1水泥质量控制基础知识.doc

合集下载

建筑工程水泥混凝土原材料的试验检测及质量控制_1

建筑工程水泥混凝土原材料的试验检测及质量控制_1

建筑工程水泥混凝土原材料的试验检测及质量控制发布时间:2022-10-17T08:55:56.000Z 来源:《建筑设计管理》2022年11期作者:何臣[导读] 随着时代的不断进步,建筑企业必须对建筑工程施工过程中使用到的混凝土原材料进行严格的质量管控,才能满足当下城市建设行业的发展需求何臣宜昌市宝业建筑工业化有限公司 443000摘要:随着时代的不断进步,建筑企业必须对建筑工程施工过程中使用到的混凝土原材料进行严格的质量管控,才能满足当下城市建设行业的发展需求。

任何建筑物施工过程中都会使用到混凝土,混凝土作为第一建筑原材料,其自身的质量与整个工程的施工质量存在直接联系。

建筑企业必须高度重视混凝土原材料的质量检验工作,关注行业内最新的试验检测技术,针对不同类型的混凝土原材料选择针对性的检测试验方法,提高检测的效率和准确性。

检测过程中也要安排专业人员对检测的流程进行严格的管理,保证所有进入施工现场的混凝土原材料都符合相关规定,在选用合理检测方式和检验模式的基础上能够大大降低在混凝土原材料检验工作中投入的人力、物力和财力,提高建筑工程的施工质量,为企业带来良好的经济利益。

关键词:建筑工程;水泥混凝土;原材料;试验检测;质量控制1建筑工程混凝土原材料的检测与控制方法1.1拌合水的检测水是水泥混凝土的基础组成材料,因此在原材料检测过程中,水检测不可忽略。

一般,混凝土生产用水为城市自来水,pH呈酸性,接近7.0,满足使用要求。

但如果水中氯离子含量不在合理的范围内,将可能影响混凝土结构的耐久性。

为了避免这类情况的发生,检测人员需要对水中的氯离子含量进行检测;如果使用的是地下水或地表水,那么还应对其矿物质含量进行检测,以保证其满足使用要求,使其充分发挥凝结期间的优势,使得水泥混凝土强度等级正常增长,保障公路工程的耐久性与稳定性。

混凝土拌合期间,根据选用的自来水、地表水或地下水实际情况,在生产前需要作业人员重点检查拌合水的酸碱度,保障水质能够满足混凝土配置中的用水需求和要求,在整体上保障混凝土的安全性与稳定性。

水泥基础知识

水泥基础知识

水泥基础知识一、水泥术语:水泥按用途及性能分为三类。

1、通用水泥,一般土木建筑工程通常采用的水泥。

通用水泥主要是指:GB175—1999、GB1344—1999和GB12958—1999规定的六大类水泥,即硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥。

2、专用水泥,专门用途的水泥。

如:G级油井水泥,道路硅酸盐水泥。

3、特性水泥,某种性能比较突出的水泥。

如:快硬硅酸盐水泥、低热矿渣硅酸盐水泥、膨胀硫铝酸盐水泥。

二、水泥按其主要水硬性物质名称分为(1)硅酸盐水泥,即国外通称的波特兰水泥;(2)铝酸盐水泥;(3)硫铝酸盐水泥;(4)铁铝酸盐水泥;(5)氟铝酸盐水泥;(6)以火山灰或潜在水硬性材料及其他活性材料为主要组分的水泥。

三、水泥按需要在水泥命名中标明的主要技术特性分为:(1)快硬性:分为快硬和特快硬两类;(2)水化热:分为中热和低热两类;(3)抗硫酸盐性:分中抗硫酸盐腐蚀和高抗硫酸盐腐蚀两类;(4)膨胀性:分为膨胀和自应力两类;(5)耐高温性:铝酸盐水泥的耐高温性以水泥中氧化铝含量分级。

