贴片式功率器件的散热计

贴片式功率器件的散热计
贴片式功率器件的散热计

贴片式功率器件的散热计算

Heat Dispersion Calculation of Surface Mounted Power Device

北京航空航天大学方佩敏

自上世纪90年代开始,贴片式封装器件逐步替代了穿孔式封装器件。近年来,除少数大功率器件还采用穿孔式封装外,极大部分器件都采用贴片式(SMD)封装。由于贴片式功率器件封装尺寸小,不能采用加散热片的方法来散热,只能用印制板的敷铜层作为散热(一定的面积)。因此在贴片式功率器件的应用中需要在印制板(PCB)布局前,考虑所需的敷铜层散热面积。

本文介绍Micrel 公司推荐的一种简单计算方法,它可以根据选定的功率器件和使用的条件进行计算,并用查图表的方式得出所需的散热敷铜层的面积。由于实际情况较复杂,会影响到计算的正确性,比如使用印制板的厚度尺寸不同、敷铜层的厚度尺寸不同、印制板走线的宽度不同及机壳的容积大小和有无散热孔等,所以这种计算是一种粗略的估算。计算过程中,可以发现设定的使用条件是否合理,选择器件的封装尺寸大小是否能满足散热的需求。

两种过热保护

功率器件在工作过程中会产生热量使管芯的温度升高,在最大的功率输出时产生的热量最大,使管芯的温度升得最高。如果散热条件不佳,则管芯的结温超过150℃时,使器件损坏(一般称为“烧掉”)。如果散热条件良好,但使用过程中出现故障(如负载发生局部短路、线性稳压电源发生调整管短路等),则输出功率超过最大允许输出功率,会使功率器件损坏。功率器件设计者设计了两种过热保护措施:自动热调节和过热关闭保护,提高了器件的安全性及可靠性。

用户在设计PCB 散热面积时,要保证在正常最大输出功率时不出现自动热调节(自动减小输出功率)和热关闭(无输出)现象。只有在出现故障时才出现过热保护。

散热与热阻

功率器件在工作时,管芯的热量通过封装材料传导到管壳、经管壳传到敷铜板散热面,再由散热面传到环境空气中。这种热的传导过程中会有一定的热阻,如管芯传到管壳的热阻JC θ,管壳传到敷铜板的热阻CS θ,敷铜板散热面传到环境控制的热阻SA θ,这种热的传导(热的流向)

如图1所示,图中管芯的温度结温为J T 、环境空气的温度为A T 。温度由高的流向低的,从管芯到环境空气总的热阻JA

θ与热传导过程的各热阻的关系为:

SA CS JC JA θθθθ++=⑴

各种热阻的单位是℃/W。热阻大,散热差。

管芯

环境

空气

J

T A

T JA

θJC

θCS

θSA

θ热的流向

图1

各种不同的封装,如SOT23-3、SOT223-3和SOT89-3等都有一定的封装尺寸及不同封装结构,其JC θ都不同。同样封装及引脚数时,不同功能的器件,其JC θ是基本相同的(同样封装中因管芯尺寸不同,JC θ略有差别)。

管壳与敷铜板的接触情况不同:管壳与敷铜板紧贴着(如SOT23-3、SOIC-8),另有一些封装在器件底面有金属散热垫(如SOT89、DPAK3和DFN 封装),它直接与敷铜板焊在一起,利于散热。两种情况下CS θ不同,管壳不与敷铜板焊接的,根据接触情况不同,其C/W 2~5.0θCS °=;管壳与敷铜板焊接的0θCS =。

热阻SA θ与散热的敷铜层面积、单面散热或双面散热及敷铜板的铜层厚度有关,另外与有无通风条件有关。

热阻JA θ与最大允许的结温J T 、环境空气的温度A T 及最大的功耗Dmax P 的关系式为:

max

D A J JA P T T θ?=

(单位:℃/W)⑵

例如,最大允许结温为125℃,在环境温度50℃条件下工作,最大功耗为1.5W,代入上式可得C/W 50θJA

°=。

计算表明:最大功耗为1.5W 时,在50℃的环境温度下工作,要使结温不超过125℃,其热阻JA

θ要≤50℃/W。

热阻SA θ及单层敷铜板面积SA θ(℃/W)

Micrel 公司给出了SA θ与所需的单层敷铜板、水平放置、铜层上有镀层的敷铜层的面积(以

2mm 为单位)特性图,

如图2所示,实线的曲线是无风冷(自然冷却)的特性,虚线是有m/sec 3.1风速气流风冷的特性。

例如,已计算出C/W 25θSA

°=时,若是

自然冷却,可按图2实线找出其所需的面积为

2mm 3500(约

mm 59mm 59×);若C/W 30θSA °=,则所需

面积为2mm 2500(

mm 50mm 50×);若C/W 30θSA °=,有

m/sec 3.1的气流冷却,

则其面积仅需2mm 1000(mm 6.31mm 6.31×)。

从公式(1)及公式(2)可知,SA θ可用下式表达

)θθ(P T T θCS JC Dmax

A

J SA +?=

在选定功率器件的封装后,可以找到该封装的JC θ值,并可以确定其CS θ值。在器件资料中可找到最大允许结温J T 。根据设计中提出使用器件的条件,如输入电压IN V 、输出电压OUT V 及输出电流OUT I 等参数及使用的环境温度A T ,可计算出Dmax P 。则公式(3)的SA θ值可求得,相应的敷铜板面积也可以求出。下面将举一些例子说明计算的步骤。

TO-263封装

设计一线性稳压器。已知的条件:V 0.5V OUT =,V 0.9V IN(max)=,V 6.5V IN(min)=,

mA 700I OUT =,工作环境温度最高C 50°。

选择MIC2937A-5.0BU 低压差线性稳压器,其主要参数:IN V 范围可达26V,输出电流OUT I 可达mA 750,

地电流mA 15I GND =,输出电压精度%2V 0.5±,最高结温C 125T J °=,3引脚TO-263封装(其C/W 3θJC °=)。其参数能满足要求。

散热计算:

1)最大输出功率计算

()GND

IN(max)OUT OUT(min)IN(max)Dmax I V I V V P ×+×?=W

3)mA 15V 9(A 7.0)V 9.4V 9(=×+×?=2)要求的热阻JA θ计算

()C/W 25W

3C 50C 125P T T θDmax A J JA °=°?°=?=

3)SA θ的计算

()

