人教版七年级下册数学511《相交线》教案
人教版七年级数学下册5.1.1《相交线》教案

1.分组讨论:学生们将分成若干小组,每组讨论一个与相交线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相交线的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相交线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
其次,注重培养学生的空间想象力。在解决实际问题时,我发现部分学生难以将题目中的信息与几何图形联系起来。为了改善这一点,我计划在今后的教学中,多设计一些空间想象力训练的环节,如让学生自己动手画图、制作模型等。
再次,加强小组合作学习的引导。在小组讨论和实验操作过程中,我发现有些学生参与度不高,依赖性强。针对这个问题,我将在今后的教学中加强对小组合作学习的引导,鼓励每个学生积极参与,培养他们的团队协作能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相交线的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对相交线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
1.理论介绍:首先,我们要了解相交线的基本概念。相交线是两条在平面内不平行且在某一点相遇的直线。它在几何学中有着重要的作用,可以帮助我们分析图形的性质和解决实际问题。
人教版数学七年级下册5-1-1 相交线 教案

5.1.1相交线教学设计课题 5.1.1 相交线单元第五单元学科初中数学年级七下学习目标1.了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.2.理解对顶角性质的推导过程,能使用该性质进行简单的计算.3.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力.4.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.重点了解两直线相交所构成的角,理解并掌握对顶角、邻补角的概念和性质.难点理解对顶角性质的推导过程,能使用该性质进行简单的计算.教学过程教学环节教师活动学生活动设计意图导入新课【观察思考】握紧剪刀的把手时,随着把手之间的角逐渐变小,剪刀刃之间的角是怎么变化的?分析:随着把手之间的角逐渐变小,剪刀刃之间的角也逐渐变小.【观察思考】如果把剪刀的构造抽象成一个几何图形,会是什么样的图形?请你在纸上画出来.分析:剪刀的构造可看作两条相交的直线,剪刀刃之间的角就是相交直线所成的角.【复习回顾】相交线的概念:如果两条直线只有一个公共点,那么我们就说这两条直线相交,它们的公共点叫做交点.观察并思考.挖掘和利用现实生活背景,让学生将理论知识与现实生活相联系.分析:如上图,AB、CD为两条直线,点O是直线AB与直线CD的交点,我们就可以说直线AB与直线CD相交.【教学建议】引导学生观察剪刀把手夹角与刀刃夹角之间的大小关系,为后续学习邻补角、对顶角做铺垫.讲授新课【合作探究】任意画两条相交的直线,形成几个角?这些角有什么位置关系?分析:任意两条相交的直线,形成4个角;这4个角有公共顶点.【观察思考】在两条相交的直线所形成的4个角中,∠1与∠2有怎样的位置关系?分析:∠1与∠2:①有一条公共边OC;②另一边互为反向延长线;③具有这种关系的两个角,互为邻补角.问题:你还能找出其它的邻补角吗?分析:∠2与∠3;∠3与∠4;∠4与∠1问题:∠1与∠2的度数有什么关系?分析:∠1+∠2=180o【观察思考】在两条相交的直线所形成的4个角中,∠1与∠3思考并回答小组交流合作,观察思考积极回答问题.让学生了解平面内两直线相交所成的4个角之间有怎样的特征.让学生经历合作探究的过程,通过观察、发现、归纳、概括得出邻补角和对顶角的概念;培养学生发现问题,解决问题和抽象概括能力.有怎样的位置关系?分析:∠1与∠3:①有一个公共顶点O;②∠1的两边分别是∠3的两边的反向延长线;③具有这种关系的两个角,互为对顶角.问题:你还能找出其它的对顶角吗?分析:∠2与∠4【合作探究】∠1与∠3的度数有什么关系?分析:∠1+∠2=180o∠2+∠3=180o∠1+∠2=∠2+∠3∠1=∠3总结:对顶角的性质:对顶角相等.