四、水泥命名的一般原则水泥的命名按不同类别分别以水泥的主要水硬性矿物、混合材料、用途和主要特性进行,并力求简明准确,名称过长时,允许有简称。

通用水泥以水泥的主要水硬性矿物名称冠以混合材料名称或其他适当名称命名。

专用水泥以其专门用途命名,并可冠以不同型号。

以火山灰性或潜在水硬性材料以及其他活性材料为主要组分的水泥是以主要组分的名称冠以活性材料的名称进行命名,也可再冠以特性名称,如石膏矿渣水泥、石灰火山灰水泥等。

五、主要水泥产品的定义1、水泥:加水拌和成塑性浆体,能胶结砂、石等材料既能在空气中硬化又能在水中硬化的粉末状水硬性胶凝材料。

2、硅酸盐水泥:由硅酸盐水泥熟料、0%~5%石灰石或粒化高炉矿渣、适量石膏磨细制成的水硬性胶凝材料,称为硅酸盐水泥,分P.I和P.II,即国外通称的波特兰水泥。

水泥基础知识

水泥基础知识
福建安溪三元集发水泥有限公司
水泥基础知识
质量控制部 谢为民
水泥基础知识
• 水泥:和水拌和后,既能在空气中硬化又能在水 中硬化,并能凝结砂、石等物质的水硬性胶凝材 料。用于民用建筑、道路桥梁、水利和国防工程 中。 • 分类:硅酸盐水泥,铝酸盐水泥,硫酸盐水泥, 硫铝酸盐水泥,磷酸盐水泥等,其中以硅酸盐水 泥应用最广。 • 现执行的国家标准是GB175-2007《通用硅酸盐 水泥》标准,于2007年11月9日发布,2008年6月 1日开始实施;2009年6月12日发布第1号修改单, 2009年9月1日起实施,主要内容是氯离子的检验 方法标准JC/T420修改为GB/T176;2014年12月 2日发布第2号修改单,2015年12月1日起实施, 重点是取消P· C32.5级水泥等级。
常用水泥的技术要求
• 1、细度:指水泥颗粒的粗细程度。 • 水泥颗粒越细,与水起反应的表面积愈大,水化作用的发展就越 迅速而充分,使凝结硬化的速度加快,早期强度大。但颗粒过细的水 泥硬化时产生的收缩亦越大,而且磨制水泥能耗多成本高,一般认为, 水泥颗粒3-32μm才具有较高的活性,大于100μm活性就很小了; 控 制指标:80μm方孔筛筛余≤10%,45μm方孔筛筛余≤30%。 • 2、凝结时间:a、初凝时间(t初)-水泥开始加水拌和至水泥浆开 始失去可塑性所需的时间。 b.终凝时间(t终) -水泥开始加水拌和至水泥浆完全 失去可塑性并开始产生强度所需的时间。 • 六大常用水泥初凝时间不得早于45min,硅酸盐水泥的终凝时间不得 迟于390min。其他五类水泥的终凝时间不得迟于600min。 • 由于拌合水泥浆时的用水量多少,对凝结时间有影响,因此测试水泥 凝结时间时必须采用标准稠度用水量。
水泥制成
• 1、活性混合材料:指与石灰、石膏一起,加水拌和后能 形成水硬性胶凝材料的混合材料。其主要成分是活性氧化 硅、活性氧化铝。 • 2、非活性混合材料:指不具有活性或活性甚低的人工或 天然的矿物质材料。它们掺入水泥中仅起调节水泥性质, 降低水化热,降低标号,和增加产量的作用, • 掺入目的: a.改善水泥的性能 b.增加品种 c.提高产量 d.节约熟料, e.降低成本 • 助磨剂:水泥粉磨时允许加入助磨剂,其加入量应不大于 水泥质量的 0.5 %,助磨剂应符合 JC/T667 的规定。

