⼦数(m l n ,,)的函义和能级公式。

了解核外电⼦概率分布的函数形式和意义。

⼆、基本内容本章重点:建⽴量⼦物理的基本概念,了解微观粒⼦运动的基本特征、波函数的概念及其统计解释、⼀维定态的薛定谔⽅程及其应⽤。

本章难点:波函数及其核外电⼦概率分布的意义。

(⼀)波函数及其统计意义:微观粒⼦的运动状态称为量⼦态,是⽤波函数),(t r来描述的,这个波函数所反映的微观粒⼦波动性,就是德布罗意波。

(量⼦⼒学的基本假设之⼀)玻恩指出:德布罗意波或波函数),(t r不代表实际物理量的波动,⽽是描述粒⼦在空间的概率分布的概率波。

量⼦⼒学中描述微观粒⼦的波函数本⾝是没有直接物理意义的, 具有直接物理意义的是波函数的模的平⽅,它代表了粒⼦出现的概率。

微观粒⼦的概率波的波函数是:),,,(),(t z y x t r概率密度:波函数模的平⽅2|),(|t r 代表时刻t ,在r 处附近空间单位体积中粒⼦出现的⼏率。

因此2|),(|t r也被称为概率密度。

即某⼀时刻出现在某点附近在体积元dV 中的粒⼦的概率为:或d t r 2|),(| 波函数必须满⾜标准化条件:单值、连续、有限。

波函数必须满⾜归⼀化条件:zy x t z y x d d d ),,,(2),,,(),,,(),,,(t z y x t z y x t z y x 1d )()(Vt r t r ,,(⼆)薛定谔⽅程: 1、含时薛定谔⽅程:量⼦⼒学中微观粒⼦的状态⽤波函数来描述,决定粒⼦状态变化的⽅程是薛定谔⽅程。

⼀般形式的薛定谔⽅程,也称含时薛定谔⽅程,即:式中是粒⼦的质量,)(r U时,为定态薛定谔⽅程:其特解为:概率密度分布为:(三)⼀维势阱和势垒问题: 1、⼀维⽆限深⽅势阱:对于⼀势阱有维⽆限深⽅ U(x)定态薛定谔⽅程为:令x薛定谔⽅程的解为:其中 ,,A k 都是常量,( ,A 为积分常量),其中 ,A 分别⽤归⼀化条件和边界条件确定。

