3晶体的电光效应与电光调制_实验报告

合集下载

电光调制实验实验报告

电光调制实验实验报告

电光调制实验实验报告【实验目的】1、掌握晶体电光调制的原理和实验方法2、学会利用实验装置测量晶体的半波电压,计算晶体的电光系数3、观察晶体电光效应引起的晶体会聚偏振光的干涉现象【实验仪器】铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器【实验内容及步骤】一、调整光路系统1、调节三角导轨底角螺丝,使其稳定于调节台上。

在导轨上放置好半导体光源部分滑块,将小孔光栏置于导轨上,在整个导轨上拉动滑块,近场远场都保证整个光路基本处于一条直线,即使光束通过小孔。

放上起偏振器,使其表面与激光束垂直,且使光束在元件中心穿过。

再放上检偏器,使其表面也与激光束垂直,转动检偏器,使其与起偏器正交,即,使检偏器的主截面与起偏器的主截面垂直,这时光点消失,即所谓的消光状态。

2、将铌酸锂晶体置于导轨上,调节晶体使其x轴在铅直方向,使其通光表面垂直于激光束(这时晶体的光轴与入射方向平行,呈正入射),这时观察晶体前后表面查看光束是否在晶体中心,若没有,则精细调节晶体的二维调整架,保证使光束都通过晶体,且从晶体出来的反射像与半导体的出射光束重合。

3、拿掉四分之一波片,在晶体盒前端插入毛玻璃片,检偏器后放上像屏。

光强调到最大,此时晶体偏压为零。

这时可观察到晶体的单轴锥光干涉图,即一个清楚的暗字线,它将整个光场分成均匀的四瓣,如果不均匀可调节晶体上的调整架。

如图四所示4、旋转起偏器和检偏器,使其两个相互平行,此时所出现的单轴锥光图与偏振片垂直时是互补的。

如图五所示图四图五6、晶体加上偏压时呈现双轴锥光干涉图,说明单轴晶体在电场作用下变成双轴晶体,即电致双折射。

如图六所示7、改变晶体所加偏压极性,锥光图旋转90度。

如图七所示图六图七8 只改变偏压大小时,干涉图形不旋转,只是双曲线分开的距离发生变化。

这一现象说明,外加电场只改变感应主轴方向的主折射率的大小、折射率椭球旋转的角度和电场大小无关。

二、依据晶体的透过率曲线(即T-V曲线),选择工作点。

电光调制实验报告(1)

电光调制实验报告(1)

光电工程学院2013 / 2014学年第 2 学期实验报告课程名称:光电子基础实验实验名称:电光调制实验班级学号 1213032809 学生姓名丁毅指导教师孙晓芸日期:2014年 5 月07 日电光调制实验【实验目的】1、掌握晶体电光调制的原理和实验方法;2、学会用实验装置测量晶体的半波电压,绘制晶体特性曲线,计算电光晶体的消光比和透射率。

【实验仪器及装置】电光调制实验仪(半导体激光器、起偏器、电光晶体、检偏器、光电接收组件等)、示波器。

实验系统由光路与电路两大单元组成,如图3.1所示:图3.1 电光调制实验系统结构一、光路系统由激光管(L)、起偏器(P)、电光晶体(LN)、检偏器(A)与光电接收组件(R)以及附加的减光器(P1)和λ/4波片(P2)等组装在精密光具座上,组成电光调制器的光路系统。