CS JC JA SA θθθθ+?=因为TO-263的散热垫直接焊在敷铜板上,所以0θCS =,则

C/W

22C/W 3C/W 25θθθJC JA SA °=°?°=?=按图2的实线曲线图(无风冷)要求的敷铜层的面积为2mm 5000,可取mm 71mm 71×。

两种封装的选择

要满足已知条件:V 0.5V OUT =、V 14V IN(max)=、V 6.5V IN(min)=、mA 150I OUT =、

C 50T A(max)°=的线性稳压器型号是 5.0BS MIC5201?,它有两种封装:8SO ?及。223SOT ?。

选择哪一种封装可按散热计算后确定。

根据 5.0BS MIC5201?资料可知:最大结温C 125T J °=,8SO ?封装的C/W 100θJC °=,

mA 8I GND =。

⑴Dmax P 的计算:

()()W

46.10.08A 14V A 15.0V 5V 14P Dmax =×+×?=⑵JA θ的计算:

()C/W

3.51W 46.1/C 50C 125θJA °=°?°=⑶SA θ计算:

C/W

48.7C/W 100C/W 3.51θSA °?=°?°=计算得SA θ是负数,说明不能满足散热要求,即8SO ?封装的 5.0BS MIC5201?不能用。采用223SOT ?的计算:

223SOT ?的C/W 15θJC °=,它的背面金属散热垫直接焊在敷铜板上,所以0θCS =,并且该封装的mA 5.1I GND =。

⑴Dmax P 的计算:

()()W

4.115mA 14V A 1

5.0V 5V 14P Dmax =×+×?=⑵()C/W 54W 4.1/C 50C 125θJA °=°?°=⑶C/W 39C/W 15C/W 54θSA °=°?°=可从图2中找出敷铜层面积为2mm 1400。

CN5611大功率LED 驱动器的散热计算

CN5611是一种大功率LED 驱动器。

其工作电压范围V 6~7.2,

输出恒流驱动电流可设定,最大电流可达A 2.1;输出电流精度%8±;最高结温C 125°(超过C 125°有热关断保护),5引脚SOT89封装,

C/W 10θJC °=,其典型应用电路如图3所示。图中ISET R 是驱动电流设定电阻,内部的

MOSFET N ?是控制

驱动电流的功率器件,这里作其散热计算(确定所需的敷铜层散热面积)。已知条件:电源电压

V 2.0V 5V DD ±=、驱动的白光LED 的电流为mA 700,其正向压降F V 范围为V 8.3~V 2.3,最

大环境温度C

50°⑴Dmax P 的计算(由图3可知):

()() 1.5W

mA 750V 2.3V 2.5I V V P LEDmax Fmin DDmax Dmax =×?=×?=⑵JA θ的计算:

()C/W

50W 5.1/C 50C 125θJA °=°?°=⑶SA θ的计算:

()

CS JC JA SA θθθθ+?=因为SOT89的底面散热垫直接焊在敷铜板上,其0θCS =,故

C/W 40C/W 10C/W 50θθθJC JA SA °=°?°=?=。

根据图2查得敷铜层面积为2

mm 1600(可采用mm 40mm 40×面积作散热用)。

以上的散热面积是单面敷铜板,若采用双面敷铜板散热,其面积可乘以7.0~6.0计算。例如上例中计算面积为2

mm 1600,若采用双面敷铜板散热,并钻较多金属化孔(使上下敷铜层金属相连接),增加上下层空气流动,则上下层面积和为2mm 1120~960(与印制板厚度有关)。

不同封装的JC θ值

在功率器件资料中有的给出JC θ值,但有的给出A J 值或给出器件的最大功耗值(某一温度下的值)。这里收集了一些不同封装的JC θ值供参考。要说明的是,同一种封装其引脚数有不同,则JC θ也有一些差别;另外,虽然封装相同,但管芯尺寸不同,其JC θ也有差别,这种差别在估算中影响不大,不同封装的JC θ如表1所示。

封装C/W)

(θJC °封装

C/W)

(θJC °SO-8100TO-252、DPAK、TO263

2-3SOT-23-3110-130MSOP-839.1

SOT-23-580-82SOT-895引脚10,3引脚12

SOT-223153×3mm DFN 12DO

PAK

1.5-1.8

8引脚μMAX

42

从表1也可以看出:封装的底面有金属散热垫的器件其JC θ较小。

结束语

不同的半导体器件厂给出的贴片式功率器件的散热计算方法大致相同,例如Technology Linear 公司的计算方法差别仅仅是给出了不同的双面散热面积的JC θ值,最后计算出的

J T 要满足小于最大允许结温值。

由于JC θ值可能有一些差值,还加上机壳的结构、容积及油污通气孔等差别,所以是一种估算,最后还要做实验来修正。

参考:https://www.360docs.net/doc/9411085809.html,/p-11944029.html 贴片式功率器件的散热计算

功率器件热管散热器介绍

功率器件热管散热器介绍 随着功率器件如绝缘栅双极晶体管IGBT及电力电子设备的日趋流行向小型化、大功率和高精度方面发展,除了需要采用先进的元器件和设计新型先进的电子线路外,还需要缩小散热器的体积。因此,通常使用的铝型材散热器或叉指型散热器就很难满足功率器件散热的要求。热管是一种新型高效的传热元件,因为它利用了沸腾吸热和凝结放热两种最强烈的传热机理,因而表现出优异的传热特性,即传热效率高和沿轴向的等温特性好,其热耗散效率比同质量的铜散热器大2~3个数量级。 以热管为散热器件的热管散热器在功率电子设备中的应用是近年才发展起来的一种先进的 高效散热器件。由于热管散热器具有体积小、重量轻、散热效率高等优点,既能提高大功率管的设计使用功率,大大地延长功率管的寿命,简化功率管的散热设计,又能减少功率电子设备的噪音,提高设备的可靠性,降低成本。因此,热管散热器越来越受人们的重视。1.热管的工作原理 热管是密闭封焊的蒸发冷却器件。热管结构包括一个具有毛细管作用的吸液芯和小量能汽化的液体。热量施加于热管的一端,引起液体蒸发,蒸汽流动到热管的另一端,在那里冷凝,释放出潜热。然后,冷凝了的液体通过吸液芯,由毛细管作用流回蒸发端,完成循环如下图所示。

2.热管散热器的主要性能和参数 RGS-Z系列自冷式热管散热器(水平式)和RGS-F系列风冷式热管散热器(重力式) 的性能参数有:散热功率、热阻R Tf、等温性、管壁温升△Tfa、环境工作温度、寿命、安装方式等。现将其中主要参数介绍如下; (1)散热功率 当热管散热器加入热源功率Pc,管壁温升△Tfa不超过50℃时,此热源功率Pc即为该热管散热器的散热功率。 (2)热阻R Tf 当热管散热器加入热源功率的时候,管壁温度Tf和环境温度Ta之差与所加的热功率Pc之比为热管散热器的热阻R Tf,如下式。热管散热器的热阻特性与型材和叉指型散热器的热阻特性相似。在额定的散热功率范围内,热阻R Tf将随热源功率Pc的增加而略有下降,但基本上为一条平坦直线: (3)等温性 在热管散热器的某—端(称加热端)加热源功率Pc,待热平衡后,另一端(称冷端)相对应的地方非常接近于热端的温度,此时,热管散热器的温度梯度相当小,也就是说热管散热器进入了热管工作状态。 (4)管壁温升△Tfa 在额定散热功率内,热管散热器管壁温升△Tfa将随热源功率增加而上外。上升的规律可由下式表示。在允许的范围内,只要热源功率不变,管壁温升是一定的:

功率器件热设计及散热计算

功率器件热设计及散热计算 2007-03-29 00:18 本文介绍了功率器件的热性能参数,并根据实际工作经验,阐述了功 率器件的热设计方法和散热器的合理选择。 热设计;功率器件;散热计算;散热器选择 当前,电子设备的主要失效形式就是热失效。据统计,电子设备的失效有 55%是温度超过规定值引起的,随着温度的增加,电子设备的失效率呈指数增长。 所以,功率器件热设计是电子设备结构设计中不可忽略的一个环节,直接决定了 产品的成功与否,良好的热设计是保证设备运行稳定可靠的基础。 功率器件受到的热应力可来自器件内部,也可来自器件外部。若器件的散

热能力有限,则功率的耗散就会造成器件内部芯片有源区温度上升及结温升高, 使得器件可靠性降低,无法安全工作。表征功率器件热能力的参数主要有结温和 热阻。 器件的有源区可以是结型器件(如晶体管)的PN结区、场效应器件的沟道区,也可以是集成电路的扩散电阻或薄膜电阻等。当结温Tj高于周围环境温度Ta时,热量通过温差形成扩散热流,由芯片通过管壳向外散发,散发出的热量随着温差(Tj-Ta)的增大而增大。为了保证器件能够长期正常工作,必须规定一 个最高允许结温 Tj max。Tj max的大小是根据器件的芯片材料、封装材料和可 靠性要求确定的。 功率器件的散热能力通常用热阻表征,记为Rt,热阻越大,则散热能力越差。热阻又分为内热阻和外热阻:内热阻是器件自身固有的热阻,与管芯、外壳材料的导热率、厚度和截面积以及加工工艺等有关;外热阻则与管壳封装的形式 有关。一般来说,管壳面积越大,则外热阻越小。金属管壳的外热阻明显低于塑 封管壳的外热阻。 当功率器件的功率耗散达到一定程度时,器件的结温升高,系统的可靠性 降低,为了提高可靠性,应进行功率器件的热设计。 功率器件热设计主要是防止器件出现过热或温度交变引起的热失效,可分

半导体功率器件的散热设计

半导体功率器件的散热设计 摘要:本文主要阐述功率器件的散热原理及加装散热器的必要性,介绍如何正确选用散热器。 关键词:结温;散热器;散热;热阻 Abstrct: This papermainly expounds the necessityandprinciple of powerdevices withheatradiator,introduceshow to choose the rightradiator. Keyword: junction temperature radiator coolingthermalresistance 引言 半导体功率器件是多数电子设备中的关键器件,其工作状态的好坏直接影响整机可靠性。相关实验已经证明,器件工作温度直接影响其自身的可靠性,但是在功率转换电路中,器件自身会消耗一部分能量,这部分能量会转换为热量,使器件的管芯发热、结温升高,当结温超过器件自身规定的允许值时,电流会急剧增大而使晶体管烧毁。要保证结温不超过允许值,就必须将产生的热量有效的散发出去。 要解决散热问题可以从如下两方面入手,一是通过优化设计方式来减少发热量,如采用通态压降低的器件;另一方面是利用传导、对流、辐射的传热原理,将热量快速释放到周围环境中去,以减少热积累,使器件工作温度降低,如采用合适的散热器。 本文主要针对上述第二个方面进行探讨,分别从热设计相关概念、散热过程、正确选用散热器方法以上三个方面进行分析,以实例介绍方法的有效性。 散热过程是一个非常复杂的过程,影响因素较多,本文仅针对关键参数进行介绍,所有计算均为理想计算,与实际情况会存在一定的偏差。 一、热设计相关参数 1.耗散功率 在电路中功率器件自身消耗的功率。 2.热阻 热量在热流路径上遇到的阻力,反映介质或介质间的传热能力,即1W的热量所引起的温升大小,单位为℃/W或K/W。

SVG功率器件散热结构设计

SVG功率器件散热结构设计 摘要:随着现代电力电子设备等非线性负荷大量接入电网,使电网供电质量受到严重影响。其中,各种电力电子开关器件的大量应用和负载的频繁波动是最主要的干扰源,导致了一系列不良影响。无功功率的存在,使得电力输电系统和重工业应用领域面临着各种各样的问题和挑战。电力输配电面临电压波动、低功率因数以及电压失稳等问题;重工业应用,特别是快速、冲击性负载,可能导致供电网的电压不平衡、电压波动和闪变等问题。 关键词:散热结构设计SVG Abstract: with the modern power electronic equipment nonlinear load power grid of access, make the power supply quality have been affected. Among them, the of all kinds of power electronic switching device application and load of the frequent volatility is the most main interference sources, led to a series of adverse effects. Reactive power and allows for the existence of electric power transmission system and heavy industry application fields faced all kinds of problems and challenges. Electricity transmission and distribution face voltage fluctuation, low power factor and the voltage stability; Heavy industry application, especially fast, impact load, can lead to GongDianWang voltage unbalance, voltage fluctuations and flicker. Keywords: heat dissipation structure design SVG 引言: SVG是当今最先进的无功补偿装置,能对动态无功负荷的功率因数校正;改善电压调整;提高电力系统的静态和动态稳定性,阻尼功率振荡;降低过电压;减少电压闪烁;减少电压和电流的不平衡。 SVG装置作为电力电子综合应用的大型设备,拥有复杂的电气、电子、控制系统,同时其结构设计的质量直接影响设备性能的好坏。大功率、小型化、轻型化是未来SVG的发展方向。在拓扑结构相似的情况下,产品结构设计将成为SVG生产商提高竞争力的主要因素。国内厂商在结构设计方面的研究与在电力电子应用、控制策略、主电路拓扑结构等方面的研究,相比之下,前者比后者相对滞后。虽然各厂家也致力于产品的结构优化设计,但未引起足够重视,缺乏相关的理论研究。针对这种现状,论文着重介绍了SVG功率器件的散热结构设计的常规思路和案例介绍。 论文以SVG结构设计案例为主线,首先介绍了SVG的一次工作原理以及主要器件;

