电子元件散热分析

合集下载

电子元件散热装置的烟囱效应分析

电子元件散热装置的烟囱效应分析

结构优 势来增 强 自然对 流 ,导致 散 热性 能差、体 积 笨重 等 问题 ,运 用计算流体 力学 ( D)数值 CF 模拟 的方 法 ,设 计具有 “ 囱效应 ”结构 的散 热 器, 简化散 热 器模 型结构 ,研 究高、 宽、热流 密 烟
度 的 变化 对 自然对流 的影响及三 者之 间 的 变化规律 , 用于指 导散 热 器的设计 。结 果表 明 :热流 密
LIJn J he g to , U in y n YU e—ig ig , IS n — LI Ja — o g , a M il n
(. co lfC e ir n hmi l n i ei , un zo 16 C ia 2 S h o o Meh nc l 1S h o h ms ya dC e c gn r g G agh u5 4 , hn ; .c o lf ca i o t aE e n 1 0 a
(. 南理工大学教育部传热强化与过程节能重点实验室 ,广州 5 4 ; 1 华 6 1 1 0 2华南理工大学机械 与汽车学院化机与安全研究所 ,广州 5 4 ) . 6 1 1 0

要 : 目前 中小型 电子 发热元件 的散热 以 自然对流散 热方 式为主 ,针 对 多数散热 器不 能发挥其
ee to ch ai g ee n s o i e i g mo to er dit rc n n tp a h d a tg fissr c u et l cr ni e tn l me t,c nsd rn s ft a a o a o ly t e a v n a e o tu t r o h t e h n enau a o v ci n, e di o p o a isp to b k n O o , i o utto a ui n a c t r lc n e to l a ngt o rhe td s i ai n, uly a d S n usng c mp ai n lf d l

pcb散热方案

pcb散热方案

PCB散热方案1. 引言在电子设备中,PCB(Printed Circuit Board,印刷电路板)起着连接和支持电子元器件的重要作用。

随着集成电路的不断发展,电子器件的功耗也逐渐增大,这导致了PCB散热成为一个重要的问题。

合理的PCB散热方案可以降低电子设备的温度,保证设备的稳定性和可靠性。

本文将介绍一些常见的PCB散热方案。

2. PCB设计中的热量分析在开始讨论PCB散热方案之前,我们首先需要了解PCB设计中的热量分析。

当电子设备中的电子元器件工作时,它们会产生一定的热量。

这些热量需要通过PCB来传导和散发,以保持设备的工作温度在可接受范围内。

通常,我们首先需要对PCB进行热量分析,确定热量的产生和分布情况。

这可以通过计算或仿真工具来完成。

热量分析的结果将帮助我们确定散热方案的重点区域和需求。

3. 常见的PCB散热方案3.1 散热片散热片是最常见的PCB散热解决方案之一。

散热片通常由铝制成,具有良好的热导率和散热性能。

将散热片与发热元件直接接触,可以有效地将热量从发热元件传导到散热片上,并通过散热片的表面散发出去。

在使用散热片时,需要注意以下几点:•散热片的尺寸和形状应根据实际需求进行选择,以保证其与发热元件的紧密接触。

•散热片应合理放置,以保证热量在整个PCB上的均匀分布。

•散热片应与PCB的接地层连接,以提高散热效果。

3.2 散热孔散热孔是另一种常见的PCB散热解决方案。

散热孔通常是通过在PCB上钻孔来实现的,可以增加PCB表面的散热面积,提高散热效果。

在使用散热孔时,需要注意以下几点:•散热孔的数量和位置应根据热量分布情况进行选择。

•散热孔的直径和间距应满足散热要求,并考虑到钻孔对PCB强度的影响。

3.3 散热贴片散热贴片是一种在PCB上粘贴的散热材料,可以提高PCB的散热效果。

散热贴片通常具有良好的热导率和散热性能,可以有效地将热量从发热元件传导到PCB 的其他区域,进而进行散热。

关于主要电子元器件的热分析_重点关注

关于主要电子元器件的热分析_重点关注

先计算整流二极管所需散热面积:查整流二极管的产品目录得知:pcmax=165w(tc=25℃),tjmax=125℃,正常工作功耗为15W(t=55℃),且该功率管使用了绝缘垫和硅油. θs+θc=2.0℃/w绝缘垫是用于半导体器件和散热器之间的绝缘.绝缘垫的热阻抗θs取决于绝缘材料的材质、厚度、面积。

