构件的强度与刚度讲解

合集下载

第4章结构构件的强度刚度稳定性

第4章结构构件的强度刚度稳定性
查P52表4-4
2、许用应力
查P12表2-2, 得:
查P45表3-11载荷组合B得:安全系数n=1.34
3、稳定性校核
由于 ,故只需按 计算整体稳定性
查P50表4-2截面属于b类,查P228附表4-2得
所以构件整体稳定性满足要求。
4.2
主要承受横向载荷的构件称为受弯构件,实腹式受弯构件简称梁,格构式受弯构件简称桁架。桁架将在后续介绍,本节仅介绍实腹受弯构件的强度、刚度及整体稳定性。
(4-2)
式中: —构件的计算长度,mm;
—许用长细比,《起重机设计规范》GB/T3811-2008规定结构构件容许长细比见表4-1;
—构件截面的最小回转半径,mm。
(4-3)
式中: —构件毛截面面积,mm2;
-构件截面惯性矩,mm4;
表4-1结构构件容许长细比
构件名称
受拉构件
受压构件
主要承载结构件
5
缀条
-缀条所在平面和x-x轴的夹角
注:1、斜腹杆与构件轴线间的倾角应保持在400~700范围内。
2、缀板组合构件的单肢长细比 不应大于40。
例题4-1
已知如图4-6所示工字形截面轴心压杆,翼缘:2-200×10 ,腹板:1-180×6,杆长 ,两端铰支,按载荷组合B求得构件轴心压力 ,钢材为Q235B钢,焊条为E43型,试验算构件强度、刚度及整体稳定性。
(2)
在起重机械结构中,理想构件是不存在的,构件或多或少存在初始缺陷。如:初变形(包括初弯曲和初扭曲)、初偏心(压力作用点与截面型心存在偏离的情况)等等。这些因素,都使轴心压杆在载荷一开始作用时就发生弯曲,不存在由直线平衡到曲线平衡的分歧点。实际轴心压杆的工作情况犹如小偏心受压构件,其临界力要比理想轴心压杆低(图4-4),当压力不断增加时,压杆的变形也不断增加,直至破坏。载荷和挠度的关系曲线,由稳定平衡的上升和不稳定平衡的下降段组成。在上升段OA,增加载荷才能使挠度加大,内外力处于平衡状态;而在下降阶段AB,由于截面上塑性的发展,挠度不断增加,为了保持内外力的平衡,必须减小载荷。因此,上升阶段是稳定的,下降阶段是不稳定的,上升和下降阶段的分界点A,就是压杆的临界点,所对应的载荷也是压杆稳定的极限承载力 (即压溃力)。