散热器的选型与计算

散热器的选型与计算 以7805为例说明问题. 设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出. 正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-T a)/Pd Tjmax :芯组最大结温150℃ Ta :环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率-输出功率 ={24×0.75+(-24)×(-0.25)}-9.8×0.25×2 =5.5℃/W

总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d:散热器厚度cm A:散热器面积cm2 C:修正因子取1 按现有散热器考虑,d=1.0A=17.6×7+17.6×1×13 算得散热器热阻RQd-a=4.1℃/W, 散热器选择及散热计算 目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散

电力电子器件

新型电力电子器件 电力电子器件(Power Electronic Device)又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。又称功率电子器件。20世纪50年代,电力电子器件主要是汞弧闸流管和大功率电子管。60年代发展起来的晶闸管,因其工作可靠、寿命长、体积小、开关速度快,而在电力电子电路中得到广泛应用。70年代初期,已逐步取代了汞弧闸流管。80年代,普通晶闸管的开关电流已达数千安,能承受的正、反向工作电压达数千伏。在此基础上,为适应电力电子技术发展的需要,又开发出门极可关断晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管等一系列派生器件,以及单极型MOS功率场效应晶体管、双极型功率晶体管、静电感应晶闸管、功能组合模块和功率集成电路等新型电力电子器件。 各种电力电子器件均具有导通和阻断两种工作特性。功率二极管是二端(阴极和阳极)器件,其器件电流由伏安特性决定,除了改变加在二端间的电压外,无法控制其阳极电流,故称不可控器件。普通晶闸管是三端器件,其门极信号能控制元件的导通,但不能控制其关断,称半控型器件。可关断晶闸管、功率晶体管等器件,其门极信号既能控制器件的导通,又能控制其关断,称全控型器件。后两类器件控制灵活,电路简单,开关速度快,广泛应用于整流、逆变、斩波电路中,是电动机调速、发电机励磁、感应加热、电镀、电解电源、直接输电等电力电子装置中的核心部件。这些器件构成装置不仅体积小、工作可靠,而且节能效果十分明显(一般可节电10%~40%)。 单个电力电子器件能承受的正、反向电压是一定的,能通过的电流大小也是一定的。因此,由单个电力电子器件组成的电力电子装置容量受到限制。所以,在实用中多用几个电力电子器件串联或并联形成组件,其耐压和通流的能力可以成倍地提高,从而可极大地增加电力电子装置的容量。器件串联时,希望各元件能承受同样的正、反向电压;并联时则希望各元件能分担同样的电流。但由于器件的个异性,串、并联时,各器件并不能完全均匀地分担电压和电流。所以,在电力电子器件串联时,要采取均压措施;在并联时,要采取均流措施。 电力电子器件工作时,会因功率损耗引起器件发热、升温。器件温度过高将缩短寿命,甚至烧毁,这是限制电力电子器件电流、电压容量的主要原因。为此,必须考虑器件的冷却问题。常用冷却方式有自冷式、风冷式、液冷式(包括油冷式、水冷式)和蒸发冷却式等。 1. 超大功率晶闸管 晶闸管(SCR)自问世以来,其功率容量提高了近3000倍。现在许多国家已能稳定生产8kV / 4kA的晶闸管。日本现在已投产8kV / 4kA和6kV / 6kA的光触发晶闸管(LTT)。美国和欧洲主要生产电触发晶闸管。近十几年来,由于自关断器件的飞速发展,晶闸管的应用领域有所缩小,但是,(由于它的高电压、大电流特性,它在HVDC、静止无功补偿(SVC)、大功率直流电源及超大功率和高压变频调速应用方面仍占有十分重要的地位。预计在今后若干年内,晶闸管仍将在高电压、大电流应用场合得到继续发展。 现在,许多生产商可提供额定开关功率36MVA (6kV/ 6kA )用的高压大电流GTO。传统GTO的典型的关断增量仅为3~5。GTO关断期间的不均匀性引起的"挤流效应"使其在关断期间dv/dt必须限制在500~1kV/μs。为此,人们不得不使用体积大、昂贵的吸收电路。另外它的门极驱动电路较复杂和要求较大的驱动功率。但是,高的导通电流密度、高的阻断电压、阻断状态下高的dv/dt耐量和有可能在内部集成一个反并二极管,这些突出的优点仍使人们对GTO感到兴趣。到目前为止,在高压(VBR>3.3kV)、大功率(0.5~20 MVA)牵引、工业和电力逆变器中应用得最为普遍的是门控功率半导体器件。目前,GTO的最高研究水平为6in、6kV / 6kA以及9kV/10kA。为了满足电力系统对1GVA以上的三相逆变功率电压源的需

电源功率器件散热器计算

电源功率器件散热器计算 一、7805 设计事例 设I=350mA,Vin=12V,则耗散功率 Pd=(12V-5V)*0.35A=2.45W。按照TO-220 封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么 将会达到7805 的 热保护点150℃,7805 会断开输出。 二、正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出民品7805 的最高结 温 Tj(max)=125℃,那么允许的温升是65℃。要求的热阻是 65℃/2.45W=26℃/W。 再查7805 的热阻,TO-220 封装的热阻θJA=54℃/W, TO-3 封装(也就是大家说的“铁壳”)的热阻θJA=39℃/W,均 高于要求值,都不能使用(虽然达不到热保护点,但是超指标使用还 是不对的),所以不论那种封装都必须加散热片。资料里讲到加散热片 的时候,应该加上4℃/W 的壳到散热片的热阻。 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即 54//x=26, x=50℃/W。其实这个值非常大,只要是个散热片即可满足。 三、散热片尺寸设计 散热片计算很麻烦的,而且是半经验性的,或说是人家的实测结果。 基本的计算方法是:

1.最大总热阻θja =(器件芯的最高允许温度TJ -最高环境 温度 TA )/ 最大耗散功率 其中,对硅半导体,TJ 可高到125℃,但一般不应取那么高,温度太高会降 低可靠性和寿命。 最高环境温度TA 是使用中机箱内的温度,比气温会高。 最大耗散功率见器件手册。 2.总热阻θja=芯到壳的热阻θjc +壳到散热片的θcs +散热片到环 境的θsa 其中,θjc 在大功率器件的DateSheet 中都有,例如3---5 θcs对TO220 封装,用2 左右,对TO3 封装,用3 左右,加导热硅脂后, 该值会小一点,加云母绝缘后,该值会大一点。 散热片到环境的热阻θsa 跟散热片的材料、表面积、厚度都有关系,作为 参考,给出一组数据例子。 a.对于厚2mm 的铝板,表面积(平方厘米)和热阻(℃/W)的对应关系是: 中间的数据可以估计了。