下表中列出几种常用半导体封装形式的θs+θc;从(2)式可得θi=θj-c=(tjmax-tc)/pcmax-=(125-25)/165≒0.6℃/w从(1)式可得θj-a=(tjmax-ta)/pdc=(125-55)/12=5.83℃/w从(4)式可得θf=θj-a-(θi+θc+θs) ≒5.83-(2.0+0.6)=3.23℃/w根据上述计算散热器的热阻抗须选用3.3℃/w以下的散热器.从散热器散热面积设计图中可以查到:使用2mm厚的铝材至少需要230cm2,而4mm的铝板大约需要150cm2,因此需选用120*120*4mm 以上的铝散热器. 以上是单个整流桥所需散热面积。

而散热器实际设计的散热面积为340.86cm2,厚度最大为8mm,最小为1.3mm,平均厚度为(8+1.3)/2=4.65mm.实际散热器截面形状如下图所示,满足安装2个整流二极管的散热要求。

散热器根据散热器热阻抗与面积曲线关系的图可以推断出所需要的实际散热面积为150mm2左右。

散热器热阻抗θf与散热器的表面积、表面处理方式、散热器表面空气的风速、散热器与周围的温度差有关。

因此一般都会设法增强散热器的散热效果,主要的方法有增加散热器的表面积、设计合理的散热风道、增强散热器表面的风速。

散热器的散热面积设计值如下图所示:在有排气风扇的情况下,散热片的热阻如下表所示:大概的比列为递增20%左右.,即,当风速为200时,散热器的时间热阻为2.3.所以,安装2个整流二级管在有风扇的前提下散热是可以满足要求的。

验证:散热器表面积计算s=0.86w/(δt*α)(m2)δt: 散热器温度与周围环境温度(ta)的差(℃)α:热传导系数,是由空气的物理性质及空气流速决定。

电子设备的散热与温度控制技术

电子设备的散热与温度控制技术

电子设备的散热与温度控制技术随着科技的不断发展,电子设备在我们的日常生活中扮演着越来越重要的角色。

然而,电子设备在长时间使用过程中会产生大量的热量,这对设备的正常运行和寿命造成威胁。

因此,散热与温度控制技术成为了电子设备工程中的重要一环。

本文将详细介绍电子设备散热与温度控制技术的相关内容。

一、散热的重要性和原理1.1 散热的重要性电子设备在工作过程中会产生热量,如果不能及时散热,会导致设备温度升高,甚至严重损坏电子元件。

因此,散热是保证设备正常工作的必要条件。

1.2 散热的原理散热的主要原理包括传导、对流和辐射三种方式。

- 传导:热量通过物体的直接接触而传递。

这种方式适用于高功率电子元件与散热器之间的热传导。

- 对流:热量通过流体(通常是空气)的流动而传递。

这种方式适用于散热器通过风扇吹过冷却片,从而加快热量的散发。

- 辐射:热辐射通过热量中的电磁波辐射而传递。

这种方式适用于高温的散热部件或设备。

二、常见的散热与温度控制技术2.1 散热器散热器是一种常见的散热设备,用于增大表面积以便更好地散发热量。

常见的散热器设计包括散热片、散热管和风扇等。

散热器通常通过与电子元件直接接触或靠近电子元件来帮助传导和对流散热。

2.2 热管热管是一种独特的热传导装置,由封闭的金属管道、工作介质和蒸发器与冷凝器组成。

当热管的蒸发器受热时,工作介质会沸腾形成汽态。

汽态工作介质流向冷凝器,在那里会放出热量,并变成液态再返回蒸发器。

热管可以有效地传导热量,并把热量传递到散热器或其他冷却装置中。

2.3 导热绝缘材料导热绝缘材料常常被用于隔离电子元件和散热部件,以防止热量从电子元件传递到周围环境。

导热绝缘材料有助于集中热量传输,保护电子元件并提高散热效率。

2.4 温度传感器与控制系统温度传感器可以测量电子设备的温度,并将其转化为电信号输出。

控制系统可以根据温度信号控制散热器或其他冷却装置的运行,以维持设备的温度在安全可控范围内。

【Flotherm】电子散热仿真分析软件

【Flotherm】电子散热仿真分析软件

【Flotherm】电子散热仿真分析软件Simcenter Flotherm是一款专门针对电子器件/设备热设计而开发的仿真软件,目市场占有率高达80%以上,可以实现从元器件级、PCB板和模块级、系统整机级到环境级的热分析。