强度、刚度、稳定性

强度、刚度、稳定性

结构失效的三种模式:强度、刚度、稳定。

强度因为直观,最好理解。

强度问题通常表现为构件受力拉断/压溃了,定量描述就是某点应力大于了材料强度。

强度:材料抵抗永久(塑性)变形或断裂的能力;1.刚度问题表现为构件受力后变形大,定量描述就是变形大于变形允许值。

刚度与强度不同,构件没坏,只是变形大,实质上体现的更多是功能性要求。

刚度:材料抵抗弹性变形的能力刚度要求:在载荷作用下,构件即使有足够的强度,但若变形过大,仍不能正常工作。

2.稳定性要求一些受压力作用的细长杆,如千斤顶的螺杆、内燃机的挺杆等,应始终维持原有的直线平衡形态,保证不被压弯。

稳定性要求就是指构件应有足够的保持原有平衡形态的能力。

失稳并不是翻倒而是不能恢复原有稳定形状从建筑规范的解释就是高宽比,即高度和建筑横向跨度的比例,比如说砖墙同样的高度和长度,砖墙越厚,底部面积越大越不容易倒。

稳定性:结构维持其原有平衡状态的能力。

刚度是与变形有关,这个变形过程是渐进。

而稳定性是在强度和刚度都满足的情况下依然可能发生的现象,其变形过程是跳跃的。

稳定性:工程中有些构件具有足够的强度、刚度,却不一定能安全可靠地工作。

当F小于某一临界值F cr,撤去轴向力后,杆的轴线将恢复其原来的直线平衡形态(图b),则称原来的平衡状态的是稳定平衡。

当F增大到一定的临界值F cr,,撤去轴向力后,杆的轴线将保持弯曲的平衡形态,而不再恢复其原来的直线平衡形态(图c),则称原来的平衡状态的是不稳定平衡。

稳定的平衡状态和不稳定状态之间的分界点称为临界点,临界点对应的载荷称为临界荷载。

用Fp cr表示。

压杆从直线平衡状态转变为其他形式平衡状态的过程称为称为丧失稳定,简称失稳,也称屈曲,屈曲失效具有突发性,在设计时需要认真考虑。

建筑力学常见问题解答4杆件的强度、刚度和稳定性计算

建筑力学常见问题解答4杆件的强度、刚度和稳定性计算

建筑⼒学常见问题解答4杆件的强度、刚度和稳定性计算建筑⼒学常见问题解答4 杆件的强度、刚度和稳定性计算1.构件的承载能⼒,指的是什么?答:构件满⾜强度、刚度和稳定性要求的能⼒称为构件的承载能⼒。

(1)⾜够的强度。

即要求构件应具有⾜够的抵抗破坏的能⼒,在荷载作⽤下不致于发⽣破坏。

(2)⾜够的刚度。

即要求构件应具有⾜够的抵抗变形的能⼒,在荷载作⽤下不致于发⽣过⼤的变形⽽影响使⽤。

(3)⾜够的稳定性。

即要求构件应具有保持原有平衡状态的能⼒,在荷载作⽤下不致于突然丧失稳定。

2.什么是应⼒、正应⼒、切应⼒?应⼒的单位如何表⽰?答:内⼒在⼀点处的集度称为应⼒。

垂直于截⾯的应⼒分量称为正应⼒或法向应⼒,⽤σ表⽰;相切于截⾯的应⼒分量称切应⼒或切向应⼒,⽤τ表⽰。

应⼒的单位为Pa。

1 Pa=1 N/m2⼯程实际中应⼒数值较⼤,常⽤MPa或GPa作单位1 MPa=106Pa1 GPa=109Pa3.应⼒和内⼒的关系是什么?答:内⼒在⼀点处的集度称为应⼒。

4.应变和变形有什么不同?答:单位长度上的变形称为应变。

单位纵向长度上的变形称纵向线应变,简称线应变,以ε表⽰。

单位横向长度上的变形称横向线应变,以ε/表⽰横向应变。

5.什么是线应变?什么是横向应变?什么是泊松⽐?答:(1)线应变单位长度上的变形称纵向线应变,简称线应变,以ε表⽰。

对于轴⼒为常量的等截⾯直杆,其纵向变形在杆内分布均匀,故线应变为l l?=ε(4-2)拉伸时ε为正,压缩时ε为负。

线应变是⽆量纲(⽆单位)的量。

(2)横向应变拉(压)杆产⽣纵向变形时,横向也产⽣变形。

设杆件变形前的横向尺⼨为a,变形后为a1,则横向变形为aaa-=1横向应变ε/为aa=/ε(4-3)杆件伸长时,横向减⼩,ε/为负值;杆件压缩时,横向增⼤,ε/为正值。