IGCT大功率器件

集成门极换流晶闸管(IGCT) 1.电力电子器件发展 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“机车’’。现代电力电子技术无论对改造传统-t-业(电力机械、矿冶、交通、化工、轻纺等),还是对高新技术产业(航天、激光、通信、机器人等)都至关重要,它已迅速发展成为一门独立学科领域。它的应用领域几乎涉及到国民经济的各个工业部门,毫无疑问,它将成为21世纪重要关键技术之一。 电力电子器件是现代电力电子设备的核心。它们以开关阵列的形式应用于电力变流器中,把相同频率或者不同频率的电能进行交流—直流(整流器),直流一直流(斩波器),直流一交流(逆变器)和交流一交流(变频器)变换。这种开关模式的电力电子变换在与国民经济发展密切相关的关键科学技术中有着重要的应用。首先,在节能和环保方面,电力电子变换在能源能量转换和能量输配过程中具有很高的效率,如果用很好的电力电子技术去转换,人类至少可节省约1/3的能源,而未来电力能源中的80%要经过电力电子设备的转换。其次,在信息和通信技术中,通过开关模式的电力电子变化可以为计算机与通信设备提供稳定的可靠的电源。此外,在交通运输中,电动汽车和电力机车的都和电力电子变换密切相关。 “一代器件决定一代电力电子技术。’’现代电力电子技术基本上是随着电力电子器件的发展而发展起来的。从1958年美国通用电气公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子技术的诞生。80年代末期和90年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,标志着传统电力电子技术已经进入现代电力电子时代。以功率器件为核心的现代电力电子装置,在整台装置中通常不超过总价值的20%'-'--30%,但是,它对提高装置的各项技术指标和技术性能,却起着十分重要的作用。因此对电力电子器件进行深入的研究和应用是非常重要的。 现代电力电子器件仍然在向大功率、易驱动和高频化方向发展。另外,电力电子模块化是电力电子向高功率密度发展的重要的一步。本文中提到的IGCT就是一种用于中大型电力电子设备中的新型大功率电力电子器件。它的应用使变流装置在功率、可靠性、开关速度、效率、成本、重量和体积等方面都取得了巨大进展,给电力电子成套装置带来了新的飞跃. 1.1 整流管 整流管是电力电子器件中结构最简单、应用最广泛的一种器件。目前主要有普通整流管、快恢复整流管和肖特基整流管三种类型。电力整流管在改善各种电力电子电路的性能、降低电路损耗和提高电源使用效率等方面发挥着非常重要的作用。目前,人们已通过新颖结构的设计和大规模集成电路制作工艺的运用,研制出集PIN整流管和肖特基整流管的优点于一体的具有MPS、SPEED和SSD等结构的新型高压快恢复整流管。它们的通态压降为IV左右,反向恢复时间为PIN 整流管的1/2,反向恢复峰值电流为PIN整流管的1/3。

损耗与散热设计

第8章 损耗与散热设计 开关电源是功率设备,功率元器件损耗大,损耗引起发热,导致元器件温度升高,为了使元器件温度不超过最高允许温度,必须将元器件的热量传输出去,需要散热器和良好的散热措施,设备的体积重量受到损耗限制。同时,输出一定功率时损耗大,也意味着效率低。 8.1热传输 电子元器件功率损耗以热的形式表现出来,热能积累增加元器件内部结构温度,元器件内部温度受最高允许温度限制,必须将内部热量散发到环境中,热量通过传导、对流和辐射传输。当损耗功率与耗散到环境的功率相等时,内部温度达到稳态。 1. 传导 传导是热能从一个质点传到下一个质点,传热的质点保持它原来 的位置的传输过程,如图8-1固体内的热传输。热量从表面温度为T 1 的一端全部传递到温度为T 2的另一端,单位时间传递的能量,即功 率表示为 T R T l T T A P ?=-= )(21λ (8-1) 式中 A l R T λ= (8-2) 称为热阻(℃/ W );l -热导体传输路径长度(m);A -垂直于热传输路径的导体截面积(m 2);λ-棒材料的热导率(W/m ℃),含90%铝的热导率为220W/ m ℃,几种材料的热导率如表8-1所示;ΔT =T 1-T 2温度差(℃)。 例:氧化铝绝缘垫片厚度为0.5mm ,截面积2.5cm 2,求热阻。 解:由表8-1查得λ=20 W/m ℃,根据式(8-2)得到 3 4 0.5100.120 2.510t R --?==??℃/ W 式(8-1)类似电路中欧姆定律:功率P 相当于电路中电流,温度差;ΔT 相当于电路中电压。 半导体结的热量传输到周围空气必然经过几种不同材料传输,每种材料有自己的热导率,截面积和长度,多层材料的热传输可以建立热电模拟的热路图。图8-2是功率器件由硅芯片的热传到环境的热通路(a)和等效热路(b)。由结到环境的总热阻为 sa cs jc js R R R R ++= (8-3) 上式右边前两个热阻可以按式(8-2)计算,最后一项的热阻在以后介绍的方法计算。如果功率器件损耗功率为P ,则结温为 a sa cs jc j T R R R P T +++=)( (8-4) 式中R jc , R cs 及R sa 分别表示芯片结到管壳,管壳到散热器和散热 器到环境热阻。除了散热器到环境的热阻R sa 外,其余两个热阻可以按式(8-2)计算。 (a) (b) 图8-2功率器件热传输和等效热路图

功率器件简要介绍

一功率半导体简介 功率半导体器件种类很多,器件不同特性决定了它们不同的应用范围,常用半导体器件的特性如下三图所示。目前来说,最常用的功率半导体器件为功率MOSFET和IGBT。总的来说,MOSFET的输出功率小,工作频率高,但由于它导通电阻大的缘故,功耗也大。但它的功耗随工作频率增加幅度变化很小,故MOSFET更适合于高频场合,主要应用于计算机、消费电子、网络通信、汽车电子、工业控制和电力设备领域。IGBT的输出功率一般10KW~1000KW 之间,低频时功耗小,但随着工作频率的增加,开关损耗急剧上升,使得它的工作频率不可能高于功率MOSFET,IGBT主要应用于通信、工业、医疗、家电、照明、交通、新能源、半导体生产设备、航空航天以及国防等领域。 GAGGAGAGGAFFFFAFAF

图1.1 功率半导体器件的工作频率范围及其功率控制容量 GAGGAGAGGAFFFFAFAF

图1.2 功率半导体器件工作频率及电压范围 图1.3 功率半导体器件工作频率及电流范围 二不同结构的功率MOSFET特性介绍 功率MOSFET的优点主要有驱动功率小、驱动电路简单、开关速度快、工作频率高,随着工艺的日渐成熟、制造成本越来越低,功率MOSFET应用范围越来越广泛。我们下面主要介绍一些不同结构的MOSFET的特性。VVMOSFET GAGGAGAGGAFFFFAFAF