水泥性能基础知识

水泥性能基础知识

我公司使用的混合材料有以下几类:粉煤灰; 时,所得以硅酸盐与硅铝酸盐为主 粒化高炉矿渣;锅炉炉渣;石子。 要成分的熔融物,经淬冷成粒后即 1、粉煤灰:电厂煤粉炉烟道气体中收集的粉 为粒化高炉矿渣。 末称为粉煤灰。 矿渣的化学成分和硅酸盐水泥熟料 粉煤灰对水泥性能有何影响?由于粉煤灰是 的化学成分很相似,氧化钙、二氧 煤粉在高温燃烧后的熔融产物,尽管是微细 化硅、三氧化二铝占总量的90%以 粉末状,但其每个细小颗粒的表面非常致密, 上,还有少量的氧化镁、氧化铁和 有的呈玻璃质状,与Ca(OH)2的反应速度较 一些硫化物。矿渣掺加后能够降低 为缓慢。经研究表明,粉煤灰颗粒经过一年 水泥的早期强度但是对后期强度起 只有1/3水化,因此粉煤灰水泥的强度增进率 到提高的作用,因为水泥水化生成 也较慢。掺加30%粉煤灰的水泥3个月的抗压 的Ca(OH)2作为矿渣的激发剂,破 强度增进率只相当于硅酸盐水泥28天的增进 坏了矿渣玻璃体的结构而与矿渣中 率,6各月的相当于硅酸盐水泥的3个月的增 的活性氧化钙、氧化铝相互作用, 进率。这说明粉煤灰的活性3个月后才能发挥,生成较稳定的水化硅酸钙和水化铝 6个月以后才能充分发挥,只有1年后才能达 酸钙,从而阻止了氢氧化钙被水溶 到其强度增进率的100%。随着粉煤灰掺入量 出,提高了制品的机械性能。由于 的增加,水泥强度明显降低。一般地说掺入 矿渣积极参加反应的结果是后期强 量小于15%时,对强度并无明显影响。由于 度往往超过硅酸盐水泥。国标中对 粉煤灰比面积小,且呈玻璃质球状,因而水 于矿渣硅酸盐水泥混合材矿渣的掺 泥需水量小,砂浆或混凝土的流动性好,易 加量规定为20—70%。矿渣内含有 于浇灌,干缩性也小。另外还具有抗硫酸盐 C2S,加水后能够凝结硬化,本身 侵蚀性好、水化热低的特点,是大体积混凝 就具有200#的水泥强度,是混和材 土和地下工程的理想水泥品种。 种类中最优质的混合材。

水泥基本知识

水泥基本知识

4、原煤 煤作为水泥熟料烧成的燃料,供给熟料烧成所需的 热量。但是其中所含的灰分,绝大部分落入水泥熟料中, 而影响水泥熟料的成份和性质,从这一点讲,煤又是生 产水泥的一种“原料”。因此对于水泥厂用煤的质量有 一定的要求。
类别 CaO(%) MgO (%) R2O(%) SO3(%) 燧石或石英
石灰石
一级品二 级品
>48 45~48
35~45
<2.5 <3.0
<3.0
<1.0 <1.0
<1.2
<1.0 <1.0
<1.0
<4.0 <4.0
<4.0
泥灰岩
2、硅铝质原料 天然硅铝质原料的种类很多,有粘土、黄土、页岩、 砂岩、粉砂岩等。
二、硅酸率 又称硅率,以n表示,欧美以SM表示。表示熟料硅酸 盐矿物与熔剂矿物的比值。 SM=SiO2/Al2O3+Fe2O3 SM高,则硅酸盐矿物多,对水泥熟料强度有利,但 熔剂矿物少,液相量少,会给煅烧造成困难,SM过低, 则对熟料强度不利,且熔剂矿物多,易结圈等,不利于 煅烧。
三、铝氧率 又称铝率或铁率。以P表示,欧美以IM表示,熟料中 C3A与C4AF之间比值。 IM=Al2O3/Fe2O3 IM过高,意为C3A多,C4AF少,液相粘度增加,对煅 烧及水泥性能都造成较大的影响。如IM过低,则C4AF多, 液相粘度小,易结大块 等。 四、矿物组成及换算 当IM>0.64 C3S=3.8SiO2(3KH-2) C2S=8.61SiO2(1-KH) C3A=2.65(A-0.64F) C4AF=3.04Fe2O3 例:当SiO2含量一定时, KH 以0.90为例,KH每上 升或下降0.01, C3S上升或下降2.5%。
原始水泥可追溯到5000年前,埃及的金字塔、古希 腊和古罗马时代用石灰掺砂制成的混和沙浆,曾被用于 砌筑石块和砖块,这种用来做砌筑用的胶凝材料被称为 原始水泥。它为现代水泥的发明奠定了基础。 1824年,英国泥水工J.阿斯普丁发明了一种把石灰 石和粘土混和后加以煅烧来制造水泥的方法,并获得了 专利权。这种水泥同英国附近波特兰小城盛产的石材颜 色相近,故称为波特兰水泥。人类最早是利用间歇式土 窑(后发展成土立窑)煅烧水泥熟料。 1877年回转窑烧制水泥熟料获得了专利权,继而出 现了单筒冷却机、立式磨及单仓钢球磨等,从而有效地 提高了水泥的产量和质量。