因此,拉(压)杆的线应变ε与横向应变ε/的符号总是相反的。

(3)横向变形系数或泊松⽐试验证明,当杆件应⼒不超过某⼀限度时,横向应变ε/与线应变ε的绝对值之⽐为⼀常数。

力学分析中的强度和刚度详细解释

力学分析中的强度和刚度详细解释

力学分析中的强度和刚度详细解释
很多人对力学中强度和刚度的概念总是混淆,今天就来谈一下自己的理解。

书中说为了保证机械系统或者整个结构的正常工作,其中每个零部件或者构件都必须能够正常的工作。

工程构件安全设计的任务就是保证构件具有足够的强度、刚度及稳定性。

稳定性很好理解,受力作用下保持或者恢复原来平衡形式的能力。

例如承压的细杆突然弯曲,薄壁构件承重发生褶皱或者建筑物的立柱失稳导致坍塌,很好理解。

今天主要来讲一下对于刚度和强度的理解。

一、强度
定义:构件或者零部件在外力作用下,抵御破坏(断裂)或者显著变形的能力。

比如说张三把ipad当成了体重秤,站上去,ipad屏幕裂了,这就是强度不够。

比如武汉每年的夏天看海时许多大树枝被风吹断,这也是强度不够。

第1页共6页。

第6章 强度与刚度验算

第6章 强度与刚度验算

z 2 c2 c 3 2 1 f
式中: 1 -系数,当 与 c 同号或 c =0 时,取 1 =1.1,当 与 c 异号时,取 1 =1.2。 五、 刚度验算 梁的最大挠度应满足:
(6-9)
v [v ]
其中:v-梁的最大挠度; [v]-受弯构件的挠度限值;按表 6-4 采用。 表 6-4:受弯构件的挠度限值 序号 1 2 吊车梁 位置 楼盖或工作平台 构件名称 主梁 次梁 手动、单梁、悬挂吊车 轻级工作制和 起重量 Q<50t 中级工作制桥式吊车 重级工作制和 起重量 Q>50t 中级工作制桥式吊车 手动或电动葫芦的轨道梁 3 屋面檩条 无积灰的瓦楞铁、石棉瓦屋面 其他屋面
x , y -分别是截面在两个主平面内的截面塑性发展系数;按表 6-3 取。
偏心受力构件的刚度验算包括两方面:长细比验算与挠度验算
x lox / i x [ ] y loy / i y [ ]

v [v ]
3
越大,构件刚度越大,反之则刚度越小。
设计规范规定轴心受力构件的长细比应不超过规定的容许长细比[ ],这是因为长细比过大会使构件在使用 过程中容易由于自重发生挠曲,在动力荷载作用下容易产生振动,在运输和安装过程中容易产生弯曲。对轴心受 压构件而言,长细比过大还会使其承载能力降低过多,截面利用不充分。 验算构件的刚度时,应对两个主轴方向的长系比均进行计算:

式中:V-计算截面 y 轴主平面内的剪力; fv-钢材抗剪强度设计值; I-毛截面惯性矩; S-一半毛截面对中和轴的面积矩; 三、 局部压应力
VS fv Itw
(6-7)
c
2
F
tw lz

强度和刚度的概念与区别

强度和刚度的概念与区别

强度(strength)和刚度(stiffness)是材料力学性质的重要指标,用于描述材料的物理特性和行为。

虽然这两个术语经常用于描述材料的性能,但它们代表的是不同的概念和性质。

下面是对强度和刚度的概念和区别的相关参考内容。

1.强度的概念:强度是材料抵抗外部力和应力的能力,可以理解为材料的“坚固程度”。

在物理学中,强度通常通过该材料能够承受的最大应力来衡量。

强度可以分为以下几种类型:•抗拉强度(tensile strength):材料在拉伸过程中能够承受的最大拉应力。

•抗压强度(compressive strength):材料在受压过程中能够承受的最大压应力。

•抗扭强度(torsional strength):材料在受扭矩过程中能够承受的最大剪应力。

•抗剪强度(shear strength):材料在受剪切过程中能够承受的最大剪应力。

强度的单位通常是帕斯卡(Pascal)或其扩展单位。

2.刚度的概念:刚度是材料抵抗变形的能力,可以理解为材料的“硬度”。

刚度衡量了材料负载下的变形程度。

刚度取决于材料的弹性模量,即材料在受力时变形程度和应力之间的关系。

刚度通常表示为应变与应力之间的比率,即刚度=应力/应变。

刚度越高,材料在给定应力下的变形量越小。

刚度通常用于描述材料对力的响应速度。

高刚度材料(硬材料)通常具有快速的力学响应和较小的变形,而低刚度材料(软材料)通常具有较慢的力学响应和较大的变形。

3.强度和刚度的区别:强度和刚度代表了材料不同的力学性质,可以从以下几个方面进行比较:•概念:强度是描述材料抵抗外部力和应力的能力,而刚度是描述材料抵抗变形的能力。

