汽车ECU通讯新平台--FlexRay(V2.1)协议规范
FlexRay通信协议中文版

一、FlexRay介绍FlexRay通讯协议运用于可靠的车内网络中,是一种具备故障容错的高速汽车总线系统。
它已经成为同类产品的基准,将在未来很多年内,引导汽车电子产品控制结构的发展方向。
FlexRay协议标准中定义了同步和异步帧传输,同步传输中保证帧的延迟和抖动,异步传输中有优先次序,还有多时钟同步,错误检测与避免,编码解码,物理层的总线监控设备等。
1.1汽车网络通信协议综述汽车网络通信协议在保证整个系统正常运行方面起着非常重要的作用。
它可以帮助解决系统很多问题,如数据共享、可扩展性、诊断接口等。
目前,应用于汽车领域的网络标准除了FlexRay还有很多,如CAN、LIN、J1850及MOST等。
CAN总线全称为“控制器局域网总线(Controller Area Network)”,是德国博世公司从80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议。
它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。
CAN通信速率可达1Mbit/s,每帧的数据字节数为8个。
LIN(Local Interconnect Network,控制器局域网)总线是由LIN 协会发布的一种新型低成本串行通信总线,也称为经济型CAN网络。
LIN的目标是为现有汽车网络(例如CAN 总线)提供辅助功能,因此LIN总线是一种辅助的总线网络,在不需要CAN 总线的带宽和多功能的场合比如智能传感器和制动装置之间的通信使用LIN总线可大大节省成本。
J1850总线是1994年由汽车工程师协会颁布的标准,之后普及运用于美国车厂的汽车中。
不过,虽然美国各厂多采用J1850标准,但是各厂的实际做法又不相同,因此相对其他标准来说比较混乱。
由于J1850总线通信速率低,只适合用于车身控制系统及诊断系统,目前在美国逐步被CAN 所取代。
MOST(Media Oriented System Transport,面向媒体的系统传输)总线是采用光纤并用于智能交通及多媒体的网络协议,能够支持24.8Mbps的数据速率,与以前的铜缆相比具有减轻重量和减小电磁干扰的优势。
FlexRay通信协议中文版

一、FlexRay介绍FlexRay通讯协议运用于可靠的车内网络中,是一种具备故障容错的高速汽车总线系统。
它已经成为同类产品的基准,将在未来很多年内,引导汽车电子产品控制结构的发展方向。
FlexRay协议标准中定义了同步和异步帧传输,同步传输中保证帧的延迟和抖动,异步传输中有优先次序,还有多时钟同步,错误检测与避免,编码解码,物理层的总线监控设备等。
1.1汽车网络通信协议综述汽车网络通信协议在保证整个系统正常运行方面起着非常重要的作用。
它可以帮助解决系统很多问题,如数据共享、可扩展性、诊断接口等。
目前,应用于汽车领域的网络标准除了FlexRay还有很多,如CAN、LIN、J1850及MOST等。
CAN总线全称为“控制器局域网总线(Controller Area Network)”,是德国博世公司从80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议。
它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。
CAN通信速率可达1Mbit/s,每帧的数据字节数为8个。
LIN(Local Interconnect Network,控制器局域网)总线是由LIN 协会发布的一种新型低成本串行通信总线,也称为经济型CAN网络。
LIN的目标是为现有汽车网络(例如CAN 总线)提供辅助功能,因此LIN总线是一种辅助的总线网络,在不需要CAN 总线的带宽和多功能的场合比如智能传感器和制动装置之间的通信使用LIN总线可大大节省成本。