量子力学基础知识

量子力学基础知识

量子力学基础知识量子力学是一门研究微观世界的物理学科,它揭示了微观粒子的性质和行为,与经典力学有着本质的区别。

本文将介绍量子力学的基础知识,包括波粒二象性、不确定性原理、量子态和测量等重要概念。

1. 波粒二象性量子力学的起源可以追溯到20世纪初,当时物理学家们发现光既可以表现出波动性,又可以表现出粒子性。

这一观察结果引发了对物质微粒也具有波粒二象性的思考。

根据波粒二象性,微观粒子既可以被视为粒子,也可以被视为波动。

例如,电子和光子既可以像粒子一样在空间中传播,又可以像波动一样干涉和衍射。

2. 不确定性原理不确定性原理是量子力学的核心概念之一,由德国物理学家海森堡提出。

它指出,在测量一个粒子的位置和动量时,这两个物理量的精确测量是不可能的。

简而言之,我们无法同时准确地知道粒子的位置和动量。

这意味着测量的结果是随机的,存在一定的误差。

3. 量子态量子力学中,量子态描述了一个系统的所有信息。

量子态可以用波函数表示,波函数是描述粒子在空间中分布和运动的数学函数。

根据波函数的模的平方,我们可以得到一个粒子出现在空间中某个位置的概率。

量子态还包括诸如自旋、能量等其他信息。

4. 测量问题在量子力学中,测量是一个重要的概念。

测量会导致量子态的塌缩,即系统从一个可能的量子态跃迁到一个确定的量子态。

然而,测量结果是随机的,我们只能得到一定的概率性结果。

这与经典物理学中的确定性测量有所不同。

5. 薛定谔方程薛定谔方程是量子力学的基本方程,由奥地利物理学家薛定谔提出。

它描述了量子体系的演化规律,可以用于求解系统的量子态和能量。

薛定谔方程是量子力学的数学基础,可以解释波粒二象性、不确定性原理和量子态等现象。

总结:量子力学是一门奇特而又挑战性的学科,它已经对人类的科学认知产生了深远的影响。

本文简要介绍了量子力学的基础知识,包括波粒二象性、不确定性原理、量子态和测量等重要概念。

了解和理解这些基础知识对于进一步深入学习量子力学以及应用量子技术具有重要意义。

量子力学基础

量子力学基础

量子力学基础
量子力学是描述微观粒子行为的物理学理论。

它基于几个重要的基
本概念:
1. 粒子的波粒二象性:根据量子力学,微观粒子(如电子、光子等)既具有波动特性也具有粒子特性。

这意味着粒子的运动和行为可以通
过波动的方式来描述。

2. 不确定性原理:由于波粒二象性,确定粒子的位置和动量同时存
在的精确值是不可能的。

不确定性原理表明,我们无法同时准确测量
粒子的位置和动量,只能得到它们的概率分布。

3. 波函数:波函数是描述量子系统状态的数学函数。

它包含了粒子
的所有可能位置和动量的信息。

根据波函数,可以得出粒子的概率分布。

4. 算符和观测量:在量子力学中,物理量(如位置、动量、能量等)被表示为算符,而不是直接的数值。

物理系统的状态和性质可以通过
算符的作用来描述和测量。

5. 薛定谔方程:薛定谔方程是量子力学的基本方程,描述了量子系
统的时间演化。

它通过波函数的时间导数和能量算符之间的关系来表示。

量子力学的基础原理提供了一种独特而全面的方式来理解微观世界
的行为。

它已经在许多领域获得了成功应用,如原子物理、核物理、
量子化学和量子计算等。

大学物理理论:量子力学基础

大学物理理论:量子力学基础

大学物理理论:量子力学基础1. 介绍量子力学是现代物理学的重要分支,它描述了微观粒子的行为和性质。

本文将介绍一些关于量子力学的基本概念和原理。

2. 原子结构和波粒二象性2.1 光电效应光电效应实验证明了光具有粒子性。

解释光电效应需要引入光量子(光子)概念,并讨论能量、动量和波长之间的关系。

2.2 德布罗意假设德布罗意假设认为微观粒子也具有波动性。

通过计算微观粒子的德布罗意波长,可以得出与经典物理不同的结果。

3. 波函数和不确定性原理3.1 波函数及其统计解释波函数描述了一个系统的状态,并包含了关于该状态各个可观测量的信息。

通过波函数,可以计算出一系列平均值,用来描述系统的特征。

3.2 不确定性原理不确定性原理指出,在某些情况下,无法同时准确地确定一个粒子的位置和动量。

这涉及到测量的本质和粒子与波的性质之间的关系。

4. 玻尔模型和量子力学4.1 玻尔模型玻尔模型是描述氢原子中电子运动的经典物理学模型。

它通过量子化角动量来解释氢原子光谱,并提供了首个对原子结构和能级分布的定性解释。

4.2 泡利不相容原理泡利不相容原理说明电子在同一能级上必须具有不同的状态。

这为填充多电子原子如何达到稳态提供了解释。

5. 薛定谔方程及其解析方法5.1 薛定谔方程薛定谔方程是量子力学中最基本的方程。

它描述了波函数随时间演化的规律,以及如何通过波函数求得可观测量的平均值。

5.2 解析方法介绍几种求解薛定谔方程的解析方法,如分离变量法、变换法等,并通过示例问题演示其使用过程和计算结果。

6. 哈密顿算符与算符方法6.1 哈密顿算符哈密顿算符是用于描述系统总能量的数量。

介绍哈密顿算符的概念和性质,并讨论如何通过其本征值和本征函数求解问题。

6.2 算符方法算符是量子力学中描述可观测量的数学工具,介绍常见的一些算符,如位置算符、动量算符等,并讨论它们之间的对易关系。

结论量子力学作为现代物理学的基石,为我们理解微观世界提供了全新的视角。

量子力学基础

量子力学基础

量子力学基础
1 量子力学
量子力学是20世纪初在物理学中提出的理论,它是研究微观物理
现象的科学理论。

它可以描述元子、原子和分子的一般特性,还可以
用于解释多种物质的晶体结构及其他物理性质。

它的基本概念是微观世界中的物理量不再遵循经典物理学。

量子
力学认为,物质的基本特性不再是经典物理学中的连续性和可压缩性,而是量子概念体现的离散性和不可分割性。

2 基本原理
量子力学的基本原理是基本物质粒子是和弦性,也就是物质具有
波和粒子双重性,不同物质之间及物质量之间都有联系,这种联系实
际上在量子力学中被形象描述为薛定谔方程。