水泥混凝土路面施工质量控制(1)

水泥混凝土路面施工质量控制(1)

水泥混凝土路面施工质量的控制摘要:文章对影响水泥混凝土路面施工质量的因素进行了分析,并提出了控制施工质量的各种措施。

关键词:水泥混凝土路面质量控制中图分类号:tu528 文献标识码:a 文章编号:1674-098x(2011)06(c)-0202-01近几年,随着农村公路的大力建设,道路施工工艺不断完善,对水泥混凝土路面施工质量要求也逐步提高。

影响水泥混凝土路面质量的因素很多,诸如设计水平、材料品质、施工质量等,而施工质量又与施工人员的素质以及操作机械、施工工艺等有关,路面质量的好坏是各种因素的综合反映。

多年的施工经验总结,探索出些许水泥混凝土路面施工质量的控制方法,与大家共享。

1 水泥混凝土裂缝、断板产生的原因水泥在水化时产生大量水化热,水泥混凝土体积因温度升高而发生膨胀。

当水化热消散后,混凝土构件因冷却而收缩,产生拉应力,此时混凝土已经到了凝固的末期,回弹模量已经变大,而抗拉强度仅有抗压强度的1/7左右,所以冷缩产生的拉应力是混凝土产生早期裂缝的主要原因。

2 水泥混凝土路面主要质量指标的控制抗弯拉强度是水泥混凝土路面的主要性能指标。

2.1 抗弯拉强度指标的控制粗集料对混凝土抗弯拉强度的影响。

不同质量、级配的混合料,抗弯拉强度的差异很大,因此所选用的粗集料需满足下列要求:质地坚硬,压碎值小于15%;坚固性符合要求,小于8%;采取高压水冲洗等措施,有害杂质含量控制在1%以内;针片状颗粒含量小于15%;颗粒级配合理。

水泥混凝土配合比设计。

配合比设计除要考虑主要影响因素外,还要考虑混凝土易脱水的程度和脱水过程中混凝土体积的压缩。

脱水量越大,体积压缩量与脱水量之比(密实系数)越大,强度提高越多。

但应注意的是这并不等于原始加水量(水灰比)越大越好,真空吸水主要是增加混凝土的早期强度,对其最终强度影响不大。

在水泥的选用上,需注意以下几点:对进场水泥按批次进行理化指标抽检试验,特别是安定性指标必须进行抽检,安定性不合格的水泥严禁使用;更换不同厂家生产的水泥必须重新进行试配,保证混凝土强度满足设计要求。