J1850总线是1994年由汽车工程师协会颁布的标准,之后普及运用于美国车厂的汽车中。
不过,虽然美国各厂多采用J1850标准,但是各厂的实际做法又不相同,因此相对其他标准来说比较混乱。
由于J1850总线通信速率低,只适合用于车身控制系统及诊断系统,目前在美国逐步被CAN 所取代。
MOST(Media Oriented System Transport,面向媒体的系统传输)总线是采用光纤并用于智能交通及多媒体的网络协议,能够支持24.8Mbps的数据速率,与以前的铜缆相比具有减轻重量和减小电磁干扰的优势。
FlexRay汽车通信总线介绍及测试环境(原创博文)

FlexRay汽车通信总线介绍及测试环境综述FlexRay通信总线是由多个汽车制造商和领先的供应商共同开发的确定性、容错和高速总线系统。
FlexRay满足了线控应用(即线控驱动、线控转向、线控制动等)的容错性和时间确定性的性能要求,本文介绍FlexRay的基础知识。
为了使汽车继续提高安全性、提升性能、减少环境影响并增强舒适性,必须提高汽车电子控制单元(ECU)之间传送数据的速度、数量和可靠性。
先进的控制和安全系统(结合了多个传感器、执行器和电子控制单元)开始要求同步功能和传输性能超过现有标准的控制器局域网(CAN)所能提供的性能。
随着带宽需求的增长和各种先进功能的实现,汽车工程师急需下一代嵌入式网络。
经过OEM厂商、工具供应商和最终用户的多年合作,FlexRay标准已经成为车载通信总线,以应对下一代车辆中的这些新的挑战。
FlexRay还能够提供很多CAN网络不具有的可靠性特点,尤其是FlexRay 具备的冗余通信能力可实现通过硬件完全复制网络配置,双通道冗余进行数据通信。
FlexRay同时提供灵活的配置,可支持各种拓扑,如总线、星型和混合拓扑。
设计人员可以通过结合两种或两种以上的该类型拓扑来配置分布式系统。
了解FlexRay的工作原理对工程师在车辆设计和生产过程的各个方面都至关重要。
本文将解释FlexRay的核心概念。
FlexRay基础FlexRay的许多方面旨在降低成本,同时在恶劣的环境中提供最佳性能。
FlexRay使用非屏蔽双绞线电缆将节点连接在一起,FlexRay总线可以由一对或两对电缆组成的单通道和双通道组成。
每对线缆上的差分信号减少了外部噪声对网络的影响,而无需昂贵的屏蔽层。
大多数FlexRay节点通常还具有可用于收发器和微处理器的电源线和地线。
双通道配置可提高容错能力或增加带宽。
大多数第一代FlexRay网络仅利用一个信道来降低布线成本,但是随着应用程序对复杂性和安全性要求的提高,未来的网络将同时使用这两个信道。
Flexray线控总线技术

高速
FlexRay支持高达10 Mbps的数据传 输速率,满足汽车中大量数据传输的 需求。
可靠性
FlexRay具有错误检测和纠正功能, 能够保证数据传输的可靠性。
工作原理
1 2
通信模式
FlexRay支持静态和动态两种通信模式,可以根 据实际需求进行选择。
拓扑结构
FlexRay支持星型和总线型两种拓扑结构,可以 根据汽车内部ECU的分布情况进行选择。
的领域,其优势可能无法充分发挥。
对实时性的 依赖
由于FlexRay总线的通信机制和硬件资源限制,其支 持的节点数量有限,可能不适合大规模分布式系统。
04
FlexRay线控总线与其他总线的比较
CAN总线
总结词
CAN总线是一种广泛应用于汽车行业的通信协议,具有高可靠性和良好的实时 性。
详细描述
CAN总线采用基于优先级的通信方式,支持多主节点同时通信,具有较高的数 据传输速率和较低的延迟时间。然而,CAN总线在处理大量数据和复杂通信时 可能会遇到带宽限制。
随着汽车电子化程度的不断提高,对汽车内部通信的要求也 越来越高,FlexRay总线技术正是在这样的背景下应运而生。