此外,量子力学还涉及光子、原子、电子和晶体之间的相互作用,以及晶体结构的形成。

例如,量子理论可以用来解释晶体中的空间结构,特性的微观原因,以及晶体的光学性质,磁性,热力学性质等。

3 应用
量子力学存在了很长时间,但是真正开始发挥作用一直到20世纪
初才开始,因为它为研究微观物理现象提供了一种新的和不同的视角,甚至可以被用来解释一些在经典物理学无法解释的现象。

现在,量子力学的基本理论已经被广泛应用于化学、物理学、凝聚态物理学、核物理学和天体物理学。

量子力学的基本原理也被用于一些新的和先进的技术,比如超导电子学、量子计算机等。

物理化学-量子力学基础

物理化学-量子力学基础

04 量子力学的应用
量子计算
量子计算
量子计算机
利用量子力学原理进行计算,具有经典计 算无法比拟的优势,如加速某些算法、实 现更高级别的加密等。
利用量子比特作为计算基本单位,能够实 现并行计算,大大提高计算效率。
量子算法
量子纠错码
基于量子力学原理设计的算法,如Shor算 法、Grover算法等,能够解决经典计算机 无法有效解决的问题。
不确定性原理
总结词
指在量子力学中,无法同时精确测量某些对立的物理量,如位置和动量、时间和能量等。
详细描述
不确定性原理是量子力学中的重要原理之一,它表明微观粒子的某些物理量无法同时被精确测量。这是因为测量 一个物理量可能会对另一个物理量产生干扰,从而影响其测量精度。这一原理限制了人们获取微观粒子精确信息 的可能性。
量子态和叠加态
总结词
量子态是指微观粒子所处的状态,可以 用波函数来描述;叠加态是指一个量子 系统可以同时处于多个状态的叠加。
VS
详细描述
在量子力学中,微观粒子的状态由波函数 来描述。波函数是一个复数函数,其模方 的物理意义是粒子处于某个状态的概率幅 。当一个量子系统可以同时处于多个状态 时,这些状态被称为叠加态。叠加态是量 子力学中的基本概念之一,它解释了微观 粒子的一些奇特性质,如干涉和纠缠等。
利用量子力学原理设计的错误纠正码,能 够提高量子计算机的稳定性。
量子通信
01
02
03
04
量子密钥分发
利用量子力学原理实现密钥分 发,能够保证通信的安全性。
量子隐形传态
利用量子纠缠实现信息传输, 能够实现无损、无延迟的通信