注:•本系统仅提供半导体激光管(包括电源)作为光源,如使用氦氖激光管或其他激光源时,需另加与其配套的电源。

•激光强度可由半导体激光器后背的电位器加以调节,故本系统未提供减光器(P1)。

•本系统未提供λ/4波片(P2)即可进行实验,如有必要可自行配置。

二、电路系统除光电转换接收部件外,其余包括激光电源、晶体偏置高压电源、交流调制信号发生、偏压与光电流指示表等电路单元均组装在同一主控单元之中。

图3.2 电路主控单元前面板图3.2为电路单元的仪器面板图,其中各控制部件的作用如下:•电源开关用于控制主电源,接通时开关指示灯亮,同时对半导体激光器供电。

•晶体偏压开关用于控制电光晶体的直流电场。

(仅在打开电源开关后有效)•偏压调节旋钮调节直流偏置电压,用以改变晶体外加直流电场的大小。

•偏压极性开关改变晶体的直流电场极性。

•偏压指示数字显示晶体的直流偏置电压。

•指示方式开关用于保持光强与偏压指示值,以便于读数。

•调制加载开关用于对电光晶体施加内部的交流调制信号。

(内置1KHz的正弦波)•外调输入插座用于对电光晶体施加外接的调制信号的插座。

晶体的电光效应实验报告完整版

晶体的电光效应实验报告完整版

晶体的电光效应介质因电场作用而引起折射率变化的现象称为电光效应,介质折射率和电场的关系可表示为:+++=20bE aE n n (1)式中n 0是没有外加电场(E =0)时的折射率,a 和b 是常数,其中电场一次项引起的变化称为线性电光效应,由Pokels 于1893年发现,故也称为Pokels 效应;由电场的二次项引起的变化称为二次电光效应,由Kerr 在1875年发现,也称Kerr 效应,在无对称中心晶体中,一次效应比二次效应显著得多,所以通常讨论线性效应。

尽管电场引起折射率的变化很小,但可用干涉等方法精确地显示和测定,而且它有很短的响应时间,所以利用电光效应制成的电光器件在激光通信、激光测距、激光显示、高速摄影、信息处理等许多方面具有广泛的应用。

[实验目的]研究铌酸锂晶体的横向电光效应,观察锥光干涉图样,测量半波电压;学习电光调制的原理和实验方法,掌握调试技能;了解利用电光调制模拟音频光通信的一种实验方法;[实验原理]1. 晶体的电光效应 按光的电磁理论,光在介质中传播的速度为210)(−==µεn c c ,ε为介电系数,是对称的二阶张量,即ji ij εε=,由此建立的D 和E 的关系为:j j i i E D ε= (3,2,1,=j i ) (2)即: 333232131332322212323132121111E E E D E E E D E E E D εεεεεεεεε++=++=++=在各向同性的介质中,εεεε===332211,D 和E 成简单的线性关系,光在这类介质中以某一确定速度传播;但在各向异性的介质中,一般情况下各方向的折射率却不再相同,所以各偏振态的光传播速度也不同,将呈现双折射现象。

如果光在晶体中沿某方向传播时,各个方向的偏振光折射率都相等,则该方向称为晶体的光轴。

若晶体只含有一个这样的方向,则称为单轴晶体。

通常用折射率椭球来描述折射率与光的传播方向、振动方向的关系。

晶体的电光效应实验

晶体的电光效应实验

当两端面电压变化时,透射光强变化。
制作光开关
P1
a b
+
P2
-

2
0
nr U
3 o 63
I o I i sin 2
2
透射光强正比于端电压的余弦函数
在0.5Uλ /2处(Q点),透射光强近似
与端电压成线性关系。
若以Q点为偏置点,可将电压信号转为波 形相似的光强信号,实现线性电光调制。
10/25/2018
Changsha University
Applied Physics, Electronic Engineering 8
实验内容
4. 感性认识1/4波片对静态工作点的影响和作用 ① 在起偏器与LN晶体间放入1/4波片。分别将静态工作电压置于倍频 失真点、接收信号波形失真最小、接收信号波形幅度最大点(参 考上一步骤的参数),旋转λ/4波片,观察接收波形的变化情况, 体会1/4波片对静态工作点的影响和作用。 5. 感性认识光通信中的调制、传输、解调过程 ① 音频信号的调制与传输。将音频信号接入音频插座,状态开关置 于音频状态。观察示波器上的波形,打开后面的喇叭开关,监听 音频调制与传输效果。
10/25/2018
Changsha University
Applied Physics, Electronic Engineering 9
实验目的
• 研究LN晶体(LiNbO3,铌酸锂)的一次电光效应特性, 了解电场对晶体的作用机理。 • 掌握电光调制的工作原理及光路调整方法。 • 了解LN晶体横向电光效应在光通信中的应用,并通过实 验对光通信中的调制、传输、解调过程有一个感性认识。
10/25/2018