GAGGAGAGGAFFFFAFAF

图2.1 VVMOS结构示意图 VVMOS采用各向异性腐蚀在硅表面制作V 形槽,V形槽穿透P与N+连续扩散的表面,槽的角度由硅的晶体结构决定,而器件沟道长度取决于连续扩散的深度。在这种结构中,表面沟道由V 形槽中的栅电压控制,电子从表面沟道出来后乡下流到漏区。由于存在这样一个轻掺杂的漂移区且电流向下流动,可以提高耐压而并不消耗表面的面积。 这种结构提高了硅片的利用率,器件的频率特性得到很大的改善。同时存在下列问题:1,V形槽面之下沟道中的电子迁移率降低;2,在V槽的顶端存在很强的电场,严重影响器件击穿电压的提高;3,器件导通电阻很大;4,V槽的腐蚀不易控制,栅氧暴露,易受离子玷污,造成阈值电压不稳定,可靠性下降。 GAGGAGAGGAFFFFAFAF

影响功率器件散热器散热性能的几何因素分析

Analysis of G eometric F actors on E ffect Upon the C apability of H eat Sink of Pow er Component FU Gui2cui,G AO Ze2xi (Beijing Univer sity o f Aeronautics and Astronautics,Dept.o f Systems Engineering,Beijing100083,China) Abstract: Heat sink consist of base and fin,the main parameters include the length of fin,the thickness of fin,the thickness of base and the width of base.Introduces the geometric structure of heat sink and researches on the geometric factors effecting the capability of heat sink.Investigate that thermal resistance can be lowered effectively by changing the geometric parameters of heat sink and get better effect.Provides the gist for the choice and the optimization of heat sink. K ey w ords: power com ponent;thermal design;heat sink;thermal resistance EEACC: 8550 影响功率器件散热器散热性能的几何因素分析 ① 付桂翠,高泽溪 (北京航空航天大学,工程系统工程系,北京 100083) 摘要:型材散热器的几何结构由肋片和基座构成,主要几何参数包括肋片长、肋片厚,肋片数、基座厚、基座宽等,研究了型材散热器几何因素对其热性能的影响,通过改变散热器的几何参数,可以有效的降低散热器的热阻,获得好的散热效果。本文的研究为型材散热器的的选择及优化设计提供了依据。 关键词:功率器件;热设计;散热器;热阻 中图分类号:T N305194;T N609 文献标识码:A 文章编号:1005-9490(2003)04-0354-03 功率器件是多数电子设备中的关键器件,其工作状态的好坏直接影响整机可靠性。功率器件尤其是大功率器件发热量大,仅靠封装外壳散热无法满足散热要求,需要配置合理散热器有效散热,而散热器的选择是否合理又直接影响功率器件的可靠性,因此分析影响散热器散热性能的因素,有利于合理选取散热器,提高功率器件的可靠性[1]。 1 散热器的选择 在电子设备热设计中,型材散热器由于结构简单,加工方便、散热效果好而得到了广泛的应用,其物理模型示意图如图1所示[2]。 它由肋片和基座构成,主要的几何参数包括肋片长、肋片厚,肋片数、基座厚、基座宽等。在选择散热器时一般需要依据散热器热阻来合理选择,同时还需要考虑以下几点:安装散热器允许的空间、气流流量和散热器的成本等。散热器散热的效果与散热器热阻的大小密切相关,而散热器的热阻除了与散热器材料有关之外,还与散热器的形状、尺寸大小以及安装方式和环境通风条件等有关,目前没有精确的数学表达式能够用来计算散热器的热阻,通常是通过实际测量得到。而散热器的有效面积与散热器几何参数密切相关[3]。 第26卷第4期2003年12月 电 子 器 件 Chinese Journal of E lectron Devices V ol.26,N o.4 Dec.2003 ①收稿日期:2003-07-01 作者简介:付桂翠(1968-),女,副教授,现主要从事可靠性工程,电子设备热设计技术研究工作,曾在国内外核心刊物上发 表论文十余篇,fuguicui@https://www.360docs.net/doc/9411085809.html,或fuguicui@https://www.360docs.net/doc/9411085809.html,; 高泽溪(1940-),男,教授,主要从事可靠性工程、电子设备热设计技术研究,获国防科工委、航空工业部科技进 步奖多次,在国内外核心刊物上发表论文数十篇.

电子器件散热技术现状及进展

电子器件散热技术现状及进展 随着电子及通讯技术的迅速发展,高性能芯片和集成电路的使用越来越广泛。电子器件芯片的功率不断增大,而体积却逐渐缩小,并且大多数电子芯片 的待机发热量低而运行时发热量大,瞬间温升快。高温会对电子器件的性能产 生有害的影响,据统计电子设备的失效有55 %是温度超过规定值引起的,电子器件散热技术越来越成为电子设备开发、研制中非常关键的技术。电子器件散 热的目的是对电子设备的运行温度进行控制(或称热控制),以保证其工作的稳 定性和可靠性,这其中涉及了与传热有关的散热或冷却方式、材料等多方面内容,目前主要有空气冷却技术和液体冷却技术两大类。 1 空气冷却技术 空气冷却技术是目前应用最广泛的电子冷却技术,包括自然对流空气冷却技 术和强制对流空气冷却技术。自然对流空气冷却技术主要应用于体积发热功率 较小的电子器件,利用设备中各个元器件的空隙以及机壳的热传导、对流和辐 射来达到冷却目的。 自然对流依赖于流体的密度变化,所要求的驱动力不大,因此在流动路径中 容易受到障碍和阻力的影响而降低流体的流量和冷却速率。对于体积发热功率 较大的电子器件,如单一器件功耗达到7 W(15~25 W-cm-2),板级(印制电路板) 功耗超过300 W(2~3W-cm-2)时,一般则采用强制对流空气冷却技术。强制散热或冷却方法主要是借助于风扇等设备强迫电子器件周边的空气流动,从而将 器件散发出的热量带走,这是一种操作简便、收效明显的散热方法。提高这种 强迫对流传热能力的方法主要有增大散热面积(散热片)以及提高散热表面的强 迫对流传热系数(紊流器、喷射冲击、静电作用)。对一些较大功率的电子器件,可以根据航空技术中的扰流方法,通过在现有型材散热器中增加小片扰流片,