【教学建议】引导学生小组合作,自主实践,教师巡回指导,随时观察学生完成情况并进行相应指导.熟悉并掌握对顶角相等.通过分析已知求证,利用平角的定义和等式的性质进行推导,培养学生逻辑推理力.【典型例题】如图,直线a、b相交,若∠1 = 40°,求∠2、∠3、∠4的度数.解:由邻补角的定义,∠1 = 40°可得∠2 = 180°-∠1= 180°-40°= 140°由对顶角相等,可得∠3 = ∠1 = 40°∠4 = ∠2 = 140°【教学建议】教师适当引导,学生自主完成.思考并积极回答.通过例题,规范学生对解题步骤的书写,让学生感受数学的严谨性.【随堂练习】1.如图,直线AB、CD、EF 两两相交,图中共有___对对顶角,___对邻补角.答案:6;12.2.下列各组角中,∠1与∠2是对顶角的为( )答案:D3. 如图,直线AB、CD相交于点O,OE是射线. 则:∠BOC的对顶角是________________,∠AOC的对顶角是________________,∠AOC的邻补角是________________,∠BOE的邻补角是________________.答案:∠AOD;∠BOD;∠BOC、∠AOD;∠AOE.4. 如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,求∠BOD,∠BOC的度数.解:因为OA平分∠EOC,∠EOC = 70°所以∠AOC = 35°由对顶角相等,得∠BOD =∠AOC = 35°自主完成练习进一步巩固本节课的内容. 了解学习效果,让学生经历运用知识解决问题的过程,给学生获得成功体验的空间.通过课堂练习巩固新知,加深对顶角、余角、补角的概念和性质的理解,并学会运用它们解决一些问题.由邻补角的定义,得∠BOC = 180°-∠AOC= 180°-35°= 145°【教学建议】教师给出练习,随时观察学生完成情况并相应指导,根据学生完成情况适当分析讲解.课堂小结以思维导图的形式呈现本节课所讲解的内容. 回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书1.邻补角:有一条公共边,另一边互为反向延长线的两个角,互为邻补角.邻补角互补.2.对顶角:(1)概念:有公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,这样的两个角,互为对顶角.(2)对顶角相等.。
人教版数学七年级下册5.1.1 相交线教案

课题:5.1.1相交线(第1课时)一、教学目标1.知道什么是邻补角,会在图形中识别邻补角.2.知道什么是对顶角,会在图形中识别对顶角.二、教学重点和难点1.重点:邻补角、对顶角的概念.2.难点:在图形中识别邻补角、对顶角.三、教学过程(一)创设情境,导入新课(师出示下图)师:(指第一个图)这个图画的是什么?生:两条直线相交.师:(指第二个图)这个图画的是什么?生:两条直线平行.师:(指图)两条直线在同一平面内有两种位置关系:相交或者平行.从今天起我们学习第五章相交线与平行线(板书:第五章相交线与平行线).我们先学习相交线.(擦掉平行线图,并板书课题:5.1.1相交线)(二)尝试指导,讲授新课师:(边讲边标上字母)直线AB、CD相交于点O,(指准图)这两条直线相交,形成了四个角,是哪四个角?生:∠AOC、∠AOD、∠BOD、∠BOC(师标上∠1、∠2、∠3、∠4,如下图).师:(指图)∠1、∠2、∠3、∠4之间有什么位置关系呢?(遮住∠3、∠4)我们首先来看∠1与∠2的位置关系.请大家认真观察,说说∠1与∠2有什么样的位置关系?生:……(多让几位同学说)师:(指准图)∠1与∠2有一条公共边OA,换句话说,∠1与∠2是相邻的(板书:相邻).师:∠1加∠2等于多少度?生:180°.师:∠1加∠2等于180°,说明∠1与∠2互为补角(板书:互为补角).师:(指图)像∠1、∠2这样既相邻又互为补角的两个角叫做邻补角.(板书:∠1与∠2是邻补角)邻补角说的是两个角相互的关系,(指图)∠1是∠2的邻补角,反过来说,∠2也是∠1的邻补角. 师:(揭开∠3与∠4)∠2还与哪个角是邻补角? 生:∠2与∠3是邻补角.(师板书:∠2与∠3是邻补角)师:为什么说∠2与∠3是邻补角呢? 生:……(多让几位同学说) 师:(指准图)∠2与∠3有公共边OD ,它们是相邻的,同时∠2与∠3互为补角,所以∠2与∠3是邻补角.