晶体电光调制实验报告数据处理

晶体电光调制实验报告数据处理

实验一电光调制一、实验目的:1.了解电光调制的工作原理及相关特性;2.掌握电光晶体性能参数的测量方法;二、实验原理简介:某些光学介质受到外电场作用时,它的折射率将随着外电场变化,介电系数和折射率都与方向有关,在光学性质上变为各向异性,这就是电光效应。

电光效应有两种,一种是折射率的变化量与外电场强度的一次方成比例,称为泡克耳斯(Pockels)效应;另一种是折射率的变化量与外电场强度的二次方成比例,称为克尔(Kerr)效应。

利用克尔效应制成的调制器,称为克尔盒,其中的光学介质为具有电光效应的液体有机化合物。

利用泡克耳斯效应制成的调制器,称为泡克耳斯盒,其中的光学介质为非中心对称的压电晶体。

泡克耳斯盒又有纵向调制器和横向调制器两种,图1是几种电光调制器的基本结构形式。

图1:几种电光调制器的基本结构形式a) 克尔盒 b) 纵调的泡克耳斯盒 c) 横调的泡克耳斯盒当不给克尔盒加电压时,盒中的介质是透明的,各向同性的非偏振光经过P后变为振动方向平行P光轴的平面偏振光。

通过克尔盒时不改变振动方向。

到达Q时,因光的振动方向垂直于Q光轴而被阻挡(P、Q分别为起偏器和检偏器,安装时,它们的光轴彼此垂直。

),所以Q没有光输出;给克尔盒加以电压时,盒中的介质则因有外电场的作用而具有单轴晶体的光学性质,光轴的方向平行于电场。

这时,通过它的平面偏振光则改变其振动方向。

所以,经过起偏器P产生的平面偏振光,通过克尔盒后,振动方向就不再与Q光轴垂直,而是在Q光轴方向上有光振动的分量,所以,此时Q就有光输出了。

Q的光输出强弱,与盒中的介质性质、几何尺寸、外加电压大小等因素有关。

对于结构已确定的克尔盒来说,如果外加电压是周期性变化的,则Q的光输出必然也是周期性变化的。

由此即实现了对光的调制。

泡克耳斯盒里所装的是具有泡克耳斯效应的电光晶体,它的自然状态就有单轴晶体的光学性质,安装时,使晶体的光轴平行于入射光线。

因此,纵向调制的泡克耳斯盒,电场平行于光轴,横向调制的泡克耳斯盒,电场垂直于光轴。

晶体电光调制实验

晶体电光调制实验

晶体电光调制实验【实验目的】1. 掌握晶体电光调制的原理和实验方法。

2. 学会用简单的实验装置测量晶体半波电压、电光常数的实验方法。

3. 观察电光效应所引起的晶体光学特性的变化和会聚偏振光的干涉现象。

【实验仪器】晶体电光调制电源、铌酸锂(LiNbO 3)电光晶体、He-Ne 激光器及可调电源、可旋转偏振片、格兰棱镜、光电接收器、有源音响【实验原理】1.一次电光效应和晶体的折射率椭球当给晶体或液体加上电场后,该晶体或液体的折射率发生变化,这种现象成为电光效应。

电光效应在工程技术和科学研究中有许多重要应用,它有很短的响应时间(可以跟上频率为1010Hz 的电场变化),可以在高速摄影中作快门或在光速测量中作光束斩波器等。

在激光出现以后,电光效应的研究和应用得到迅速的发展,电光器件被广泛应用在激光通讯、激光测距、激光显示和光学数据处理等方面。

光在各向异性晶体中传播时,因光的传播方向不同或者是电矢量的振动方向不同,光的折射率也不同。

在主轴坐标中,折射率椭球及其方程为1232222212=++n z n y n x (1)式中n1、n2、n3为椭球三个主轴方向上的折射率,称为主折射率。

当晶体加上电场后,折射率椭球的形状、大小、方位都发生变化,椭球方程变成1222212213223233222222112=+++++n xy n xz n yz n z n y n x(2)晶体的一次电光效应分为纵向电光效应和横向电光效应两种。