水泥生产质量控制要求

水泥生产质量控制要求

水泥生产质量控制要求一、引言水泥作为建筑材料中的重要组成部分,在现代建筑工程中扮演着举足轻重的角色。

为了确保水泥产品的质量和安全性,制定了一系列的生产质量控制要求。

本文将从原材料、生产工艺、质量检测等方面探讨水泥生产质量控制的要求和标准。

二、原材料控制要求1.石灰石:合格的石灰石应具有充分的石英、石膏、镁含量低等特性。

不得使用含有大量杂质和有害元素的石灰石原料。

2.粘土:应选择具有适宜粘结性、合适品种和矿物组合的粘土。

粘土中不宜含有过多的氧化铁等有色杂质。

3.煤炭:应使用低灰分、低硫分和低燃烧热的煤炭。

确保煤炭燃烧产生的废气不对水泥质量产生不良影响。

三、生产工艺控制要求1.石料破碎:对石灰石和粘土等原料进行合理的破碎,确保石块粒度适宜,并控制粉尘的产生和扩散。

2.原料预热:通过旋风筒或窑筒等设备对原料进行预热,达到合适的温度,为下一步煅烧做好准备。

3.煅烧过程:在煅烧过程中,要控制好煅烧温度、停留时间和空气流量等参数。

确保煅烧后的熟料具有高的活性和合适的化学成分。

4.磨碎过程:对熟料进行适当的磨碎,以获得合适的细度和表面积。

控制磨机的运行参数,确保产生的水泥粉体质量稳定。

四、质量检测要求1.化学成分检测:根据相关标准,对水泥中的主要化学成分进行检测,如SiO2、Al2O3、Fe2O3等。

确保水泥产品符合规定的成分范围。

2.物理性能检测:对水泥产品进行强度、凝结时间、比表面积等物理性能的检测。

确保水泥具有合适的力学强度和使用性能。

3.质量稳定性检测:通过长期稳定性测试,检测水泥在贮存和使用过程中的性能变化情况。

确保水泥产品具有长期稳定的质量。

五、生产质量管理要求1.建立完善的生产工艺控制流程,明确每个环节的责任和要求。

2.加强原材料和产品的进货和发货检验,确保原材料和产品的质量符合标准。

3.建立质量档案,对每批产品进行记录和追溯,确保产品质量可追溯。

4.定期进行设备和仪器设施的检修和维护,确保设备和仪器的正常运行。

2024年水泥质量基础知识试题及答案(一)

2024年水泥质量基础知识试题及答案(一)

2024年水泥质量基础知识试题及答案(一)1.必须注意水泥的均化,可边进边出。

( × )2.出厂水泥要求28天抗压富裕强度合格率100%。

( √)3.出厂水泥品质指标自检不合格,属于未遂重大质量事故。

( √)4.尚未使用过的原燃材料,混合材,未经技术质量部同意使用的,属于一般质量事故。

( √)5.出磨水泥因窜灰或入错库等原因造成水泥强度等级或品种改变的,属于一般质量事故。

( ×)6.原煤堆场中不同煤种或不同供应商的煤原则上不能混堆在一起,如因场地问题需要混堆的,以储运部通知为准。

(×)7.出厂水泥品质指标自检不合格,严重质量事故。

( × )8.技术质量部在生产正常情况下,选择适当时间,牵头组织水泥部或储运部实施助磨剂大磨试验。

( ×)9.生产过程关键质量控制指标(熟料f-Cao,水泥SO3、烧失量等)连续6次以上检验不合格,属于严重质量事故。

( √) 10.出厂水泥包装标志打印不齐全,或连续10包的出厂日期、编号打印不清楚,属于一般质量事故。

(√)11.基地总经理任命管理者代表或主管副总经理全权负责质量管理,组织制定本公司质量方针和质量目标。

( √ )12.堆场、储存库、磨头混料影响质量控制的,属于严重质量事故。

( × )13.计量器具应按期检定并有有效的计量检定合格证。

( √)14.基地公司负责助磨剂从进厂到验收、效益对比全过程管理。

( √)15.重大质量事故处理流程:由控股运营部牵头组织开展调查,并负责调查报告的编写,各大区、市场部和基地公司配合。

( √ ) 16.基地公司在采样、制样、检验及报出过程中,如出现舞弊行为,一经查实,视其程度,给予责任人开除或送司法部门查处。

(√ )17.错用包装纸袋造成袋装水泥内容与标识不符的,属于严重质量事故。

( √ )18.助磨剂每份样品均须张贴防水标签,内容包括样品名称、型号、过磅单号(或编号)、供应商、时间、取样人、见证人等内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1水泥质量控制基础知识第二期质量培训材料之一水泥质量控制基础知识一、硅酸盐水泥熟料的矿物组成硅酸盐水泥熟料中的主要矿物有以下四种:C3S、C2S、C3A、C4AF,另外还有少量的f- CaO、方镁石、含碱矿物、玻璃体。