师:图中还有哪两个角是邻补角?生:∠3与∠4是邻补角,∠1与∠4是邻补角.(师板书:∠3与∠4是邻补角,∠1与∠4是邻补角) (三)试探练习,回授调节1.判断正误:对的画“√”,错的画“×”.(1)如图,∠1与∠2是邻补角; ( ) (2)如图,∠1与∠2是邻补角; ( ) (3)如图,∠1与∠2是邻补角; ( )第(1)题图 第(2)题图 第(3)题图(4)两个角有一条公共边,这两个角一定是邻补角; ( ) (5)两个角互为补角,这两个角一定是邻补角;( )(6)两个角有一条公共边并且互为补角,这两个角一定是邻补角.( )2.如图,填空:(1)∠AOC 的邻补角是∠ , ∠BOC 的邻补角是∠ ;(2)∠AOD 邻补角是∠ , ∠BOD 的邻补角是∠ . 3.如图,填空:(1)∠1与∠ 是邻补角, ∠1又与∠ 是邻补角;(2)∠2与∠ 是邻补角,∠2又与∠ 是邻补角;(3)如果∠1=40°,那么∠2= °,∠4= °,∠3= °. (四)尝试指导,讲授新课121212DC OB A 4321师:(指准图)我们已经知道,∠1与∠2是邻补角,∠1与∠4也是邻补角,那么∠1与∠3是什么关系的角呢?∠1与∠3是对顶角(板书:∠1与∠3是对顶角).和邻补角一样,对顶角说的也是两个角相互之间的关系,(指图)∠1是∠3的对顶角,反过来说,∠3也是∠1的对顶角.师:请大家仔细观察∠1与∠3,你认为什么样的两个角才是对顶角呢? 生:……(多让几位同学发表看法) 师:(指准图)∠1与∠3是对顶角,从图中可以看出,首先,∠1与∠3是两条直线相交形成的(板书:两直线相交);第二,∠1与∠3是相对的两个角(板书:相对).像∠1与∠3这样由两直线相交形成且相对的两个角叫对顶角. 师:图中还有哪两个角是对顶角?生:∠2与∠4是对顶角.(师板书:∠2与∠4是对顶角) (五)试探练习,回授调节4.判断正误:对的画“√”,错的画“×”. (1)如图,∠1与∠2是对顶角; ( ) (2)如图,∠1与∠2是对顶角; ( ) (3)如图,∠1与∠2是对顶角; ( ) (4)如图,∠1与∠2是对顶角;( )第(1)题图 第(2)题图 第(3)题图 第(4)题图(5)有同一顶点并且相对的两个角是对顶角; ( )(6)由两直线相交形成并且相对的两个角是对顶角. ( )5.如图,填空:(1)∠AOB 与∠ 是对顶角; (2)∠COD 与∠ 是对顶角; (3)∠BOC 的对顶角是∠ ; (4)∠AOE 的对顶角是∠ . 6.如图,填空:(1)∠AOE 的对顶角是∠ , ∠AOE 的邻补角是∠ 、∠ ;(2)∠DOE 的对顶角是∠ ,∠DOE 的邻补角是∠ 、∠ . (六)归纳小结,布置作业师:本节课我们学习了邻补角和对顶角的概念.(指准图)像∠1与∠2这样既相邻又互补的两个角叫做邻补角,像∠1与∠3这样由两条直线相交形成并且相对 的两个角叫做对顶角.12121212F E O A B CD O A BCD E师:邻补角、对顶角说的都是两个角之间的关系.如果老师说∠1是邻补角,或者说∠1是对顶角,你觉得教师这样说对吗?为什么?生:……(多让几位同学发表看法)师:说到邻补角、对顶角指的一定是两个角是邻补角或对顶角,这就好比我们不能说扎西是兄弟,卓玛是姐妹,我们一定需要说清扎西与谁是兄弟,卓玛与谁是姐妹.兄弟、姐妹说的是两个人之间的关系,同样邻补角、对顶角说的是两个角之间的关系.(作业:P习题1.2.(1)(2))7。
人教版七年级下-5.1.1相交线教案

5.1.1 相交线教案【教学目标】知识与技能理解并掌握邻补角及对顶角的概念。
过程与方法1、通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和有条理表达能力。
2、在具体情境中了解邻补角,对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题。
情感、态度、价值观引导学生观察图形,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的信心。
【重点难点】重点对顶角的性质。
难点探索并理解对顶角的性质。
【教学设计】一、创设情境,导入新课教师出示一块布和一把剪刀,表演剪布过程。
问题:剪刀两个把手之间的角发生了什么变化?剪刀张开的口又怎么变化?教师展示剪布的过程。
学生认真观察。