Simcenter Flotherm可以帮助工程师在产品设计初期,快速创建电子设备模型并进行分析,对多种系统设计方案进行评估,识别潜在的散热风险,规避样机试制风险,减少重复设计,缩短开发周期,降低成本。

在下面这个简单的示例中,我们可以看到仿真如何让工程师尝试不同的设计方案,并选择出具有最佳性能的方案。

FloTHERM 主要应用范围元器件级:芯片封装的散热分析;板级和模块级:PCB 板的热设计和散热模块的设计优化;系统级:机箱、机柜等系级散热方案的选择及优化、散热器件的选型;环境级:机房、外太空等大环境的热分析;FloTHERM 主要分析和计算模式传热分析:全面分析电子系统的热传导、对流及热辐射,分析电子设备内外的温度场和流场等;流场分析:具备自然冷却、强迫冷却及混合冷却的分析功能;瞬态分析:具备变化功耗和变化环境的瞬态分析功能能,不但可以进行开机、关机、故障的瞬态分析,同时也能进行变化功耗及环境变化情况下的瞬态分析;辐射计算:是目前唯一可以全部采用高精度 Monte-Carlo 方法进行辐射计算的电子散热仿真软件,非常适合密闭设备及外太空电子设备的计算;太阳辐射:可以自动确定太阳的入射角和辐射强度,自动计算太阳辐射的遮挡、吸收、反射、透射、折射,同时可以分别考虑太阳辐射的吸收率a 与红外发射率e的不同;液冷分析:可以分析含多种冷却介质的散热系统,如对液冷、风冷同时存在的电子设备或冷板等的热分析;网格技术:FloTHERM软件采用先进的非连续嵌入式网格技术和Cut Cell 网格切割技术。

