半导体功率器件的散热设计

半导体功率器件的散热设计
半导体功率器件的散热设计

半导体功率器件的散热设计

摘要:本文主要阐述功率器件的散热原理及加装散热器的必要性,介绍如何正确选用散热器。

关键词:结温;散热器;散热;热阻

Abstrct: This papermainly expounds the necessityandprinciple of powerdevices withheatradiator,introduceshow to choose the rightradiator.

Keyword: junction temperature radiator coolingthermalresistance

引言

半导体功率器件是多数电子设备中的关键器件,其工作状态的好坏直接影响整机可靠性。相关实验已经证明,器件工作温度直接影响其自身的可靠性,但是在功率转换电路中,器件自身会消耗一部分能量,这部分能量会转换为热量,使器件的管芯发热、结温升高,当结温超过器件自身规定的允许值时,电流会急剧增大而使晶体管烧毁。要保证结温不超过允许值,就必须将产生的热量有效的散发出去。

要解决散热问题可以从如下两方面入手,一是通过优化设计方式来减少发热量,如采用通态压降低的器件;另一方面是利用传导、对流、辐射的传热原理,将热量快速释放到周围环境中去,以减少热积累,使器件工作温度降低,如采用合适的散热器。

本文主要针对上述第二个方面进行探讨,分别从热设计相关概念、散热过程、正确选用散热器方法以上三个方面进行分析,以实例介绍方法的有效性。

散热过程是一个非常复杂的过程,影响因素较多,本文仅针对关键参数进行介绍,所有计算均为理想计算,与实际情况会存在一定的偏差。

一、热设计相关参数

1.耗散功率

在电路中功率器件自身消耗的功率。

2.热阻

热量在热流路径上遇到的阻力,反映介质或介质间的传热能力,即1W的热量所引起的温升大小,单位为℃/W或K/W。

功率器件热管散热器介绍

功率器件热管散热器介绍 随着功率器件如绝缘栅双极晶体管IGBT及电力电子设备的日趋流行向小型化、大功率和高精度方面发展,除了需要采用先进的元器件和设计新型先进的电子线路外,还需要缩小散热器的体积。因此,通常使用的铝型材散热器或叉指型散热器就很难满足功率器件散热的要求。热管是一种新型高效的传热元件,因为它利用了沸腾吸热和凝结放热两种最强烈的传热机理,因而表现出优异的传热特性,即传热效率高和沿轴向的等温特性好,其热耗散效率比同质量的铜散热器大2~3个数量级。 以热管为散热器件的热管散热器在功率电子设备中的应用是近年才发展起来的一种先进的 高效散热器件。由于热管散热器具有体积小、重量轻、散热效率高等优点,既能提高大功率管的设计使用功率,大大地延长功率管的寿命,简化功率管的散热设计,又能减少功率电子设备的噪音,提高设备的可靠性,降低成本。因此,热管散热器越来越受人们的重视。1.热管的工作原理 热管是密闭封焊的蒸发冷却器件。热管结构包括一个具有毛细管作用的吸液芯和小量能汽化的液体。热量施加于热管的一端,引起液体蒸发,蒸汽流动到热管的另一端,在那里冷凝,释放出潜热。然后,冷凝了的液体通过吸液芯,由毛细管作用流回蒸发端,完成循环如下图所示。

2.热管散热器的主要性能和参数 RGS-Z系列自冷式热管散热器(水平式)和RGS-F系列风冷式热管散热器(重力式) 的性能参数有:散热功率、热阻R Tf、等温性、管壁温升△Tfa、环境工作温度、寿命、安装方式等。现将其中主要参数介绍如下; (1)散热功率 当热管散热器加入热源功率Pc,管壁温升△Tfa不超过50℃时,此热源功率Pc即为该热管散热器的散热功率。 (2)热阻R Tf 当热管散热器加入热源功率的时候,管壁温度Tf和环境温度Ta之差与所加的热功率Pc之比为热管散热器的热阻R Tf,如下式。热管散热器的热阻特性与型材和叉指型散热器的热阻特性相似。在额定的散热功率范围内,热阻R Tf将随热源功率Pc的增加而略有下降,但基本上为一条平坦直线: (3)等温性 在热管散热器的某—端(称加热端)加热源功率Pc,待热平衡后,另一端(称冷端)相对应的地方非常接近于热端的温度,此时,热管散热器的温度梯度相当小,也就是说热管散热器进入了热管工作状态。 (4)管壁温升△Tfa 在额定散热功率内,热管散热器管壁温升△Tfa将随热源功率增加而上外。上升的规律可由下式表示。在允许的范围内,只要热源功率不变,管壁温升是一定的:

功率器件热设计及散热计算

功率器件热设计及散热计算 2007-03-29 00:18 本文介绍了功率器件的热性能参数,并根据实际工作经验,阐述了功 率器件的热设计方法和散热器的合理选择。 热设计;功率器件;散热计算;散热器选择 当前,电子设备的主要失效形式就是热失效。据统计,电子设备的失效有 55%是温度超过规定值引起的,随着温度的增加,电子设备的失效率呈指数增长。 所以,功率器件热设计是电子设备结构设计中不可忽略的一个环节,直接决定了 产品的成功与否,良好的热设计是保证设备运行稳定可靠的基础。 功率器件受到的热应力可来自器件内部,也可来自器件外部。若器件的散

热能力有限,则功率的耗散就会造成器件内部芯片有源区温度上升及结温升高, 使得器件可靠性降低,无法安全工作。表征功率器件热能力的参数主要有结温和 热阻。 器件的有源区可以是结型器件(如晶体管)的PN结区、场效应器件的沟道区,也可以是集成电路的扩散电阻或薄膜电阻等。当结温Tj高于周围环境温度Ta时,热量通过温差形成扩散热流,由芯片通过管壳向外散发,散发出的热量随着温差(Tj-Ta)的增大而增大。为了保证器件能够长期正常工作,必须规定一 个最高允许结温 Tj max。Tj max的大小是根据器件的芯片材料、封装材料和可 靠性要求确定的。 功率器件的散热能力通常用热阻表征,记为Rt,热阻越大,则散热能力越差。热阻又分为内热阻和外热阻:内热阻是器件自身固有的热阻,与管芯、外壳材料的导热率、厚度和截面积以及加工工艺等有关;外热阻则与管壳封装的形式 有关。一般来说,管壳面积越大,则外热阻越小。金属管壳的外热阻明显低于塑 封管壳的外热阻。 当功率器件的功率耗散达到一定程度时,器件的结温升高,系统的可靠性 降低,为了提高可靠性,应进行功率器件的热设计。 功率器件热设计主要是防止器件出现过热或温度交变引起的热失效,可分

半导体功率器件的散热设计

半导体功率器件的散热设计 摘要:本文主要阐述功率器件的散热原理及加装散热器的必要性,介绍如何正确选用散热器。 关键词:结温;散热器;散热;热阻 Abstrct: This papermainly expounds the necessityandprinciple of powerdevices withheatradiator,introduceshow to choose the rightradiator. Keyword: junction temperature radiator coolingthermalresistance 引言 半导体功率器件是多数电子设备中的关键器件,其工作状态的好坏直接影响整机可靠性。相关实验已经证明,器件工作温度直接影响其自身的可靠性,但是在功率转换电路中,器件自身会消耗一部分能量,这部分能量会转换为热量,使器件的管芯发热、结温升高,当结温超过器件自身规定的允许值时,电流会急剧增大而使晶体管烧毁。要保证结温不超过允许值,就必须将产生的热量有效的散发出去。 要解决散热问题可以从如下两方面入手,一是通过优化设计方式来减少发热量,如采用通态压降低的器件;另一方面是利用传导、对流、辐射的传热原理,将热量快速释放到周围环境中去,以减少热积累,使器件工作温度降低,如采用合适的散热器。 本文主要针对上述第二个方面进行探讨,分别从热设计相关概念、散热过程、正确选用散热器方法以上三个方面进行分析,以实例介绍方法的有效性。 散热过程是一个非常复杂的过程,影响因素较多,本文仅针对关键参数进行介绍,所有计算均为理想计算,与实际情况会存在一定的偏差。 一、热设计相关参数 1.耗散功率 在电路中功率器件自身消耗的功率。 2.热阻 热量在热流路径上遇到的阻力,反映介质或介质间的传热能力,即1W的热量所引起的温升大小,单位为℃/W或K/W。