教师应先提出问题,以免在剪布过程中分散学生的注意力,使学生没有注意观察应该观察的内容。
学生观察以后,回答提出的问题。
教师引导:如果将剪刀的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题。
设计意图:通过动手操作,激发学生兴趣,同时使学生感受生活中的数学现象。
通过教师的引导,使学生将剪刀抽象成两条直线,将实际问题转化为数学间题。
二、探究邻补角与对顶角的概念如图,教师提出问题:(1)两条直线相交,形成了几个角?(2)将这些角两两配对,共能组成几对角,各对角存在怎惩样的位置关系?根据这种位置关系将它们分类。
教师画两条租交的直线,提出问题。
学生分组讨论在具体图形中得出的两条相交线构成的四个角,根据图形进行分类,然后描述邻补角和对项角的特征。
在这一活动中教师应该关注:(1)学生能否从位置上对这些角进行分类。
(2)学生能否正确区分邻补角、对项角。
(3)学生能否主动参与、勇于探究和发言。
师生共回归纳得出邻补角与对项角的概念。
设计意图:通过对图形中角与角的位置关系的探究,经历从图形到文字到符号的转化过程,使学生加深对相交概念的理解,积累一些研究图形的经验和方法。
人教版七年级数学 下册 第五章 5.1.1 相交线 教案(表格式)

教学设计一、导入新课,明确目标1、导入:相交线在日常生活中经常见到,有着广泛应用,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备。
我们先研究直线相交的问题,从而引入本节课题。
2、出示学习目标,同学齐读,理解。
目标导学二:对顶角的性质问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?1.动手操作,推出性质已知,直线AB与CD相交于O点(如图),试猜想∠1、∠3的大小关系,并借助量角器或其他方式验证你的想法.答:∠1=∠3.思考:你能用说理的方法推出∠1=∠3吗?解:∵∠1与∠2互补,∠3与∠2互补(邻补角定义),∴∠l=∠3(同角的补角相等).或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).教师提醒:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.2.性质归纳:对顶角相等.目标导学三:与对顶角有关的探究问题我们知道:两直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对……(1)10条直线交于一点,对顶角有________对;(2)n(n≥2)条直线交于一点,对顶角有________对.解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.(2)利用(1)中规律得出答案即可.由(1)得n(n≥2)条直线交于一点,故答案为n(n-1).方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征.四、课堂总结今天我们共同探讨了相交线,知道两条直线相交,所组成的对顶角的性质及其简单应用,大家要加深理解和对概念的辨析。
内容及流程教师与学生活动备注检测目标1.如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2.如图(1),三条直线AB, CD,EF相交于一点O, ∠AOD的对顶角是_____,∠AOC的邻补角是_______,若∠AOC=50°,则∠BOD=______,∠COB=_______,∠AOE+∠DOB+∠COF=_____。
人教版初中数学七年级下册5.1.1《相交线》教案

《相交线》教案一、设计说明1.内容解析本节课的内容是在学习了直线、射线、线段、角的基础上,进一步研究两条直线的位置关系:相交.由于两条直线的位置关系与它们所成的角有直接的关系,所以我们首先要研究两条直线相交成有公共顶点的四个角的关系,即:对顶角与邻补角.为后面学习垂线、三线八角以及空间里的垂直关系打好基础.然后研究两条直线被第三条直线所截而形成的没有公共顶点的三角的关系,为研究平行线做好准备.对顶角相等的性质是证明角相等的一个重要的依据,并在以后的推理过程中有着广泛的应用.所以要求学生熟练掌握.同时,在教学过程中,要培养学生的识图能力和几何语言的表达能力,从而初步引入几何推理的格式,让学生知道推理要步步有据.2.