量子雷达
利用量子力学原理实现探测, 能够探测到传统雷达无法探测

量子力学基础

量子力学基础

量子力学基础量子力学是现代物理学的基石之一,它描述了微观世界中粒子的行为和性质。

本文将介绍量子力学的基础知识,包括波粒二象性、波函数、测量和不确定性原理等内容。

一、波粒二象性量子力学的核心观念之一是波粒二象性,即物质既可以表现出粒子的离散性质,又可以表现出波的波动性质。

这一观念由德布罗意提出,他认为任何物体都具有波函数。

二、波函数与波动方程波函数是量子力学中描述微观粒子状态的数学函数。

它可以用来计算粒子的位置、动量和能量等物理量。

根据薛定谔方程,波函数满足定态和非定态的波动方程。

三、量子力学中的测量在量子力学中,测量是指对粒子某个物理量进行观测并得到相应的结果。

与经典物理学不同的是,量子物理学中的测量结果是随机的,只能得到概率分布。

四、不确定性原理不确定性原理是量子力学中的重要概念,由海森堡提出。

不确定性原理指出,在给定的时刻,不能同时准确测量一个粒子的位置和动量。

精确测量其中一个物理量,将会导致对另一个物理量的测量结果存在不确定性。

五、量子力学中的算符在量子力学中,算符是用来描述物理量的操作。

比如,位置算符、动量算符和能量算符等。

根据算符的性质,可以求得粒子的期望值和本征态等信息。

六、量子纠缠和超导量子纠缠是量子力学中的一个重要现象,它描述了两个或多个粒子之间的紧密联系。

超导是一种物质在低温条件下具有零电阻和完全抗磁的特性。

七、量子力学的应用量子力学在许多领域都有广泛的应用,尤其是在量子计算、量子通信和量子传感器等前沿科技领域。

量子力学的发展为人类带来了许多革命性的技术和突破。

八、总结量子力学作为现代物理学的重要理论基础,对我们理解微观世界具有重要意义。

本文介绍了量子力学的基础知识,包括波粒二象性、波函数、测量和不确定性原理等内容。

希望读者通过阅读本文,对量子力学有更深入的了解,并能进一步探索其在科学和技术中的应用前景。

第一章 量子力学基础

第一章 量子力学基础

1.1.3 氢原子光谱与轨道角动量量子化
1913年, Bohr提出一个新模型: 原子中的电子在确定的分 立轨道上运行时并不辐射能量; 只有在分立轨道之间跃迁时才有 不连续的能量辐射; 分立轨道由“轨道角动量量子化”条件确定:
m、v、r分别是电子的质量、线速度和轨道半径,n是一系列正 整数. 由此解释了氢原子的不连续线状光谱. 1922年, Bohr获诺 贝尔物理学奖.
假设 1
微观体系的状态可用一个状态函数或波函数Ψ(x, y, z, t) 描述, Ψ(x, y, z, t)决定了体系的全部可测物理量. 波函数应具有品优性, 包括单值性、连续性、平方可积性.
z 定态波函数 不含时间的波函数ψ(x,y,z)称为定态波函数。 (定态:概率密 度与能量不随时间改变的状态) z 波函数的具体表示形式 用量子力学处理微观体系时,要设法求出波函数的具体表示形 式。而波函数的具体表达式是由解Schrödinger方程得到的。 例如氢原子的1s态的波函数为: ψ 1s =
n=5 n=4 n=3 n=2
n=1
1.1.3 氢原子光谱与轨道角动量量子化
Bohr模型对于单电子原子在多方面应用得很有成效,也 能解释原子的稳定性. 但它竟不能解释 He 原子的光谱,更不 必说较复杂的原子;也不能计算谱线强度。 量子化条件是对的,半径有问题,角动量是错的; 仍属于经典力学,只是认为附加了一些量子化条件——称 为旧量子论
E = hv
λ= h / p
1.1.4 实物微粒的波粒二象性
1927年,戴维逊、革末用电子束单晶衍射法,G.P.汤姆逊用 多晶透射法证实了物质波的存在. 1929年, de Broglie获诺贝尔物 理学奖;1937年,戴维逊、革末、G.P.汤姆逊也获得诺贝尔奖.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子单缝衍射实验
电子通过单 缝,随机分布。 大量电子落在屏 幕上呈现有规律 的衍射强度分布。
电子单缝衍射实验
电子通过单缝, 随机分布。大量电 子落在屏幕上呈现 有规律的衍射强度 分布。
宏观物体如子弹,有波动性吗?
h
mv
h 6.62607551034 J s
宏观物体动量大,徳布罗意波长太小,无法观察波
普朗克(德) 1858-1947
1918年获诺贝尔物理学奖
爱因斯坦(德) 1879-1955
1921年获诺贝尔物理学奖
波尔(丹麦) 1885-1962
1922年获诺贝尔物理学奖
•1900~1926年是量子力学的酝酿时期,此时的量子 力学是半经典半量子的学说,称为旧量子论。
1929诺贝尔物理学奖
• L.V.德布罗意
E mc2 hv
v c, h
m0v
m0c2
h
——称徳布罗意假设
m m0
1
v2 c2
v c, h
m0v 注意:
光 v c
m0c2
h
实物
v
c v
与实物粒子相联系的波叫做徳布罗意波或物质波
实物的粒子性都易接受,波动性如何表现,有实验 验证吗?
二、戴维逊-革末实验(电子衍射)
单个光子—随机 大量光子—有规律
பைடு நூலகம்随机
I
光子落点几 率分布曲线
S h , I Nh N
t
St
光束——光子流
随机
I
单个光子—随机
光子落点几
大量光子—有规律 率分布曲线
实物粒子波动性同样解释:物质波是一种几率波
物质波在某时刻、空间某点的强度( A2 ) 实物
粒子在该点出现的几率。
单个粒子在空间出现的位置不确定,大量粒子呈现 统计规律。统计观点将实物粒子的波动性和粒子性紧密 相联。
单晶 X射线衍射 多晶
单晶的劳厄相 多晶的德拜相
晶体电子衍射图
单晶 1936年: 中子束衍射多晶
三、物质波的统计解释 经典:机械波、电磁波与粒子是完全不同的概念。
量子力学认为,实物粒子有波动性,粒子性与波动 性属于同一客体。如何理解?
量子力学用一种新的观点——统计观点对同一客体 既是波又是粒子给出了圆满解释。
• 电子波动性的理论 研究
L.V.de Broglie 1892 ——1987
整个世纪以来,在辐射理论上,比起 波动的研究方法来,是过于忽视了粒子 的研究方法;在实物理论上,是否发生 了相反的错误呢?是不是我们关于粒子 图象想得太多,而过分地忽略了波的图 象呢?
---德布罗意
海森堡(德) 1901-1976
直到1924年,法国徳布罗意提出实物粒子具有 波动性,新的微观理论——量子力学有了开端。1928 年,奥地利的薛定谔、德国海森伯在实物粒子波动性基 础上建立了量子力学理论体系,以后又得到迅速发展。 量子力学是建立在物质波基础上的描述微观粒子运动的 理论。量子力学的建立使人们对物质世界的认识带来了 革命性的变化。
第二章 量子力学基础
早期量子理论虽然能解释黑体辐射、光电效应、康 普顿效应、氢原子光谱等实验事实,但理论发展却遇到 了困难(仅限于解释那几个事实)。如果没有新的理论, 要对微观世界做深入研究已不太可能。玻尔理论只能解 释氢原子光谱,其它光谱不能解释。原因是,早期量子 理论没能完全摆脱经典物理框架,没有一套完整的理论 体系和方法。
E
pc
E0
p1 c
Ek2
2Ek E0
1 c
Ek2 2Ek m0c2
eU =Ek h
p
还有许多电子衍射实验证实电子波动性(电子单缝、 双缝衍射等实验),另外,中子、质子、原子波动性也 有实验验证。
汤姆生实验
电子双缝与多缝衍射
晶体电子衍射