通常,熟料中C3S+C2S含量75%左右,C3A+C4AF含量 22%左右。

1、C3S含量通常占熟料的50%以上,其特点:水化较快,早期强度高,强度增进就率大,干缩性、抗冻性较好,但水化热较高,抗水性差,抗硫酸盐浸蚀能力较差。

C3S形成需要较高的烧成温度和较长的烧成时间,含量过高,烧成困难,易导致f-CaO增多,熟料质量下降。

2、C2S含量通常分熟料的20%左右,其特点:水化较慢,早期强度低,水化热低,体积干缩小,抗水性和抗硫盐日浸蚀能力好,后期强度增进快。

3、C3AC3A水化速度、凝结硬化很快,放热多,硬化快,早期强度较高,但绝对值不高,后期几乎不再增长,•甚至倒缩,C3A干缩变形大,抗硫酸盐性能差,脆性大,耐磨性差。

4、C4AFC4AF水化速度早期介于C3A与C3S之间,早期强度类似于C3A但后期还能不断增长,水化热低,干缩变形小,耐磨、抗冲击、抗硫酸盐浸蚀能力强。

5、f-CaO、 MgOf-CaO在高温下死烧形成,水化很慢,一般加水3天后才反应有尽有,反应体积膨胀 97. 9%产生应力,造成水泥石破坏。

MgO少量可与熟料矿物固溶,对降低烧成温度、增加液相数量,改善1熟料色泽有好处,但超过一定量后,未固溶部分水化很慢,要几个月甚至几年才与水反应,生产Mg(0H) 2,体积膨胀148%,导致水泥安定性不良。

二、水泥生产质量控制水泥制成的控制项目,一般有水泥的细度、三氧化硫、烧失量、物料的配合比(混合材料、石膏的掺加量)、凝结时间、安定性、强度等。

(一)控制〕贝H1.入磨物料的配比:目前生产的水泥品种中除硅酸盐水泥外,其余各种水泥均由硅酸盐水泥熟料、石膏和混合材料组成,它们之间的配比关系着生产水泥的品种、标号和物理性能。

水泥生产中,入磨物料的配比一般是根据物料的性能(包括熟料的化学成份、强度,混合材料的活性,石膏的性质及成份)和它们在水泥水化、硬化过程中对强度的影响,以及计划生产的品种、标号,水泥的其它特殊物理性能而确定的。

在实际生产过程中,多数是根据熟料质量情况,混合材料的品种、质量,通过试验的方法确定其经济合理的配合比例。

入磨物料配比不恰当或在制成过程中物料下料量不稳定,都直接影响到水泥的质量。

因此,加强水泥制成中物料配比的控制,是保证水泥质量、按计划稳定生产各标号水泥的重要环节之一。

2.出磨水泥细度:在熟料、混合材料质量和配合比相对稳定的条件下,水泥的粉磨细度,对水泥性能影响很大。

在一定程度上,水泥粉磨得愈细,其比表面积愈大,水泥粉末与水拌合时,它们的接触面积也就愈大,故有利于加速水泥的水化、凝结和硬化过程,对提高水泥强度,特别是早期强度有良好的效果。

此外,在生产过程中,当熟料中游离2氧化钙较高时,水泥磨细些,游离氧化钙就可较快地吸收水份而消解,因而可减少它的破坏作用,改善水泥安定性能。

但是,不适当地提高水泥粉磨细度,会使磨机产量降低,电耗增高。

另外,当水泥细度过细时,需水量增加,水泥石结构的致密性降低,反而会影响水泥的强度。

可见,只有合理地确定水泥细度指标才能在保证水泥质量的基础上,取得良好的经济效果。

在生产过程中,应力求减少细度的波动,以达到稳定磨机产量和水泥质量的廿的。

3.出磨水泥中的三氧化硫:水泥中三氧化硫的含量实质上是磨制水泥时石育掺入量的反映(采用劣质煤时,熟料中也含有-定量的S03) o石膏在水泥中主要起调节凝结时间的作用。