三维目标(1)知识与技能:①理解邻补角与对顶角的概念.②掌握对顶角的性质.(2)过程与方法:①经历探究对顶角、邻补角的位置关系的过程,建立空间观念.②通过分析具体图形得到对顶角、邻补角的概念,发展学生的抽象概括能力.③通过小组学习等活动经历得出对顶角相等的过程,进一步提高学生应用已有知识解决数学问题的能力.(3)情感态度与价值观①通过对对顶角的探究,使学生初步认识数学与现实生活的密切联系.②通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.3、重点、难点重点:邻补角与对顶角的概念.对顶角性质与应用.难点:理解对顶角相等的性质的探索.4、课时安排:1课时二、教学过程设计(一)创设情景问题1:观察下图,一把张开的剪刀能联想出什么几何图形?说一说,剪刀剪开纸片的过程中有关角的变化?师生活动:让学生观察,把剪刀的构造想象成两条相交直线.在剪刀剪开纸片的过程中,把手和刀刃之间的夹角不断发生变化,但是这些角之间存在着不变的位置和数量关系.设计意图:通过生活中的情景抽象出几何图形,培养他们的空间观念,发展几何直觉.把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题。
5.1.1相交线教案2022-2023学年人教版七年级数学下册

5.1.1 相交线教案2022-2023 学年人教版七年级数学下册一、教学目标1.能够理解和区分平行线和相交线的概念。
2.能够通过观察几何图形中的线段,判断其关系是相交还是平行。
3.能够使用直尺和量角器绘制平行线和相交线。
二、教学重点1.平行线和相交线的概念和判定方法。
2.如何使用直尺和量角器绘制平行线和相交线。
三、教学内容1. 平行线和相交线的概念•平行线:在同一个平面内,永不相交的两条直线称为平行线。
•相交线:在同一个平面内,有一个且只有一个交点的两条直线称为相交线。
2. 平行线和相交线的判定方法•判定平行线的方法:两条直线的斜率相等且不相交。
•判定相交线的方法:两条直线的斜率不相等,或者相交。
3. 绘制平行线和相交线•绘制平行线:使用直尺,在给定直线上选择一点,然后保持直尺的方向不变,将直尺移动到其他点,并在新位置标出另一点,连接两点即可得到平行线。
•绘制相交线:使用量角器确定两条直线交叉的角度,然后使用直尺在交叉点位置绘制相交线。
四、教学步骤第一步:引入概念1.让学生观察和描述平行线和相交线的特征。
2.引导学生思考如何判断一对线段是平行线还是相交线。
第二步:讲解概念1.通过示意图和实例,解释平行线和相交线的定义和判定方法。
2.举例说明如何使用直尺和量角器进行线段的绘制。
第三步:练习演练1.给学生一些线段,让他们判断是平行线还是相交线,并用直线标记。
2.让学生互相交流并纠正错误,巩固概念和判定方法。
第四步:绘制实例1.给学生几个几何图形,要求他们使用直尺和量角器绘制出其中的平行线和相交线。
2.学生互相展示并讨论绘制的结果。
五、教学扩展1.在引入平行线和相交线的概念后,让学生自由观察周围的环境,寻找实际生活中的平行线和相交线的例子。
2.引导学生思考平行线和相交线的应用领域,如建筑设计、道路规划等。
六、教学评价1.给学生出一些练习题,测试他们对于平行线和相交线的判定能力。
2.观察学生在绘制实例时的表现,评价他们对于使用直尺和量角器的掌握程度。
人教版七年级数学下册教案 5-1-1 相交线

5.1.1相交线一、教学目标【知识与技能】1.借助两直线相交所形成的角初步理解邻补角、对顶角的概念.2.会根据邻补角、对顶角的性质去求一个角的度数.3.掌握邻补角与对顶角的性质,并能运用它们解决简单实际问题.【过程与方法】1.通过动手操作、推断、交流等活动,进一步发展空间观念,培养识图能力、推理能力和表达能力.2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题.【情感态度与价值观】引导学生对图形进行观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,树立学习的信心.二、课型新授课三、课时1课时四、教学重难点【教学重点】对顶角的性质【教学难点】理解对顶角相等的性质的探索.