•单位:强度通常使用帕斯卡或其扩展单位进行表示,而刚度表示为应变与应力之间的比率。

•影响因素:强度取决于材料的组成、晶体结构、材料处理方式等,而刚度取决于材料的弹性模量。

•应用:强度通常用于材料设计和工程应用中,以确保材料可以承受预期的外部载荷。

刚度通常用于设计精度要求高的系统,例如精密仪器和机械装置。

模量、强度、刚度的详细说明

模量、强度、刚度的详细说明

弹性(杨氏)模量、剪切模量、体积模量、强度、刚度“模量”可以理解为是一种标准量或指标。

材料的“模量”一般前面要加说明语,如弹性模量、压缩模量、剪切模量、截面模量等。

这些都是与变形有关的一种指标,单位为Pa也就是帕斯卡。

但是通常在工程的使用中,因各材料杨氏模量的量值都十分的大,所以常以百万帕斯卡(MPa)或十亿帕斯卡(GPa)作为其单位。

1、杨氏模量(Young's Modulus) ——E:杨氏模量就是弹性模量,这是材料力学里的一个概念。

对于线弹性材料有公式σ(正应力)=E·ε(正应变)成立,式中σ为正应力,ε为正应变,E为弹性模量,是与材料有关的常数,与材料本身的性质有关。

杨(ThomasYoung1773~1829)在材料力学方面,研究了剪形变,认为剪应力是一种弹性形变。

1807年,提出弹性模量的定义,为此后人称弹性模量为杨氏模量。

钢的杨氏模量大约为2×1011N/m2,铜的是1.1×1011 N/m2。

2、弹性模量(Elastic Modulus)——E:弹性模量E是指材料在弹性变形范围内(即在比例极限内),作用于材料上的纵向应力与纵向应变的比例常数,也常指材料所受应力(如拉伸、压缩、弯曲、扭曲、剪切等)与材料产生的相应应变之比。

弹性模量E在比例极限内,应力与材料相应的应变之比。

对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。

根据不同的受力情况,分别有相应的拉伸弹性模量modulus of elasticity for tension (杨氏模量)、剪切弹性模量shear modulus of elasticity (刚性模量)、体积弹性模量、压缩弹性模量等。