纵向电光效应是加在晶体上的电场方向与光在晶体里传播的方向平行时产生的电光效应;横向电光效应是加在晶体上的电场方向与光在晶体里传播方向垂直时产生的电光效应,本实验研究铌酸锂晶体的一次电光效应。

铌酸锂晶体属于三角晶系,3m 晶类,主轴z 方向有一个三次旋转轴,光轴与z 轴重合,是单轴晶体,折射率椭球是旋转椭球,其表达式为1222022=++e n z n y x (3)式中n0和ne 分别为晶体的寻常光和非常光的折射率。

电光调制实实验讲义

电光调制实实验讲义

电光调制实验实验讲义一、实验背景电光效应在工程技术和科学研究中有许多重要应用。

尤其是激光出现以后,电光效应的研究和应用得到了迅速发展,电光器件被广泛应用在激光通信、激光测距、激光显示和光学数据处理等方面。

晶体电光调制实验可以模拟电光效应在激光通信中的应用,验证激光通信传输速度快,抗干扰能力强,保密性好等优点。

通过该实验可以加深对偏振光干涉、双折射、非线性光学等知识的理解,培养学生的动手能力,提高学生的工程意识。

实验系统结构简单,易于操作,实验效果理想。

二、实验目的1. 观察电光效应引起的晶体光学性质的变化(单轴晶体、双轴晶体的偏振干涉图)。

2. 观察直流偏压对输出特性的影响,记录数据并绘制输出特性曲线。

3 观察铌酸锂晶体交流调制输出特性。

4. 模拟光通信。

三、实验仪器图1 实验仪器实物图(双踪示波器自备) 1.半导体激光器及四维可调支架 2.起偏器 3.铌酸锂晶体 4.检偏器(及1/4波片) 5.光屏 6.导轨 7.电光调制电源箱 8.接受放大器四、实验原理晶体分各向同性晶体与各向异性晶体。

其中各向异性晶体会发生双折射,而各向同性晶体只会发生普通折射。

光束入射到各向异性的晶体,分解为o 光和e 光。

如果光束沿着光轴的方向传播不会发生双折射现象。

这里光轴并非指一条直线,而是一个特殊的方向。

晶体中o 光与光轴构成的平面叫o 光主平面,e 光与光轴构成的平面叫e 光主平面。

o 光振动方向垂直于o 光主平面,e 光的振动方向平行于e 光主截面。

一般情况下,o 光主平面与e 光主平面不重合,但是理论与实践均表明,当入射线在晶体主平面时o 光主平面与e 光主平面重合。

实用中一般均取入射线在晶体主截面内的情况。

各向异性晶体中o 光与e 光的传播速度一般不同。

速度e o v v >的晶体称为正晶体,e o v v <的晶体称为负晶体。

铌酸锂晶体是各向异性负晶体。

由于双折射现象,当入射光不沿光轴方向入射时,产生的o 光与e 光对应不同的折射率o n 与e n 。

晶体的电光效应-基础物理研究性实验报告

晶体的电光效应-基础物理研究性实验报告

【基础物理实验研究性实验报告】晶体的电光效应目录一、摘要 (3)Abstract (3)二、实验原理 (4)2.1电光晶体和泡克耳斯效应 (4)2.2电光调制原理 (5)三、仪器介绍 (8)四、实验内容 (8)4.1调节光路 (8)4.2电光调制器T-V工作曲线的测量 (8)4.3动态法观察调制性能 (8)五、数据处理 (9)5.1研究LN单轴晶体的干涉 (9)5.2电光调制器T-V工作曲线的测量 (10)5.3动态法观察调制性能 (11)5.4测量值与标准值比较 (11)5.5四分之一波片改变工作点的实验 (12)六、实验改进......... . (12)6.1实验装置存在的问题 (12)6.2改进方案... . (13)6.3实验改进后光路的调整 (13)七、实验思考题. (14)八、感想与总结 (14)参考文献 (15)一、摘要部分摘要:本研究性实验报告以“晶体的电光效应”为研究对象,针对实验的原理、仪器、步骤进行了简要地介绍,对实验的数据进行了适当的处理,报告针对实验装置存在的问题提出了对实验装置的改进,还提供了具体的光路调整方法,使光路的调整变得简单准确易调,提高了测量准确性。