FloTHERM软件配有专门针对电子散热行业的自动网格划分技术,可以确保工程师在网格设置上投入的时间远远低于其它软件。

电子元器件的封装及散热技术

电子元器件的封装及散热技术

电子元器件的封装及散热技术随着科技的不断进步,电子元器件也逐渐成为现代生活中必不可少的一部分。

电子元器件的封装与散热技术是其重要的组成部分,对于保障电子设备的性能和稳定性具有重要作用。

一、电子元器件封装的作用电子元器件通信传输置于电路中,起着承载电路功能和保护电路部分的作用。

其封装形式也各具特色,主要分为插件式与表面贴装两种。

插件式元器件曾经是电路板的主要元器件,其特点是可靠性高、散热性能好,但尺寸较大,布局合理情况下较为紧凑的电路板上并不适用。

随着表面贴装技术的发展,表面贴装元器件逐渐占据了市场主流地位。

表面贴装元器件具有体积小、重量轻、焊接方式多样、可复杂高密度布局等优点,内部性能也更加高效。

二、散热技术的重要性电子元器件的散热问题也是电子设备制作和运行中的重要难点之一。

随着元器件的发展,它们的功耗不断升高,更快的运行速度意味着需要更高的散热能力。

散热技术不好会带来诸多问题,如元器件寿命缩短、性能下降甚至完全失效,影响设备运行的稳定性和安全性。

三、散热技术的实现散热技术目前主要采用两种方式:被动式散热和主动式散热。

1、被动式散热被动式散热主要靠材料本身的特性来完成散热。

常用的材料有金属和绝缘材料,如铝、铜、硅和石墨等。

这些材料本身具有很高的热导率和热容量,能够更快地吸收和传递热量,达到散热的目的。

此外,增加元器件外壳的散热面积,采用热传递更好的接口材料都能提升散热能力。

2、主动式散热主动式散热是指电子设备内安装风扇或其他主动散热设备来提高散热效果。

风扇是目前最为常用的主动散热设备。

其工作原理是通过电机驱动叶片迅速旋转,带走元器件表面的热量。

由于采用风扇进行散热的空气流通较为充分,因此风扇散热能力大且稳定。

除风扇外,还有其他一些主动散热技术,如水冷散热技术、热管散热技术等。

总之,电子元器件的封装与散热是保障其性能和稳定性的重要组成部分。

在元器件制造过程中,合理选择封装形式和散热技术,对电子设备的发展至关重要。

散热方案分析报告

散热方案分析报告

散热方案分析报告一、背景介绍在现代电子设备的发展中,由于电子元器件的工作温度较高,散热技术的发展成为电子产品设计中的重要一环。

在本次报告中,将对散热方案进行深入分析,探讨其在电子产品中的重要性以及各种散热方案的优缺点。

二、散热方案的重要性在电子设备的工作过程中,电子元器件会产生较大的热量。

若无法及时把这些热量散出,电子元器件的工作温度会迅速升高,进而引发性能下降、寿命缩短、故障率增加等一系列问题。

因此,如何更好地散热以保证电子元器件的正常工作成为了电子产品设计中至关重要的环节。

三、散热方案的分类电子产品中常见的散热方案主要分为以下几类:1. 自然对流散热自然对流散热是指通过空气对流来传递热量的一种散热方式。

它的工作原理是通过将待散热元件与周围空气接触,利用空气的密度差异产生空气流动,进而将热量带走,从而实现散热的效果。

自然对流散热的优点是成本低、功耗小,且无噪音;缺点是散热效果较差,多用于散热要求不太高的电子产品中。

2. 强制对流散热强制对流散热是指通过空气强制对流来传递热量的一种散热方式。

它通过电子风扇等设备产生强制空气流动,进而加强空气流动,提高散热效果。

强制对流散热的优点是散热效果较好,适合于散热要求较高的电子产品使用;缺点是功耗较高且产生噪音。

3. 热管散热热管散热是一种通过利用工作介质(常见的是液态水)蒸发和凝结的特性来实现热量传递的散热方式。

其优点是传热效果好、可靠性高、噪音小;缺点是成本高、应用范围相对较窄。

4. 导热界面材料散热导热界面材料散热是一种通过将导热材料放置在散热元件和散热设备之间的方式来实现热量传递的散热方式。

其优点是原理简单、成本较低;缺点是散热效果较弱。

四、散热方案的选择在选用散热方案时,需要根据电子产品的实际情况和散热要求进行综合考虑。

一般来说,对于散热要求不太严格的电子产品,可采用自然对流散热和导热界面材料散热;对于散热要求较高的电子产品,应优先考虑强制对流散热和热管散热。

ANSYS经典案例分析

ANSYS经典案例分析

ANSYS经典案例分析ANSYS(Analysis System)是世界上应用广泛的有限元分析软件之一、它在数值仿真领域拥有广泛的应用,可以解决多种工程问题,包括结构力学、流体动力学、电磁学、热传导等。

本文将分析ANSYS的经典案例,并介绍其在不同领域的应用。

一、结构力学领域1.案例一:汽车碰撞分析汽车碰撞是一个重要的安全问题,对车辆和乘客都有很大的影响。

利用ANSYS进行碰撞分析可以模拟不同类型车辆的碰撞过程,并预测车辆结构的变形情况以及乘客的安全性能。

通过这些分析结果,可以指导汽车制造商改进车辆结构,提高车辆的碰撞安全性能。

2.案例二:建筑结构分析建筑结构的合理性和稳定性对于保证建筑物的安全和耐久性至关重要。

ANSYS可以对建筑结构进行强度和刚度的分析,评估结构的稳定性和安全性能。

例如,可以通过ANSYS分析大楼的地震响应,预测结构的位移和变形情况,以及评估建筑物在地震中的安全性。

二、流体动力学领域1.案例一:空气动力学分析空气动力学分析对于飞行器设计和改进具有重要意义。

利用ANSYS可以模拟飞机在不同速度下的气动性能,预测飞机的升阻比、空气动力学力矩等参数。

通过这些分析结果,可以优化飞机的设计,提高飞行性能和燃油效率。

2.案例二:水动力学分析水动力学分析对于船舶和海洋工程设计至关重要。

利用ANSYS可以模拟船舶在不同海况下的运动特性,预测船舶的速度、稳定性和抗浪性能。

通过这些分析结果,可以优化船舶的设计,提高船舶的性能和安全性能。

三、电磁学领域1.案例一:电力设备分析电力设备的稳定性和运行性能对电力系统的正常运行至关重要。

利用ANSYS可以模拟电力设备的电磁特性,预测电磁场分布、电磁场强度和电流密度等参数。

通过这些分析结果,可以评估电力设备的稳定性和运行性能,并指导电力系统的设计和改进。

2.案例二:电磁干扰分析电磁干扰是电子设备设计中常见的问题,特别是在通信和雷达系统中。

利用ANSYS可以模拟电磁干扰的传播路径和强度,预测设备的抗干扰能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