技术发展历程
FlexRay总线技术最初由BMW和戴姆勒-克莱斯勒于1999年联合开发,旨在为汽车 内部通信提供一种高性能、高可靠性的总线系统。
自推出以来,FlexRay总线技术得到了广泛的认可和应用,已成为汽车内部通信的标 准之一。
市场前景
增长的市场需求
竞争格局变化
未来发展方向
随着汽车电子化程度的不断提高,对 线控技术的需求也在不断增长。 FlexRay总线技术作为汽车线控技术 的关键组成部分,其市场需求将进一 步扩大。
flexray,协议中文版

竭诚为您提供优质文档/双击可除flexray,协议中文版篇一:通信协议标准FlexRay总线的功能安全性详解通信协议标准FlexRay总线的功能安全性详解在汽车中采用电子系统已经有几十年的历史,它们使汽车安全、节能与环保方面的性能有大幅度的提高。
随着研究的深入,许多系统需要共享和交换信息,为了节省线缆,就形成了依赖于通信的分布式嵌入系统。
目前,世界上90%的都采用基于can总线的系统。
FlexRay是下一代通信协议事实上的标准,它的功能安全性如何是至关重要的。
1iec61508功能安全的要求目前车控系统正在向线控技术(xbywire)过渡,例如线控转向与线控刹车。
线控系统最终目标是取消机械后备,因为取消这些后备可以降低成本,增强设计的灵活性,扩大适用范围,为以后新添功能创造条件。
但是取消机械后备就对电子系统的可信赖性(dependability)要求大为提高。
车是一个运动的物体,处于运动的环境之中,它因故障可能伤及自身及别人。
取消机械后备,就将电子系统由今天的故障静默(failsilent)要求提升到故障仍工作(failoperational)的要求。
国际上对工业应用的功能安全要求已制定了标准iec61508,它主要关心被控设备及其控制系统的安全。
虽然它也适用于汽车,但汽车不仅有上述功能安全问题,而且要关心由于功能变化造成的整车系统安全,所以汽车业内正在制定相应的标准iso26262。
汽车的功能安全等级分为4级,要求最高的是asild,相应的失效概率<10-8/h,它相当于iec61508的sil3。
根据实践经验,分配给通信的失效概率<10-10/h。
有关这方面的介绍可参见参考文献。
现在安全攸关的应用系统的范围有所扩大,以前不算在内的一些系统现在都要算了。
例如安全预先动作系统(presafe)中座椅调整子系统、刹车辅助系统中的灯光控制子系统、碰撞后telematic自动呼叫求援的子系统,都将视为安全攸关系统。
汽车ecu bms通信协议标准

标题:汽车ECU BMS通信协议标准一、概述随着汽车电子系统的不断发展和智能化水平的提高,汽车的ECU(汽车电子控制单元)和BMS(电池管理系统)之间的通信协议变得越来越重要。
通信协议标准的统一对于汽车电子系统的互操作性和稳定性至关重要。
本文将重点探讨汽车ECU和BMS之间的通信协议标准。
二、汽车ECU和BMS的通信协议标准1. CAN总线通信协议CAN(Controller Area Network)总线是一种广泛应用于汽车电子系统中的通信协议。
它具有高速传输、抗干扰能力强等优点,在汽车ECU和BMS之间的通信中得到了广泛应用。
2. LIN总线通信协议LIN(Local Interconnect Network)总线是一种针对汽车电子系统中从属设备之间通信的低成本、低速率的总线标准。
在汽车BMS和部分低带宽要求的ECU之间的通信中,LIN总线也得到了应用。
3. FlexRay通信协议FlexRay是一种高速、冗余的汽车网络协议,它被设计用于替代现有的汽车通信标准,提供更高的数据传输速率和实时性能。
在某些高性能汽车和BMS之间的通信中,FlexRay也得到了应用。
三、通信协议标准的选择和应用1. 根据汽车电子系统的要求,选择合适的通信协议标准,考虑到数据传输速率、实时性能、抗干扰能力等因素。