关键词:电光效应、电光调制、锥光干涉、半波电压、倍频失真Abstract:This report to "crystal electro-optic effect" as the research object, introduces briefly the experimental principle, apparatus, procedure, the experimental data are properly,report and propose the improvement of the experimental device for theexperimental device of the existing problems, the optical path adjustment methodsare also provided, the light path adjustment become simple and accurate and easyto adjust, improve the measurement accuracy.Keywords: electro-optic effect, electro-optic modulation, horoscopic interference, Half-wave voltage, harmonic distortion二、实验原理2.1 电光晶体和泡克耳斯效应晶体在外电场作用下折射率会发生变化,这种现象称为电光效应[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体的电光效应与光电调制
实验目的:
1) 研究铌酸锂晶体的横向电光效应,观察锥光干涉图样,测量半波电压; 2) 学习电光调制的原理和试验方法,掌握调试技能; 3) 了解利用电光调制模拟音频通信的一种实验方法。

实验仪器:
1) 晶体电光调制电源 2) 调制器 3) 接收放大器
实验原理简述:
某些晶体在外加电场的作用下,其折射率将随着外加电场的变化而变化,这种现象称为光电效应。

晶体外加电场后,如果折射率变化与外加电场的一次方成正比,则称为一次电光效应,如果折射率变化与外加电场的二次方成正比,则称为二次电光效应。

晶体的一次光电效应分为纵向电光效应和横向电光效应 1、 电光调制原理 1) 横向光电调制
如图
入射光经过起偏器后变为振动方向平行于x 轴的线偏振光,他在晶体感应轴x ’,y’上的投影的振幅和相位均相等,分别设为
wt A e x cos 0'= wt A e y cos 0'=
用复振幅表示,将位于晶体表面(z=0)的光波表示为A E x =)0(' A E y =)0(' 所以入射光的强度为 22
'2
'2)0()0(A E E E E I y x i =+=•∝ 当光通过长为l 的电光晶体后,x’,y’两分量之间产生相位差 A l E x =)(' δi y Ae l E -=)('
通过检偏器出射的光,是这两个分量在y 轴上的投影之和
()
12
45cos )()('0-=
︒=-δ
δi i y y e
A e l E E
其对应的输出光强I t 可写为 ()()[]
2
sin 2*2200δ
A E E I y y t =•∝
由以上可知光强透过率为2sin 2δ==i t I I T 相位差的表达式 ()d
l
V
r n l n n
y x 223
0''
22λ
π
λ
π
δ=
-=
当相位差为π时 ⎪⎭
⎫ ⎝⎛=
l d r n V n 223
02λ
由以上各式可将透过率改写为 ()wt V V V V V
T m sin 2sin 2sin 02
2
+==π
π
π
π可以看出改变V0
或Vm ,输出特性将相应变化。

1) 改变直流电压对输出特性的影响
把V0=Vπ/2带入上式可得
()⎥⎦
⎤⎢⎣⎡
⎪⎪⎭⎫ ⎝⎛+=+==wt V V wt V V V V V
T m m sin sin 121sin 2sin 2sin 02
2
πππππ
π 做近似计算得⎥⎦
⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+≈
wt V V T m sin 121ππ
即T ∝Vmsinwt 时,调制器的输出波形和调制信号的波形频率相同,即线性调制
如果Vm >Vπ,不满足小信号调制的要求,所以不能近似计算,此时展开为贝塞尔函数,即输出的光束中除了包含交流信号的基波外,还有含有奇次谐波。

由于调制信号幅度比较大,奇次波不能忽略,这时,虽然工作点在线性区域,但输出波形依然会失真。

当V0=0或π;Vm 《Vπ时,将V0=0带入到上式得()⎪⎪⎭
⎫ ⎝⎛-≈wt V V T m
2cos 1812
ππ 即T ∝cos2wt ,可以看出输光是调制信号的二倍,即产生倍频失真。