2.1、剪切模量G(Shear Modulus):剪切模量是指剪切应力与剪切应变之比。

剪切模数G=剪切弹性模量G=切变弹性模量G 。

结构构件的强度和刚度名词解释_概述及解释说明

结构构件的强度和刚度名词解释_概述及解释说明

结构构件的强度和刚度名词解释概述及解释说明1. 引言1.1 概述在结构工程领域中,强度和刚度是两个关键概念。

强度指材料或构件抵抗外力的能力,它衡量了材料或构件的承载能力以及其抵抗变形和破坏的能力。

而刚度则描述了材料或构件对外部加载产生的应变或位移响应的能力,也可以理解为材料或构件的刚性程度。

1.2 文章结构本文将对结构构件的强度与刚度进行详细阐述,并探讨它们之间的关系。

同时,我们还将介绍测试这些属性的方法以及在结构设计过程中考虑强度和刚度要求时需要注意的事项。

最后,我们将总结文章主要观点和结论。

1.3 目的本文旨在帮助读者更好地理解结构工程中强度和刚度这两个重要概念,并提供有关测试方法和设计要求方面的指导。

了解和运用这些知识对于合理地设计、评估和优化各种类型的建筑、桥梁、机械设备以及其他工程结构具有重要意义。

以上是文章“1. 引言”部分内容,详细阐述了本文的概述、结构和目的。

2. 结构构件的强度和刚度名词解释2.1 强度的定义与解释强度是指材料或构件抵抗外部力量造成破坏或变形的能力。

在结构工程中,强度通常指材料或结构承受极限荷载时的稳定性能。

对于不同类型的结构材料和构件,其强度有不同的评估标准和计算方法。

2.2 刚度的定义与解释刚度是指材料或构件在受力后抵抗变形或挠曲的能力。

刚度可以衡量材料或结构对应力响应的程度,即单位应变产生的单位应力。

动态刚度还可以描述结构在振动过程中所表现出来的特性。

2.3 强度和刚度之间的关系虽然强度和刚度是两个不同的概念,但它们之间存在密切联系。

一方面,在设计结构时,需要根据预期承受荷载选择合适的材料和尺寸来满足要求强度。

另一方面,合适的刚度设计对于确保结构在荷载作用下不会过分变形具有重要作用。

3. 强度与刚度测试方法为了评估结构构件的强度和刚度,需要进行相应的测试方法。

常用的测试方法包括压力试验、弯曲试验和拉伸试验。

通过这些试验可以获取材料或构件在不同类型载荷下的性能数据,从而评估其强度和刚度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Nanjing University of Science & Technology
强度与刚度
《机械设计基础》 —构件的强度与刚度
段齐骏 南京理工大学设计艺术系
@ 2005 Nanjing University of Science & Technology . School of Mechanic Engineering . Department of Design Art
@ 2005 Nanjing University of Science & Technology . School of Mechanic Engineering . Department of Design Art
Nanjing University of Science & Technology
杆件的基本变形形式
基本变形
工程实例
受力简图
拉伸 P
PP
P
压缩 剪切 P
P P
P
P
P
P P
扭转 M
MM
M
弯曲
M
M
G
Nanjing University of Science & Technology
2.3 拉伸与压缩
强度与刚度
2.3.1 拉伸、压缩的概念
在一对大小相等、方向相反、作用线与杆轴线重 合的外力作用下,构件所发生的伸长或缩短变形。
Nanjing University of Science & Technology
2.1 构件材料的要求与假设
强度与刚度
• 构件材料的相关要求
在任何外力(载荷)作用下,零件不允许发生破坏; 材料抵抗破坏的能力,称之为强度。 在任何外力(载荷)作用下,零件不可发生过大的变 形;材料抵抗变形的能力,称之为刚度。 在任何外力(载荷)作用下,零件应保持原有形式下 的平衡;材料保持原有平衡形式的能力,称之为 稳定性。
Nanjing University of Science & Technology
2.2 杆件的基本变形形式
强度与刚度
• 材料力学的研究对象—杆件
杆件是指一个方向的尺寸远大于另两个方向的尺 寸的构件。
典型的杆件有轴、连杆、梁。
杆件的与其长度方向垂直的截面称为横截面;横 截面形心的连线称为轴线。
@ 2005 Nanjing University of Science & Technology . School of Mechanic Engineering . Department of Design Art
Nanjing University of Science & Technology
2 构件的强度与刚度
强度与刚度
2.1 构件材料的要求与假设 2.2 构件的基本变形形式 2.3 拉伸与压缩 ★ 2.4 剪切与挤压 2.5 圆轴的扭转 2.6 梁的平面弯曲 2.7 组合变形的强度计算
@ 2005 Nanjing University of Science & Technology . School of Mechanic Engineering . Department of Design Art
2.3.4 材料在拉压时的力学性质
• 低碳钢的拉伸
强度与刚度
d
bc
e
a
L0
d
p s
b
L
0
构件拉伸的长度与原长之比为应变: L / L0
@ 2005 Nanjing University of Science & Technology . School of Mechanic Engineering . Department of Design Art
Nanjing University of Science & Technology
2.3.3 应力的概念
强度与刚度
工程上常用单位面积 上的内力大小来判断 构件的危险程度;即 有单位面积上的内力 称为应力。
N
A
N—横截面上的内力,单位为N(牛顿); A—横截面的面积,单位为m2;
—横截面上的正应力,单位为Pa,1Pa=1N/ m2
Nanjing University of Science & Technology
• 低碳钢的拉伸
强度与刚度
弹性阶段(ab)
tan E E
d
bc
e
E为材料的弹性模量。
a
p s
b
屈服阶段(bc)
强化阶段(cd)
缩颈阶段(de)
0
延伸率:
L L0 L0
100 %
@ 2005 Nanjing University of Science & Technology . School of Mechanic Engineering . Department of Design Art
2.3.2 内力与截面法
• 内力的概念
P
材料力学所指的内
力,是指在外力作用
下存在于构件内部
P
的各质点之间、构
件这一部分和另一
N
部分之间的相互C
P
N
+
x
@ 2005 Nanjing University of Science & Technology . School of Mechanic Engineering . Department of Design Art
2.1 构件材料的要求与假设
强度与刚度
• 构件材料的基本假设
均匀连续假设:假设变形体内部都是连续不断的 均匀的物质; 各向同性假设:假设变形体在各个方向上具有相 同的力学属性。
@ 2005 Nanjing University of Science & Technology . School of Mechanic Engineering . Department of Design Art
@ 2005 Nanjing University of Science & Technology . School of Mechanic Engineering . Department of Design Art
Nanjing University of Science & Technology
A
BA
B
C
G
C
@ 2005 Nanjing University of Science & Technology . School of Mechanic Engineering . Department of Design Art
Nanjing University of Science & Technology
相关文档
最新文档