2. 对于不同的汽车电子系统,选择不同的通信协议标准,以确保各个子系统之间的通信稳定和可靠。
3. 根据通信协议标准的应用场景和技术要求,对汽车ECU和BMS之间的通信协议进行定制化设计和开发,以满足具体需求。
四、未来发展趋势1. 随着汽车电子系统的不断发展和智能化水平的提高,汽车的ECU和BMS之间的通信协议标准将会不断进化和完善。
2. 在未来,通信协议标准的选择和应用将更加智能化和个性化,以满足汽车电子系统对数据传输速率、实时性能和稳定性的不断提升的需求。
3. 通信协议标准的开放性和统一性将会更加重要,以促进不同厂商的汽车电子系统之间的互操作和兼容性。
(完整版)FlexRay总线原理及应用

(完整版)FlexRay总线原理及应⽤FlexRay 总线原理及应⽤1 FlexRay 总线介绍1.1 FlexRay 产⽣及发展随着汽车中增强安全和舒适体验的功能越来越多,⽤于实现这些功能的传感器、传输装置、电⼦控制单元(ECU)的数量也在持续上升。
如今⾼端汽车有100 多个ECU,如果不采⽤新架构,该数字可能还会增长,ECU 操作和众多车⽤总线之间的协调配合⽇益复杂,严重阻碍线控技术( X-by-Wire ,即利⽤重量轻、效率⾼、更简单且具有容错功能的电⽓/电⼦系统取代笨重的机械/液压部分)的发展。
即使可以解决复杂性问题,传统的车⽤总线也缺乏线控所必需的确定性和容错功能。
例如,与安全有关的信息传递要求绝对的实时,这类⾼优先级的信息必须在指定的时间内传输到位,如刹车,从刹车踏板踩下到刹车起作⽤的信息传递要求⽴即正确地传输不允许任何不确定因素。
同时,汽车⽹络中不断增加的通信总线传输数据量,要求通信总线有较⾼的带宽和数据传输率。
⽬前⼴泛应⽤的车载总线技术CAN 、LIN 等由于缺少同步性,确定性及容错性等并不能满⾜未来汽车应⽤的要求。
宝马和戴姆勒克莱斯勒很早就意识到了,传统的解决⽅案并不能满⾜汽车⾏业未来的需要,更不能满⾜汽车线控系统( X-by-Wire )的要求。
于是在2000 年9 ⽉,宝马和戴姆勒克莱斯勒联合飞利浦和摩托罗拉成⽴了FlexRay 联盟。
该联盟致⼒于推⼴FlexRay 通信系统在全球的采⽤,使其成为⾼级动⼒总成、底盘、线控系统的标准协议。
其具体任务为制定FlexRay 需求定义、开发FlexRay 协议、定义数据链路层、提供⽀持FlexRay 的控制器、开发FlexRay 物理层规范并实现基础解决⽅案。
1.2 FlexRay 特点FlexRay 提供了传统车内通信协议不具备的⼤量特性,包括:(1) ⾼传输速率:FlexRay 的每个信道具有10Mbps 带宽。
由于它不仅可以像CAN 和LIN ⽹络这样的单信道系统⼀般运⾏,⽽且还可以作为⼀个双信道系统运⾏,因此可以达到20Mbps 的最⼤传输速率,是当前CAN 最⾼运⾏速率的20 倍。
汽车控制系统效能升级!FlexRay网络标准详解

汽车控制系统效能升级!FlexRay网络标准详解自2003年组建以来,AUTOSAR(汽车开放系统架构)联盟一直致力于改变车载网络和电子控制单元(ECU)的设计方式。
AUTOSAR提出了一个符合业界标准的车载网络设计方法,使行业能够集成、交换和传输汽车网络内的功能、数据和信息。
这一标准极大地促进了汽车原始设备制造商(OEM)及其一级供应商之间的合作,使他们能够以一种一致、明确且机器可读的格式来交换设计信息。
一辆汽车的不同部分对安全及性能有不同要求,而支持它们的车载网络必须具备可预测的安全性能。
随着汽车技术的不断演变,人们已经可以用一系列总线技术来连接豪华汽车上最多100个不同的ECU,这些总线技术通常包括LIN、CAN、FlexRay、MOST和基于以太网的架构。
如果靠手动来管理这些ECU 之间数以千计的信息和交互操作是不可能的,因此汽车设计人员必然用自动化设计和合成工具来预测网络性能和调整车载功能。