当V0=Vπ,Vm 《Vπ时。

经过类似推到,可得()wt V V T m 2cos 18112-⎪⎪⎭
⎫ ⎝⎛-≈ππ 即依然看到的是倍频失真的波形。

2) 用λ/4波片来进行光学调制
由上面的分析可知,在电光调制中,直流电压V0的作用是使晶体在x’,y’两偏振方向的光之间产生固定的相位差,从而使正弦调制工作在光强调制曲线图上的不同点。

在实验中V0的作用可以用λ/4波片来实现,实验中在晶体与检偏器之间加入λ/4波片,调整λ/4波片的快慢轴方向使之与晶体的x ’,y’轴平行,转动波片,可以使电光晶体工作在不同的工作点上。

原始数据、 数据处理及误差计算:
1.研究LN 单轴晶体的干涉: (1)单轴锥光干涉图样:
调节好实验设备,当LN 晶体不加横向电压时,可以观察到如图现象,这是典型的汇聚偏振光穿过单轴晶体后形成的干涉图样。

(2)晶体双轴干涉图样: 打开晶体驱动电压,将状态开关打在直流状态,顺时针旋转电压调整旋钮,调整驱动电压,将会观察到图案由一个中心分裂为两个,这是典型的汇聚偏振光穿过双轴晶体后形成的干涉图样,它说明单轴晶体在电场的作用下变成了双轴晶体
2.动态法观察调制器性能: (1)实验现象: 当V 1=143V 时,出现第一次倍频失真:
当V 2=486V 时,信号波形失真最小,振幅最大(线性调制):
当V 3=832V 时,出现第二次倍频失真:
(2)调制法测定LN 晶体的半波电压:
第一次倍频失1电压V 3=832V 。


31832143689V V V V V V π=-=-=。

由3022()2d V n l
πλγ=
得:12
223
0() 6.41102d n V l πλγ-==⨯ 3.电光调制器T-V 工作曲线的测量:
(1)原始数据:
依据数据作出电光调制器P-V工作曲线:
(2)极值法测定LN晶体的半波电压:
从图中可以看到,V在100~150V时取最小值,在800~850V时取最大值。

分别在这两个区域内每隔5V
比较数据可以得出,极小值大致出现在
1110
V V
≈,极大值大致出现在
3805
V V
≈,由此可

31805110695
V V V V V V π
=-=-=
由3022()2d V n l
πλγ=
得:12223
0() 6.35102d
n V l πλγ-==⨯ 4.测量值与理论值比较:
算出理论值3022()649.22d
V V n l
πλγ=
=。

与理论值相比,调制法测量结果相对误差约6.1%,
极值法测量结果误差约7.1%,实验值与理论值符合较好。

其中,动态法比极值法更精确。

5.讨论实验中观察到的输出波形和畸变产生的原因: 根据理论计算,当V=0时,T 应当为极小值(T=0),然而从实验测量出的T-V 图中可以发现,当V=0时,T 不为零,且极小值也不出现在V=0处,对此我们可以归纳出以下几种可能原因:
(1)由于在调试前后两个偏振片过程中,难以保证其起偏方向完全垂直,这就导致了极小值点偏离V=0点。

(2)由于工艺上的原因,前后两个偏振片即使在完全垂直的情况下,也不可能完全消光,总会有光线透过,因此,极小值点之值大于零。

输出波形畸变产生的原因:
根据数学推导可得,光强透过率:2
0sin (sin )2m T V V t V π
π
ω=+
(1)当0/2V V π=时,工作点落在线性工作区的中部,将0/2V V π=代入得:
1
(1sin )sin 2m m V T t V t V π
πωω≈
+∝ 这时,调制器输出的波形和调制信号的频率相同,即线性调制。

(2)当00V =或V π,m
V V π时,同理可得cos2T t ω∝,这时输出光的频率是调制信号的
两倍,即产生“倍频”失真。

相关文档
最新文档