适量的石膏在水泥水化过程中,能与C3A生成水化硫铝酸钙胶体,包裹于C3A表面,阻碍C3A内部的继续水化而使水泥缓凝。

因此,当石膏掺入量不足时,它不能抵消水化铝酸钙的快凝作用,使水泥快凝。

但是,当石膏掺入量过大时,由于硫酸钙水化速度较快,水泥的凝结反而会变快;硫酸钙水化后呈结晶状态,大量晶体硫酸钙还会产生体积膨胀,对水泥石的结构还会产生破坏作用。

适量石膏的另一作用能在一定程度上提高水泥的强度。

这是因为它在水泥水化过程中与C3A可生成一定数量的硫铝酸钙针状晶体,交错地填充于水泥石的空隙中,从而增加了结构的致密性。

在矿渣水泥中,石容还起硫酸盐激发剂的作用,可加速矿渣水泥的硬化过程。

具体的石骨掺量应根据工厂的实际情况制订石骨曲线得到。

4.混合材料掺入量:3水泥中掺加混合材不但可以增加水泥产量,降低水泥成本,而还可以改善水泥的某些物理性能。

对于游高氧化钙较高的熟料,掺入活性混合材料,不但可降低水泥中f-CaO的相对浓度,还可吸收部分f-CaO,起到改善水泥安定性的作用。

但是,由于混合材料的加入,水泥中熟料组分就相应减少,因此使水泥强度有不同程度的降低,掺加量愈大,强度降低愈显著。

不同品种的混合材料对水泥的物理性能影响是不同的,因此,合理的混合材掺入量应在国家标准规定的范围内,根据熟料的质量和混合材的品种、质量来确定。

5.出磨水泥的凝结时间、安定性、强度:水泥的凝结时间、安定性、强度也是国家标准中规定的必须达到的重要质量指标。

如果出磨水泥的这些质量指标均符合标准要求,出厂水泥就有了保证。

如有的性能不符合要求,就要采取多库搭配等相应措施,保证出厂水泥质量。

6.烧失量:水泥标准中烧失量的规定,主要是控制水泥中各混合材的掺量及劣质熟料的使用。

近年来,许多企业使用的石育品位下降,所以对水泥的烧失量要进行必要的限制。

水泥烧失量应列为控制项目,在磨头除定期抽查混合材的掺量外,至少每四小时应测定一•次水泥的烧失量,必要时可增加检测频次。

(二)制定水泥质量控制指标的依据水泥质量控制指标的制定,要根据各厂的具体情况,首先应根据本厂所要求生产的水泥品种、等级,以及熟料和混合材料的质量。

通过试验,摸清各种工艺因素之间的相互关系,从质量、经济等各4方面进行综合考虑,权衡利弊后确定。

质量控制指标的制定应根据以下儿个方面:1.水泥的品种、等级:水泥的品种,应根据计划并结合水泥产量,混合材料的品种、来源、数量,各种材料的价格和市场的需要通盘考虑。

水泥的等级,应根据用户的需要,并考虑本厂的工艺条件和技术管理水平来确定。

当水泥品种、等级确定之后,据此即可制订出各项质量控制指标。

2.熟料强度:水泥的强度主要是由熟料的强度决定的。

在水泥的品种、等级确定之后,熟料强度主要是确定熟料混合材等配合比的主要依据。

3.混合材的活性:1、混合材的分类及作用为了增加水泥产量,降低成本,改善和调节水泥的某些性质,综合利用工业废渣,减少环境污染,在磨制水泥时,可以掺加数量不超过国家标准规定的混合材料。

混合材按其性质可分为两面大类:活性混合材料和非活性混合材料。

凡是天然的或人工制成的矿物质材料,磨细成粉,加水后其木身不硬化,但与石灰加水调和成胶凝状态,不仅能在空气中硬化,并能继续在水中硬化,这类材料称为活性混合材料或水硬性混合材料。

混合材料的活性是确定混合材料掺加量的依据之一。

在生产某一品种的水泥时,混合材料的活性高,其掺加量就可多些。

bl前对混合材料的活性虽有统一标准要求,但是地区的混合材料质量往往差异很大,用混合材的活性控制其掺加量的实用价值不大,因此,混合材料的合理掺加5量,必须采用不同的配合比进行强度试验来确定的。