汽车数据总线一辆典型的现代化汽车将同时装配各类总线和协议并从LIN、CAN、FlexRay、MOST和以太网中选择合适的网络。
多媒体/视听信号和汽车环绕摄像系统需要更高的数据速率,因此汽车制造商和OEM厂商在网络解决方案上选择用以太网代替MOST.但对于许多标准汽车功能而言,LIN和CAN提供的带宽与性能就足够了。
在汽车架构中,ECU组合在一起形成“集群”,这些集群通过通信“网关”相连。
集群通常会共享同一类型的总线,因此要达到高可靠性、高速率的标准,就要采用FlexRay 网络,但要求没那么高的门锁ECU可以由CAN或LIN来负责。
ECU网关往往要连接不同类型的信号,并执行不同总线架构之间的映射和转换功能。
汽车行业对不断提高安全性和ISO26262等标准的合规性提出强烈需求,进而提升了车载网络的性能,同时也降低了制造和元件成本。
不断进步的网络标准可以适应越来越高的数据传输速率,汽车电缆也达到了安全且低成本的目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车ECU通讯新平台--FlexRay(V2.1)协议规范一、车载网络概述汽车电子化程度与日俱增,应用在车上的ECU模块数量也随之增加,从而使线束也增加。
汽车电子系统的成本已经超过总成本的20%,并且还将继续增加。
由于汽车生产商对制造成本的严格控制,加上对车身质量的控制,减少线束已经成为一个必须要解决的问题。
另一方面,以网络通讯为基础的线控技术(X-by-wire)将在汽车上普遍应用。
因此,车载网络时代终将来临。
车载网络种类有很多种,应用较多的有LIN,CAN、FlexRay、TIP/C、SAEJ1850、TFCAN、ASRB、MOST等。
美国汽车工程师协会(SAE)根据速率将汽车网络划分为A、B、C3类。
A类总线标准包括TTP/A(Time Triggered Protocol/A)和LIN(Local InterconnectNet-work),其传输速率较低。
①TTP/A协议最初由维也纳工业大学制定,为时间触发类型的网络协议,主要应用于集成了智能变换器的实时现场总线。
②LIN是在1999年由欧洲汽车制造商Audi、BMW、DaimlerChrysler、Volvo、Volkswagen、VCT公司以及Motorola 公司组成的LIN协会共同努力下推出的用于汽车分布式电控系统的开放式的低成本串行通讯标准,从2003年开始得到使用。
B类标准主要包括J1850、VAN,低速CAN。
①1994年SAE正式将J1850作为B类网络标准协议。
最早,SAEJ1850被用在美国Ford,GM以及Chrysler公司的汽车中。
现在,J1850协议作为诊断和数据共享被广泛应用在汽车产品中。
②VAN标准是ISO1994年6月推出的,它基于ISO11519-3,主要为法国汽车公司所用。
但目前就动力与传动系统而言,甚至在法国也集中应用CAN总线。
③CAN是德国BOSCH公司从20世纪80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通讯协议。
低速CAN具有许多容错功能,一般用在车身电子控制中,而高速CAN则大多用在汽车底盘和发动机的电子控制中。
C类总线标准主要包括TTP/C,FlexRay和高速CAN(ISO11898-2)。
都用于与汽车安全相关以及实时性要求比较高的地方。
如动力系统,其传输速率比较高,通常在125kb/s到10Mb/s之间,必须支持实时的周期性的参数传输。
①TTP/C协议由维也纳工业大学研发,基于TDMA(Time Division Multiple Access)分时多址的访问方式。
②FlexRay是BMW、Daimler Chrysler、Motorola和Philips等公司制定的功能强大的网络通讯协议。