电力电子器件的最新发展趋势

电力电子器件的最新发展趋势 现代的电力电子技术无论对改造传统工业(电力、机械、矿冶、交通、化工、轻纺等),还是对新建高技术产业(航天、激光、通信、机器人等)至关重要,从而已迅速发展成为一门独立学科领域。它的应用领域几乎涉及到国民经济的各个工业部门,毫无疑问,它将成为本世纪乃至下世纪重要关键技术之一。近几年西方发达的国家,尽管总体经济的增长速度较慢,电力电子技术仍一直保持着每年百分之十几的高速增长。 从历史上看,每一代新型电力电子器件的出现,总是带来一场电力电子技术的革命。以功率器件为核心的现代电力电子装置,在整台装置中通常不超过总价值的20%~30%,但是,它对提高装置的各项技术指标和技术性能,却起着十分重要的作用。 众所周知,一个理想的功率器件,应当具有下列理想的静态和动态特性:在截止状态时能承受高电压;在导通状态时,具有大电流和很低的压降;在开关转换时,具有短的开、关时间,能承受高的di/dt和dv/dt,以及具有全控功能。 自从50年代,硅晶闸管问世以后,20多年来,功率半导体器件的研究工作者为达到上述理想目标做出了不懈的努力,并已取得了使世人瞩目的成就。60年代后期,可关断晶闸管GTO实现了门极可关断功能,并使斩波工作频率扩展到1kHz以上。70年代中期,高功率晶体管和功率MOSFET问世,功率器件实现了场控功能,打开了高频应用的大门。80年代,绝缘栅门控双极型晶体管(IGBT) 问世,它综合了功率MOSFET和双极型功率晶体管两者的功能。它的迅速发展,又激励了人们对综合功率MOSFET和晶闸管两者功能的新型功率器件- MOSFET门控晶闸管的研究。因此,当前功率器件研究工作的重点主要集中在研究现有功率器件的性能改进、MOS门控晶闸管以及采用新型半导体材料制造新型的功率器件等。下面就近几年来上述功率器件的最新发展加以综述。 一、功率晶闸管的最新发展 1.超大功率晶闸管 晶闸管(SCR)自问世以来,其功率容量提高了近3000倍。现在许多国家已能稳定生产8kV / 4kA的晶闸管。日本现在已投产8kV / 4kA和6kV / 6kA的光触发晶闸管(LTT)。美国和欧洲主要生产电触发晶闸管。近十几年来,由于自关断器件的飞速发展,晶闸管的应用领域有所缩小,但是,由于它的高电压、大电流特性,它在HVDC、静止无功补偿(SVC)、大功率直流电源及超大功率和高压变频调速应用方面仍占有十分重要的地位。预计在今后若干年内,晶闸管仍将在高电压、大电流应用场合得到继续发展。 现在,许多生产商可提供额定开关功率36MVA ( 6kV/ 6kA )用的高压大电流GTO。传统GTO的典型的关断增量仅为3~5。GTO关断期间的不均匀性引起的“挤流效应”使其在关断期间dv/dt必须限制在500~1kV/μs。为此,人们不得不使用体积大、昂贵的吸收电路。另外它的门极驱动电路较复杂和要求较大的驱动功率。但是,高的导通电流密度、高的阻断电压、阻断状态下高的dv/dt耐量和有可能在内部集成一个反并二极管,这些突出的优点仍使人们对GTO感到兴趣。到目前为止,在高压(VBR > 3.3kV )、大功率(0.5~20 MVA)牵引、工业和电力逆变器中应用得最为普遍的是门控功率半导体器件。目前,GTO的最高研究水平为6in、6kV / 6kA以及9kV/10kA。为了满足电力系统对1GVA以上的三相逆变功

贴片式功率器件的散热计

贴片式功率器件的散热计算 Heat Dispersion Calculation of Surface Mounted Power Device 北京航空航天大学方佩敏 自上世纪90年代开始,贴片式封装器件逐步替代了穿孔式封装器件。近年来,除少数大功率器件还采用穿孔式封装外,极大部分器件都采用贴片式(SMD)封装。由于贴片式功率器件封装尺寸小,不能采用加散热片的方法来散热,只能用印制板的敷铜层作为散热(一定的面积)。因此在贴片式功率器件的应用中需要在印制板(PCB)布局前,考虑所需的敷铜层散热面积。 本文介绍Micrel 公司推荐的一种简单计算方法,它可以根据选定的功率器件和使用的条件进行计算,并用查图表的方式得出所需的散热敷铜层的面积。由于实际情况较复杂,会影响到计算的正确性,比如使用印制板的厚度尺寸不同、敷铜层的厚度尺寸不同、印制板走线的宽度不同及机壳的容积大小和有无散热孔等,所以这种计算是一种粗略的估算。计算过程中,可以发现设定的使用条件是否合理,选择器件的封装尺寸大小是否能满足散热的需求。 两种过热保护 功率器件在工作过程中会产生热量使管芯的温度升高,在最大的功率输出时产生的热量最大,使管芯的温度升得最高。如果散热条件不佳,则管芯的结温超过150℃时,使器件损坏(一般称为“烧掉”)。如果散热条件良好,但使用过程中出现故障(如负载发生局部短路、线性稳压电源发生调整管短路等),则输出功率超过最大允许输出功率,会使功率器件损坏。功率器件设计者设计了两种过热保护措施:自动热调节和过热关闭保护,提高了器件的安全性及可靠性。 用户在设计PCB 散热面积时,要保证在正常最大输出功率时不出现自动热调节(自动减小输出功率)和热关闭(无输出)现象。只有在出现故障时才出现过热保护。 散热与热阻 功率器件在工作时,管芯的热量通过封装材料传导到管壳、经管壳传到敷铜板散热面,再由散热面传到环境空气中。这种热的传导过程中会有一定的热阻,如管芯传到管壳的热阻JC θ,管壳传到敷铜板的热阻CS θ,敷铜板散热面传到环境控制的热阻SA θ,这种热的传导(热的流向) 如图1所示,图中管芯的温度结温为J T 、环境空气的温度为A T 。温度由高的流向低的,从管芯到环境空气总的热阻JA θ与热传导过程的各热阻的关系为: SA CS JC JA θθθθ++=⑴ 各种热阻的单位是℃/W。热阻大,散热差。 管芯 环境 空气 J T A T JA θJC θCS θSA θ热的流向 图1