芯片散热-散热器尺寸
早期芯片散热器的尺寸非常小甚至 比处理器本身还小,但是之后越来 越大,通过下面一组图片就能看出 来,这组图片分别是不同时期CPU 散热器的尺寸。
芯片散热-散热器材料
散热器的材质构成上现在最主流的就 是铜和铝,当然都是并不是纯金属,是 进行过抗氧化处理的合金。两种材料相 比其它金属更具价格优势,而且产量高 材料源头有保障。铝制特点是轻盈、价 格相对低廉,具备良好的导热效果与储 热效果,容易加工。铜也类似不过导热 效果更好,而且单位体积下质量高,储 热量大所以更稳定。
根据不同的应用环境采用不同的冷却方法,为用户选择和设计最 经济可靠的方案。冷却方法有空气对流热交换,空调,强迫通风 和负压通风等。 1.空调:置于机箱内部,调节内部温度低于户外温度,它适合大于 700W的高热耗设备,但其缺点为产品和运行成本高,且交流停电 时空调不工作。 2.强迫通风:用温控直流风扇吸进外部空气来驱走设备内的热量, 适合于低热耗的设备。是一种低成本的散热方案,但也把恶劣的 外部空气带进设备内部而影响设备的性能和运行安全,还需定期 维护滤网。较适合蓄电池箱的散热设计。
户外电子设备散热-户外LED灯散热
安装在户外的大型LED显示屏温度随着工 作时间而变化,工作时间越长,其产生的 热量也越高,加之户外高温,易造成led 显示屏因局部温度过高而损坏。 这时就得给这些传统led箱体显示屏加些 散热设备,然而这无疑又增加了led显示 屏运营商的成本。这种传统的led显示屏 看似节能,然其辅助的散热设备并未给它 带来什么真正意义上的节能。所以,散热 是我们选购led显示屏的一个重要判断标 准。为此,不少led显示屏厂家纷纷寻求 改善led显示屏散热的方法,下面就简单 地介绍一些散热方式。
LED散热-风扇强制散热
右边LED灯具加装Sunon LED 散热模组来强制散热,其 heat sink温度(53.1℃) 左边未装设散热模组的heat sink温度(73.7℃)比较, 两者温度相差20.6℃。
LED散热-热管散热
散热模块 散热模块 蒸汽流 蒸汽流 导热蒸发模块 多孔金属吸液芯 导热蒸发块 多孔金属吸液芯
LED散热-传统的型材散热
这是现在市面上流行的散热方法, 把铝型材做成太阳花,梳子形等造 型。把芯片固定到散热器底部,利 用金属的导热性把热传导到鳍片上, 靠空气对流把热量带走。常用的材 料是铝,比铝导热性能好的材质有 铜和银,可是参考性价比,铝是最 合适的。对于小功率来说,铝可以 做到散热,但对于大功率来说,铝 的散热效率就不够了。所以就出现 了以下两种形式:加风扇强制散热 和热管技术
LED散热-散热设计
散热成本要维持在5%,实际散热设计很简单,把住两个方向:
1.芯片与外散热器件路径 越短越好,越短你的散热 设计就越好; 2.散热阻力,就是要有足 够的散热传导路径同时也 要有足够的‘散热道路’. 这部分成本主要在结构, 用于散热成本并不多
几种常见的户外电子设备
户外电子设备散热
户外电子设备散热-户外LED灯散热途径
1、利用灯壳外形,制造出对流空气,这是最低成本的加强 散热方式。
2、在塑料外壳注塑时填充导热材料,增加塑料外壳导热、 散热能力。
3、用铝散热鳍片做为外壳的一部分来增加散热面积这是最 常见的散热方式 。 4、表面辐射散热处理,灯壳表面做辐射散热处理,简单的 就是涂抹辐射散热漆,可以将热量用辐射方式带离灯壳表面。
导热系数 k(W/(m· K)) 银 429 铜 401 金 317 铝 237 铁 80
芯片散热-散热器结构
热管鳍片式散热器(主流) 热管散热器其实也是一种铜铝结合的设计, 上面这款散热器是最标准的塔式侧吹结构, 采用铜底座和铜热管配合铝制鳍片散热的方 式散热。热管的导热效率很比同尺寸铜管强 40倍以上,所以这一设计目前无法逾越。
户外电子设备散热-机箱散热