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-5)同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行钢索,桥的侧面有许多相交钢索组成的图案;围棋棋盘的纵线相互平行,横线相互平行,纵线和横线相交.这些都给我们以相交线、平行线的形象.在我们生活中,蕴涵着大量的相交线和平行线.那么两条直线相交形成哪些角?这些角又有什么特征?(二)探索新知1.出示课件7-12,探究邻补角与对顶角的定义教师问:如图,把两根木条用钉子钉在一起,转动其中一根木条,观察两根木条所形成的角的位置及大小关系.你能动手画出两条相交直线吗?学生答:能,作图如下:教师问:两条直线相交,形成的小于平角的角有几个,是哪几个?学生答:两条直线相交,形成的小于平角的角有四个 .分别是∠1,∠2,∠3,∠4.教师问:将这些角两两相配能得到几对角?教师依次展示学生答案:学生1答:∠1 和∠2.学生2答:∠2 和∠3.学生3答:∠3 和∠4.学生4答:∠4 和∠1.教师问:为何如此分类呢?学生答:有一条边在一条直线上,角的顶点相同.教师问:还有其他分类吗?学生答:分类如下:∠1 和∠3,∠2 和∠4.教师问:这样分的标准是什么?学生答:两边分别在一条直线上,有共同的顶点.总结点拨:(出示课件9)教师问:观察∠1和∠2的顶点和两边,有怎样的位置关系?师生一起解答:如图,∠1与∠2有一条公共边OC,它们的另一边互为反向延长线(∠1与∠2 互补),具有这种位置关系的两个角,互为邻补角.教师问:类比∠1和∠2,看∠1和∠3有怎样的位置关系?学生答:这两个角的两边都在同一条直线上,有相同的顶点.教师总结:如图,∠1与∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.总结点拨:(出示课件12)考点1:对顶角的判断下列各图中,∠1与∠2是对顶角的是()(出示课件13)师生共同讨论解答如下:解析:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.答案:D.出示课件14,学生自主练习后口答,教师订正.答案:D.2.出示课件15-17,探究对顶角、邻补角的性质教师问:在上学期我们已经知道互为补角的两个角的和为180°,因而互为邻补角的两个角的和为180°.如图所示,∠1 与∠3在数量上又有什么关系呢?学生答:猜想:∠1 =∠3.教师问:你能利用学过的有关知识来验证∠1与∠3的数量关系吗?学生答:∵∠1+∠2=180°,∠3+∠2=180°,∴∠1=∠3.教师问:∠1与∠3互为什么角?学生答:互为对顶角.教师问:由此你能猜想对顶角有什么性质?学生答:猜想:对顶角相等.教师问:你能证明你的猜想吗?学生先独立思考,师生共同讨论后解答如下:师生一起解答:已知:直线AB与CD相交于O点(如图),求证:∠1=∠3,∠2=∠4.证明:∵直线AB与CD相交于O点,∴∠1+∠2=180°∠2+∠3=180°,∴∠1=∠3.同理可得∠2=∠4.教师问:您能利用几何语言描述一下对顶角的性质吗?学生答:符号语言:∵直线AB与CD相交于O点,∴∠1=∠3,∠2=∠4.教师总结点拨:(出示课件18)两直线相交分类位置关系名称数量关系∠1 和∠2,∠2 和∠3,∠3 和∠4,∠4 和∠11.有公共顶点2.有一条公共边3.另一边互为反向延长线邻补角邻补角互补∠1 和∠3,∠2 和∠4.1.有公共顶点2.没有公共边对顶角对顶角相等3.两边互为反向延长线考点1:利用对顶角、邻补角的性质求角的度数如图,直线a、b相交,∠1=40°,求∠2、∠3、∠4的度数.(出示课件19)学生独立思考后,师生共同解答.学生1解:由邻补角的定义可知∠2=180°-∠1=180°-40°=140°;学生2解:由对顶角相等可得∠3=∠1=40°,∠4=∠2=140°.教师总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1.1相交线
人教版七年级数学下册
教材分析:“5.1.1相交线”一节,是人教版七年级下册第五章第一节的内容,本节内容是在小学已经掌握了两条直线相交的有关知识的基础上,进一步探究、学习邻补角、对顶角的有关定义、性质及应用。
它是本章中起到承前启后的作用。
教学目标
1、情感态度与价值观
(1)通过分组讨论,培养学生合作交流的意识和探索精神;
(2)通过对顶角、邻补角性质的研究,体会它们在解决实际问题中的作用,感受数学的严谨性以及数学结论的确定性.