4.水泥细度与强度的关系:选择合理的细度指标,可以获得较好的水泥强度。

同样的水泥物料配比,在一•定范围内改变其粉磨细度,水泥的强度有时可提高近一•个等级。

由于各厂情况不同,水泥细度与强度的关系也不一致,-•般情况下,应结合生产中的实际情况,通过试验的方法测定细度与强度的关系,确定适宜的粉磨细度指标。

在日常生产中,通过掌握细度与强度间的相互关系,可及时根据原料的半成品的质量波动情况调整细度控制指标,即当发现熟料、混合材料质量下降,使水泥强度没有保证时,可将水泥磨细-•些,以达到稳定水泥质量的日的。

一般试验条件下,水泥颗粒的大小与水化的关系是:0-10 um水化最快3-30 n m是水泥活性主要成份>60 urn水化缓慢>90um表面水化,只起微集料作用水泥比表面积与筛余的关系是否对应,理由?1、比面积是单位质量:和物料所共有的总表面积,它是各个颗粒级配的表面积之和,同—•质量的水泥越细颗粒数越多,暴露的比表面积越大,比表而积主要反映细颗粒(WlOum)的含量,而筛余值只表示通过一种粒径筛的质量百分数,目前我国所用的筛余法测定结果只表示大于0. 080nun的颗粒所占质量的百分数,对于小于0. 080mm的颗粒则反映不出来;2、在一定的区间,理论上说是有对应关系的,比表面积大,筛余值小。

但由于磨机规格,研磨体级配,是否配备选粉机,选粉机规格型号6等对二者关系影响很大,有时也会出现比表面积大,筛余值大。

3、比表面积对掺多孔性混合材的水泥实用性较差,一般只能作为参考。

4、实际上水泥是有大小不同的颗粒组成,这个组成对水泥性能的影响,不仅仅是微小颗粒的含量大小,而是一个堆积模型,如相同的比面积,开流磨的水泥强度就比闭流磨高,也就是说相同状况下,开流磨的筛余可适当放宽。

5、石,膏掺入量与强度的关系:石膏可以延缓凝结时间,-•般只要掺加3-6%的石膏,就能使水泥凝结时间正常。

对于C3A含量较高的熟料,应多加一些石骨药,对于矿渣打硝酸盐水泥来说,石育又是促进水泥强度增长的激发剂。

但石育过多会影响水泥长期安定性,这是因为石育中的SO3水化铝酸钙作用而形成硫铝酸钙赊使体积显著增加,从而引起建设物的崩裂。

任何-•种水泥都有使其强度达到最高值的石育最佳掺入量。

石育最佳掺入量的范围,可通过石膏与水泥强度关系的试验来确定。

在日常生产中,通常用同一•熟料掺加不同百分比的石膏,磨到同一细度,然后进行凝结时间、安定性、各龄期强度情况综合考虑,选择在凝结时间正常、安定性合格时达到最高强度的SO3掺入量,作为生产中的控制指标。

6、大磨一小磨强度关系:上面所说的水泥各物料适宜的配合比、细度、石育掺加量等指标,大部分在化验室中通过小磨试验确定的,它与生产实际总有一定的差别。

大小磨磨制的水泥,虽然细度相同,但往往因大小磨机规格、研磨体的级配及粉磨方式等各方面的差异,样品的颗粒级配就不相同。

因此单纯用小磨的数据作为生产控制的指标,往往会出7现偏差。

因而,从小磨得出的数据只能作为生产控制指标的参考数据,应进一步找出大小磨之间的关系,对试验数据进行符合生产实际的修正后,才能正式成为实际生产中水泥的控制指标。

7、工艺条件对粉磨效率的影响(1)入磨物料的粒度;(2)入磨物料的易磨性;(3)入磨物料温度;(4)入磨物料水分;(5)产品细度与喂料的均匀性;(6)助磨剂;(7)磨机通风;(8)选粉效率与循环负荷;(9)料球比及磨内物料流速。

相关文档
最新文档