基于TDMA的确定性访问方式,具有容错功能及确定的通讯消息传输时间,同时支持事件触发与时间触发通讯,具备高速率通讯能力。
③欧洲的汽车制造商基本上采用的都是高速CAN总线标准ISO11898。
总线传输速率通常在125kb/s~1Mb/s之间。
然而,作为一种事件驱动型总线,CAN无法为下一代线控系统提供所需的容错功能或带宽,因为X-by-wire系统实时性和可靠性要求都很高,必须采用时间触发的通讯协议,如TTP/C或F1exRay等。
二、FlexRay协议FlexRay是由FlexRay共同体(FlexRayConsortium)制定的协议。
该共同体为一企业合作组织,成立于2000年。
到2005年,FlexRay共同体的7个,核心成员是:BMWGROUP、BOSCH、DaimlerChrysler、GM、Motorola/Freescale、PHILIPS和VWAG。
除此之外,它还有超过93个协作和发展成员。
从2002年发布的V0.4.3协议规范到2005年的V2.1协议规范,共发布多达7个版本。
F1exRay网络是一种高传输速率(每通道10Mb/s)的时间触发型网络。
采用分时多址方式对总线进行访问,具有确定性和容错功能。
非常适合于下一代汽车线控系统或分布式控制系统的通讯要求。
(一)拓扑结构(Topology)共有3种网络拓扑结构,即:总线型(Bus)、星型(Star)和混合型(Hybrid)。
而每一种类型都有单通道(SingleChannel)和双通道(DualChannel)之分。
在星型结构中,还存在联级方式。
总线型如图1所示,单、双通道联级星型如图2、图3所示,单、双通道混合型结构如图4、图5所示。
(二)节点(Node)的内部逻辑结构主要由电源供给系统(Power Supply),总线驱动器(Bus Driver,简称BD)、总线监控逻辑(Bus Guardian,简称BG)、固化有FlexRay通讯协议的通讯控制器(CommunicationController,简称CC)及主机(Host)5个部分组成,如图6所示。
其中BD和BG的个数对应于通道数,而BG是用于避免通道定时错误的一个独立部分,与通讯控制器和微处理器相连。
总线监控逻辑必须独立于其他的通讯控制器。
节点的两个通讯过程如下。
a.发送数据主机(Host)将有效的数据送给通讯控制器(CC),在通讯控制器中进行编码,形成数据位流(bitstream),通过总线驱动器(BD)发送到相应的通道上。
b.接收数据在某一时刻,由总线驱动器访问总线,将数据位流送到通讯控制器进行解码,将有效数据部分由通讯控制器送给主机Host。
(三)FlexRay网络通讯协议FlexRay网络通讯协议主要体现在4个核心机制上:编码与解码(encoding and decoding)、媒体接入控制(Media Access Control)、数据帧与特征符处理(frame and symbol processing)和时钟同步(clock synchronization)。
除此之外,控制器主机接口(controller Hostinter face,简称CHI)为实现这些机制提供数据传输服务。
1.编码与解码(encoding and decoding)编码的过程实际上就是对要发送的数据进行相应处理的过程,如加上各种校验位、ID符等。
解码的过程就是对接收到的数据帧进行“解包”的过程。
编码与解码主要发生在通讯控制器与总线驱动器之间的通讯,如图7所示。
其中RxD为接收信号,TxD为发送信号,TxEN为通讯控制器请求数据信号。
信息的二进制表示采用“不归零”码。
对于双通道的节点,每个通道上的编码与解码的过程是同时完成的。
编码与解码的过程主要由3个过程组成:主编码与解码过程(CODEC)、位过滤(bitstrobing)过程和唤醒模式解码过程(WUPDEC)。
以主编码与解码过程(CODEC)为主要过程。