2、知识与技能
(1)理解相交线、邻补角、对顶角的概念;
(2)理解对顶角相等的性质.
重点、难点
重点:邻补角、对顶角的概念,对顶角性质与应用.
难点:理解对顶角相等的性质.
【信息技术资源分析与准备】
白板课件、PPT课件
【教学时间】1课时
教学过程:
一、板书课题,揭示目标
教师在轻松欢快的音乐中演示第五章章首图片为主体的多媒体课件。
学生欣赏图片(多媒体投影汕头大桥的图片、围棋的棋盘),阅读其
中的文字。
师生共同总结:同学们,你们看这座宏伟的大桥,它的两端有很多斜拉的平行线,桥的侧面有许多相交线段组成的图案;围棋的纵线相互平行,横线相互平行,纵线和横线相交。
这些都给我们以相交线、平行线的形象。
在我们生活的中,蕴涵着大量的相交线和平行线。
那么两条直线相交形成哪些角?这些角又有什么特征?本节我们一起来
学习相交线所成的角及它们的关系。
教师板书:5.1.1相交线
二、指导自学
为了顺利达到本节课的学习目标,请看投影:
自学指导
认真看课本(P2-3练习前).
○1概括形成邻补角、对顶角概念
○2理解邻补角、对顶角的概念并会找出一个角的邻补角和对顶角;
如有疑问,可以小声问同学或举手问老师.
6分钟后,比谁能正确地做出检测题.
(此环节三言两语导入新课,出示目标,为下面学生自学、检测节约了时间。
利用白板播放课件,出示目标,课件的使用可以让学生能直观地明确目标,同时提高课堂效率
三、先学(15分钟)
1、教师巡视,督促学生认真紧张地自学
2、学生练习:检测题 P21 练习1
3、2分钟学生看投影背会概念:
邻补角、对顶角.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.(此环节利用白板投影课件,节省时间,同时让学生上来做题可利用白板笔书写在白板上,从而提高效率,更加直观,还可以保留痕迹,在课堂小结时重新呈现。
)
四、后教(10分钟)
1、自由更正
请同学们认真看堂上板演的内容,如果有错误或不同解法的请上来更正或补充。
2、讨论、归纳
(1)练习:
练习1、下列各图中∠1、∠2是对顶角吗?为什么?
通过三个不同类型图形的判断,来加深对对顶角概念的理解。
练习2、下列各图中∠1、∠2是邻补角吗?为什么?
通过三个不同类型图形的判断,来加深对邻补角概念的理解。
练习3、下列各图中∠1的对顶角是
∠1的邻补角是
一个角的对顶角有个,邻补角最多有个。
总结:一个角的对顶角有1个、邻补角最多有2个。
(2)对顶角性质
在图1中,∠1的邻补角是∠2和∠4,所以∠1与∠2互补,∠1与∠4互补,根据“同角的补角相等”,可以得出∠2=∠4,类似地有∠1=∠3. 教师演示对顶角性质:对顶角相等,及推理的过程。
1、强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确
定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.(此环节中的板书,直接利用白板呈现,可保留讲解痕迹,如所作图形等,方便小结、复习等再次使用。
)
五、拓展延伸
例题:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么
途径去求这些未知角的度数的,然后演示出规范的求解过程.
[说明:通过例题引导学生分析题目特征、探索解题思路,这是例题
教学的关键,以逐步培养学生形成良好的审题、解题习惯。
]
六、当堂检测
《基础训练》
七、课堂小结
本节课你有哪些收获?引导学生说出邻补角、对顶角的定义
(此环节学生回答后,可展示上课所用的白板课件,再现课堂学习中出现的问题,再次加深学生印象。
)
八、布置作业:课本第8页2(必做)
第35页2(选作)
九、教学反思:。