3.空气热交换:用温控直流风扇分别驱动内外部空气循环, 内部的热气与外部的冷空气在隔离的散热器上产生热交 换,而设备全封闭。此散热方式价格适中,适合于热耗 200~1000W的设备。但其缺点是内部温度总是高于外 部温度。通常设计在摄氏20度以下。 4.双层壳体设计:主设备机箱的门、侧板及背板采用双层 壳体以减小太阳辐射的影响。
芯片散热
早在上个世纪中期国内就有散热器产品,只不过 当时的散热主要是工业上的。PC行业中的散热领 域则是随着芯片的发展而变化,不知不觉中发展 成如今的规模。 Intel i486处理器。这款处理器集成了120万个晶 体管,时钟频率为50MHz。但是由于频率越来越 高本身制程工艺不行,阻碍了处理器的进一步发 展,这其中就包括发热量高的问题,因此在部分 486上出现了散热片的概念。 而现今的处理器频率都在2.0Ghz以上。 用1GHz=1000MHz换算 那么计算处理能力提高了40倍以上 那他们的散热情况呢?
户外电子设备散热-机箱散热
3.左侧的进气孔通常进冷风,右侧顶罩排出应经过交换的热风, 户外机柜内循环为使用风扇吸入机柜内部的热风,经过户外机 柜的散热系统交换机柜内部的热量,交换后的冷风从柜体的左 侧出风口出风,形成柜体的内部循环,给柜体内部的设备散热, 保证户外机柜能够正常的运转。
户外电子设备散热-机箱散热
一体化水冷散热器 它的造价高昂,尽管如此,水冷散热器 利用了液体流动导热原理,充分体现出 主动散热概念,因此散热基础更好。
目前有许多户外电子设备恶劣外 部环境下,它们遭受太阳热辐射 和设备本身发热影响,消除这两 种热源影响对电子设备可靠工作 至关重要。而温度和湿度又是电 信电子设备失效两个主要原因。 电子系统本身可能并没有包含对 抗恶劣环境条件设计,为了满足 在户内和户外环境下保护电子设 备需要,业界在处理散热问题方 面投入了大量时间和精力。
LED散热
户外设备散热 芯片散热
LED散热
LED照明发展到今天,亮度已经不 是问题了,可是由于PN结本身的问 题,光电转化率只有30%左右,其 余70%转化为热能。而现在大功率 的照明设备尤为明显,所以现在 LED照明的散热问题已经成为行业 发展的瓶颈。为了突破这个瓶颈, 工程师们做了很多应对方案,我们 就对现在市面上流行的散热技术讨 论一下。
蒸发腔室
蒸发腔室
分体回路式散热系统
重力式散热系统
ห้องสมุดไป่ตู้
LED散热-其他散热形式
导热塑料,导热陶瓷,热辐射处理 、微槽群复合相变技术
2011年由中国科学院热物理研究所和北京瑞 德桑节能科技有限公司合作生产的大功率 LED散热器正式入市销售。它是利用微细尺 度槽群结构热沉的高强度复合相变强化换热 机理进行冷却。既保留了其他散热技术的优 势,又没有其他散热技术的缺点。冷却能力 超强:取热热流密度达400W/㎡,比热管约 高100倍;重量轻,体积小:重量不到现有 散热器的25%,体积小20%左右;无功耗冷 却:无需风扇或水泵,没有冷却用能耗;可 靠性高:没有外部环节,提高了整体可靠性。
户外电子设备散热-机箱散热
户外机箱机柜散热 1.一般户外机箱机柜结构是双层的, 其内部结构常会填充隔热材料主体 结构采用焊接技术,内外表皮使用 静电喷涂处理。
2.它的散热通道通常是从左侧风扇 从外部抽取空气通过百叶窗到达散 热片,然后从机柜的右侧将风排出, 机柜内侧循环风扇把热量从模块地 带传到机柜罩散热片,其其顶盖可 以避免太阳辐射对里面空气产生加 热影响。
LED散热-强制散热
由于现在的集成芯片和电脑的CPU很相似, 所以,把风扇加到散热器上就应运而生了。 加上风扇之后,散热效果有一定的改善, 但是由于铝本身的导热速率不高,导致散 热效率提高并不是很多,也不能解决大功 率散热的要求。而且风扇还有一个致命的 缺点:大功率照明所处的环境普遍比较恶 劣,风扇的可靠性令人堪忧。路灯,工矿 灯,码头灯等,风吹,日晒,雨淋,粉尘, 腐蚀,风扇抗的住吗?另外,LED是节能 产品,可是散热方面又再次耗能,这将使 LED失去节能的优势。
相关文档
最新文档