1)帧编码传输起始序列(transmission start sequence,简称TSS),为一段时间的低电平,用于初始化传输节点与网络的对接。
帧起始序列(frame start sequence,简称FSS),为一小段时间的高电平,紧跟在传输起始序列(TSS)之后。
字节起始序列(byte start sequence,简称BSS),由一段高电平和一段低电平组成,位于FSS之后。
给接收方节点提供定时信息。
帧结束序列(frame end sequence,简称FES),由一段低电平和一段高电平组成,位于有效数据位之后。
如果是在动态时序部分接入网络,则还要在FES后附加上DTS——动态尾部序列(Dynamic trailing sequence)。
将这些序列与有效数据位(从最大位MSB到最小位LSB)“组装”起来就是编码过程,最终形成能够在网络传播的数据位流。
此外,低电平的最小持续时间为一个gdBit。
图8与图9分别为静态和动态部分的帧编码。
2)特征符编码F1exRay,协议有3种特征符:冲突避免特征符(collision avoidance symbol,简称CAS)、媒体接入测试特征符(Media access test symbol,简称MTS)和唤醒特征符(wake up symbol,简称WUS)。
对CAS和MTS采用完全相同的方式进行编码,对唤醒特征符(WUS)采用另一种模式编码。
节点对传输冲突避免特征符(CAS)和媒体接入测试特征符(MTS)的编码,是跟随在传输起始序列(TSS)之后的一段时间长为cdCAS(为某一具体数值)的低电平,如图10所示。
节点对唤醒特征符(WUS)的编码并没有采用辅助信号TSS,随TxEN的边沿触发同步于TxD信号进行传输一个唤醒特征符(WUS),如图11所示。
帧与特征符解码的过程就是编码的逆过程。
这里不再赘述。
2.数据帧格式(FormatofFrame)一个数据帧由帧头(HeaderSegment)、有效数据(PayloadSegment)和帧尾(TrailerSegment)多个部分组成。
FlexRay数据帧格式如图12所示。
1)帧头部分共由5个字节(40个位)组成。
包括保留位(Reserved bit,1位)、数据指示位(Pay load Preamble indicator,1位)、空帧指示位(Null frame indicator,1位)、同步帧指示位(Sync frame indicator,1位)、启动帧指示位(Start up frame indicator,1位)、ID(11位)、有效数据长度(7位)、头部循环校验CRC(11位)和循环计数(6位)。
2)有效数据部分可由0-254个字节或0-127个字组成。
在图12中分别以Data0、Data1…Data253表示。
在帧的CRC校验中,有效数据部分的前6个字节设为海明距离(Hamming Distance)。
当数据超过248字节时,海明距离为4个字节。
在动态时序部分,有效数据部分的头两个字节通常用作消息识别域(messageIDfield)。
消息识别(又叫消息ID)标明应.用数据的物理内容,仅仅用于在动态时序传输的数据帧,长度为16位。
在传输节点中,消息ID是由主机将其作为应用数据而写入的,通讯控制器(CC)并不能够对消息ID进行识别。
在接收节点中,对一个帧的存储依靠于利用消息ID 而进行过滤处理的结果,如图13所示。
在静态时序部分,有效数据部分的头13个字节(DataO-Data12)通常用作网络管理向量(networkmanagementvector,简称NM)。
在同一个簇内,所有的节点应具有相同长度的网络管理向量,仅仅用于在静态时序传输的数据帧,长度为8位,如图14所示。
3)帧尾部分只含有单个的数据域,即一个24位的CRC。
FlexRay的CRC计算是遵循一定的运算法则。
包括帧头CRC计算和数据帧CRC计算。