••
•• •
••
• •
单晶—劳埃斑点
多晶粉末—德拜环
动性,粒子性为主。用经典理论(轨道)处理。
四、测不准关系(不确定关系)
经典:宏观物体波动性不明显,遵守牛顿决定性规
律,轨道描述物体运动位置,可以预知任一时刻物体的
位置与动量。
F
m
dv dt
=m
d 2r dt 2
r r (t) p mv(t),p(t)
微观粒子波动性明显。按波的统计解释,粒子的 位置和动量不确定(随机),轨道描述失效。以下用电 子单缝衍射为例粗略说明这种不确定性。
以往,只注意光的波动性,而没有注意其粒子性, 以至于黑体辐射、光电效应等不能解释。
相反,以往对实物粒子只强调它的粒子性,而 忽视了其波动性,以至于除氢原子外的复杂原子光 谱(氢原子光谱的一些现象也不能完全解释)及一 些更复杂的微观问题不能解释。
由此,徳布罗意首先提出了实物粒子的波动性。
实物粒子 p mv h
1927年,美国戴维逊
和革末用实验证实,电子 d
象x射线一样能产生晶体 衍射。而且满足布拉格方
程:
ACB
2d sin k
k 1, 2,3,
h h 12.2A I
mv 2meU U
~U
0 5 10 15 20 25 U
考虑电子被电压加速的相对论效应:
E2 E02 ( pc)2 (Ek E0 )2 E02 ( pc)2
1932年获诺贝尔物理学奖
薛定谔(奥地利)
1887~1961
1933年获诺贝尔物理学奖
狄拉克(英) 1902~1984
1933年获诺贝尔物理学奖
•1926年,海森堡和薛定谔从不同出发点建立 了
量子力学。
•1928年,狄拉克统一相对论和量子论的成就。
2-1 实物粒子的波动性
一、徳布罗意假设
徳布罗意在爱因斯坦光的波粒二象性的启发下,认 为自然界在许多方面有对称性,宇宙是由实物粒子和 光构成,实物粒子也应具有波粒二象性。
首先,看光的波粒二象性理解。光的衍射强度分布 已经用电磁波理论解释,也可以用光子概念和统计观点 解释:
光子是一个个集中的粒子,有能量、动量、质量。 光子通过狭缝落在屏上哪一点是随机的,大量光子落在 屏上表现出规律性。所以,光波强度( )决A2定于光子 到达屏上各点的几率,光强分布是光子堆积曲线或落点 的几率分布曲线。光波是一种几率波。
第二章 量子力学基础
早期量子理论虽然能解释黑体辐射、光电效应、康 普顿效应、氢原子光谱等实验事实,但理论发展却遇到 了困难(仅限于解释那几个事实)。如果没有新的理论, 要对微观世界做深入研究已不太可能。玻尔理论只能解 释氢原子光谱,其它光谱不能解释。原因是,早期量子 理论没能完全摆脱经典物理框架,没有一套完整的理论 体系和方法。
相关文档
最新文档