功率半导体器件是什么

“power semiconductor device”和“power integrated circuit(简写为power IC或PIC)”直译就是功率半导体器件和功率集成电路。 在国际上与该技术领域对应的最权威的学术会议就叫做International Symposium on Power Semiconductor Devices and ICs,即功率半导体器件和功率集成电路国际会议。 “power”这个词可译为动力、能源、功率等,而在中文里这些词的含义不是完全相同的。由于行业的动态发展,“power”的翻译发生了变化。 从上世纪六七十年代至八十年代初,功率半导体器件主要是可控硅整流器(SCR)、巨型晶体管(GTR)和其后的栅关断晶闸管(GTO)等。它们的主要用途是用于高压输电,以及制造将电网的380V或220V交流电变为各种各样直流电的中大型电源和控制电动机运行的电机调速装置等,这些设备几乎都是与电网相关的强电装置。因此,当时我国把这些器件的总称———power semiconductor devices没有直译为功率半导体器件,而是译为电力电子器件,并将应用这些器件的电路技术power electronics没有译为功率电子学,而是译为电力电子技术。与此同时,与这些器件相应的技术学会为中国电工技术学会所属的电力电子分会,而中国电子学会并没有与之相应的分学会;其制造和应用的行业归口也划归到原第一机械工业部和其后的机械部,这些都是顺理成章的。实际上从直译看,国外并无与电力电子相对应的专业名词,即使日本的“电力”与中文的“电力”也是字型相同而含义有别。此外,当时用普通晶体管集成的小型电源电路———功率集成电路,并不归属于电力电子行业,而是和其他集成电路一起归口到原第四机械工业部和后来的电子工业部。 20世纪80年代以后,功率半导体行业发生了翻天覆地的变化。功率半导体器件变为以功率金属氧化物半导体场效应晶体管(功率MOSFET,常简写为功率MOS)、绝缘栅双极晶体管(IGBT)以及功率集成电路(power IC,常简写为PIC)为主。 这一转变的主要原因是,这些器件或集成电路能在比以前高10倍以上的频率下工作,而电路在高频工作时能更节能、节材,能大幅减少设备体积和重量。尤其是集成度很高的单片片上功率系统(power system on a chip,简写PSOC),它能把传感器件与电路、信号处理电路、接口电路、功率器件和电路等集成在一个硅芯片上,使其具有按照负载要求精密调节输出和按照过热、过压、过流等情况自我进行保护的智能功能,其优越性不言而喻。国际专家把它的发展喻为第二次电子学革命。

功率器件的散热计算剖析

功率器件的散热计算及散热器选择 Heat Dispersion Calculation For Power Devices and Radiators Selection ■北京航空航天大学方佩敏 目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散热措施,则管芯的温度可达到或超过允许的结温,器件将受到损坏。因此必须加散热装置,最常用的就是将功率器件安装在散热器上,利用散热器将热量散到周围空间,必要时再加上散热风扇,以一定的风速加强冷却散热。在某些大型设备的功率器件上还采用流动冷水冷却板,它有更好的散热效果。散热计算就是在一定的工作条件下,通过计算来确定合适的散热措施及散热器。功率器件安装在散热器上。它的主要热流方向是由管芯传到器件的底部,经散热器将热量散到周围空间。若没有风扇以一定风速冷却,这称为自然冷却或自然对流散热。 热量在传递过程有一定热阻。由器件管芯传到器件底部的热阻为R JC,器件底部与散热器之间的热阻为R CS,散热器将热量散到周围空间的热阻为R SA,总的热阻R JA=R JC+R CS+R SA。若器件的最大功率损耗为PD,并已知器件允许的结温为TJ、环境温度为TA,可以按下式求出允许的总热阻R JA。 R JA≤(TJ-TA)/PD 则计算最大允许的散热器到环境温度的热阻R SA为 R SA≤({T_{J}-T_{A}}\over{P_{D}})-(R JC+R CS) 出于为设计留有余地的考虑,一般设TJ为125℃。环境温度也要考虑较坏的情况,一般设TA=40℃ 60℃。R JC的大小与管芯的尺寸封装结构有

功率器件知识

功率器件知识 功率器件的主要功能是进行电能的处理与变换(比如变压、变流、变频、功放等)。主要应用领域是开关电源、电机驱动与调速、UPS 等等,这些装置都需输出一定的功率给予电器,所以电路中必须使用功率半导体。另一重要应用领域是发电、变电与输电,这就是原本意义上的电力电子。 功率器件的应用领域:消费电子24%,工业控制23.4%,计算机21.8%,网络通信20.5%,汽车电子5.2%。 任何电器设备都需要电源,任何用电机的设备都需要电机驱动。作为目前国际上主流的功率半导体器件,包括VD-MOSFET和IGBT,克服了以前功率半导体器件工业频率低、所需要的配套电感、电容、变压器等体积大、能耗高等缺点,制备工艺使用的设备和工艺线的要求与集成电路基本相同,完全不同于用台面技术和粗放光刻的晶闸管、台面二极管、功率BJT的制造。 全球能源需求的不断增长以及环境保护意识的逐步提升使得高效、节能产品成为市场发展的新趋势。MOSFET等功率器件越来越多地应用到整机产品中。我国用于电机的电能占我国总发电量的60%多。如果全国电机的驱动都采用功率半导体进行变频调速就可以节能大约 1/4 到 1/3,也就是说可节约全国总发电量的15%至20%。功率半导体还是信息产品、计算机、消费电子和汽车这4C产业的基础产品,当前用于4C产业的功率半导体已占功率半导体总量的70%多。

功率器件包括功率IC(半导体元件产品统称)和功率分立器件。 功率分立器件主要包括功率MOSFET、大功率晶体管和IGBT等半导体器件。功率IC和MOSFET的市场份额较大,分别占40.4%和26.0%市场份额,是中国功率半导体市场上最重要两个产品,此外大功率晶体管、达林顿管、IGBT和晶闸管也占有一定市场份额。 功率器件的中国市场结构:电源管理IC 40.4%,MOSFET26.0%,大功率晶体管13.7%,达林顿管5.3%,IGBT4.2%,晶闸管1.8%。 由于下游终端产品很多已向国内转移,其上游的功率器件市场也一直保持较快的发展速度。02-06年中国功率器件市场复合增长率29.4%,未来5年复合增长率19.1%,2011年达1680.4亿元。 国外厂商处于主导地位,国内厂商奋起直追。从功率半导体厂商的类型来看,多数功率芯片厂商是IDM(智能分销管理系统)厂商,Fabless(无生产线的IC设计公司)也占据了一定比例。美国、日本和欧洲功率芯片厂商大部分属于IDM 厂商,而中国台湾厂商则绝大多数属于Fabless厂商。 其中MOSFET在中国目前的市场规模为174.8亿元。MOSFET根据不同的耐压程度,有着不同的应用:耐压20v-应用领域手机、数码相机,30v-计算机主板、显卡,40v-机顶盒和电动自行车,60v-UPS、汽车雨刷、汽车音响、马达控制,80v-LCD TV、LCD 显示器和其他仪器仪表,150-400v-照明、CRT 电视、背投电视、电热水器和洗衣机等,400-800v-发动机启动器、车灯控制、电机控制,嵌入式电源和电源适配器,500-1000v-高压变频器、发电和变电设备。

相关文档
最新文档