半导体器件的材料品质因子

半导体器件的材料品质因子 XieMeng-xian.(电子科大,成都市) 为了使半导体器件的性能达到较好的水平,除了在器件结构设计和工艺制作技术上加以优化以外,在半导体材料的合理选取上也需要加以考虑。究竟什么样的半导体材料最适合某种器件使用呢?这就需要根据器件的某些参数之间的制约关系来确立一种评价的标准,这种标准也就是不同器件的材料品质因子。 (1)Johnson 因子: Johnson因子是高频大功率BJT的材料品质因子,即是表征半导体材料对于高频大功率BJT适应能力的一个参量。 因为晶体管在高电压和大电流条件下工作时,将会产生势垒展宽、放大系 数下降和Kirk效应(基区展宽效应)等许多现象,并导致晶体管的最高工作频率下降,所以晶体管的最大输出功率与特征频率之间存在着一定的制约关系。一般,从半导体材料的基本特性来看,临界雪崩击穿电场强度Ec越大,载流子饱 和漂移速度vs越高,晶体管的最大功率处理能力就越强,特征频率也相应地越高。因此,可以采用半导体材料的临界雪崩击穿电场强度与载流子饱和漂移速度的乘积,即 来作为评价不同半导材料对制作高频大功率晶体管的适应能力。该乘积F1 就称为为第一材料品质因子,或者 Johnson因子。 实际上,Johnson因子的大小就是限制器件极限性能的一个量度。Johnson 因子的数值越大,则晶体管在高频下阻断电压和处理功率的能力就越强,即能够更好地兼顾高频率和大功率的要求。 根据不同半导体材料的基本特性参数和 Johnson因子的数值,可以见到:① 由于金刚石、氮化镓和碳化硅等宽禁带半导体的临界雪崩击穿电场,要比Si和GaAs的高出一个数量级,而饱和漂移速度的差别不大,因此,宽禁带半导体晶体管在同一特征频率下的电压承受能力要比Si和GaAs晶体管的高得多。②宽 禁带半导体材料的Johnson因子要比Si的大数十倍,所以宽禁带半导体材料将

功率半导体器件在我国的发展现状

功率半导体器件在我国的发展现状 MOSFET是由P极、N极、G栅极、S源极和D漏级组成。它的导通跟阻断都由电压控制,电流可以双向流过,其优点是开关速度很高,通常在几十纳秒到几百纳秒,开关损耗小,适用于各类开关电源。但它也有缺点,那就是在高压环境下压降很高,随着电压的上升,电阻变大,传导损耗很高。 随着电子电力领域的发展,IGBT出现了。它是由BJT和MOS组成的复合式半导体,兼具二者的优点,都是通过电压驱动进行导通的。IGBT克服了MOS的缺点,拥有高输入阻抗和低导通压降的特点。因此,其广泛应用于开关电源、电车、交流电机等领域。 如今,各个行业的发展几乎电子化,对功率半导体器件的需求越来越大,不过现在功率半导体器件主要由欧美国家和地区提供。我国又是全球需求量最大的国家,自给率仅有10%,严重依赖进口。功率半导体器件的生产制造要求特别严格,需要具备完整的晶圆厂、芯片制造厂、封装厂等产业链环节。国内企业的技术跟资金条件暂时还无法满足。 从市场格局来看,全球功率半导体市场中,海外龙头企业占据主导地位。我国功率半导体器件的生产制造还需要付出很大的努力。制造功率半导体器件有着严格的要求,每一道工序都需要精心控制。最后的成品仍需要经过专业仪器的测试才能上市。这也是为半导体器件生产厂家降低生产成本,提高经济效益的体现。没有经过测试的半导体器件一旦哪方面不及格,则需要重新返工制造,将会增加了企业的生产成本。

深圳威宇佳公司是国内知名的功率半导体检测专家,专门生产制造简便易用、高精度的设备,让操作人员轻松上手操作,省力更省心。如生产的IGBT动态参数测试设备、PIM&单管IGBT 专用动态设备、IGBT静态参数测试设备、功率半导体测试平台等,均是经过经验丰富的技术人员精心打磨出来的,设备高可靠性、高效率,已在市场上应用超过10年,历经了超过500万只模块/DBC的测试考验。

SVG功率器件散热结构设计

SVG功率器件散热结构设计 摘要:随着现代电力电子设备等非线性负荷大量接入电网,使电网供电质量受到严重影响。其中,各种电力电子开关器件的大量应用和负载的频繁波动是最主要的干扰源,导致了一系列不良影响。无功功率的存在,使得电力输电系统和重工业应用领域面临着各种各样的问题和挑战。电力输配电面临电压波动、低功率因数以及电压失稳等问题;重工业应用,特别是快速、冲击性负载,可能导致供电网的电压不平衡、电压波动和闪变等问题。 关键词:散热结构设计SVG Abstract: with the modern power electronic equipment nonlinear load power grid of access, make the power supply quality have been affected. Among them, the of all kinds of power electronic switching device application and load of the frequent volatility is the most main interference sources, led to a series of adverse effects. Reactive power and allows for the existence of electric power transmission system and heavy industry application fields faced all kinds of problems and challenges. Electricity transmission and distribution face voltage fluctuation, low power factor and the voltage stability; Heavy industry application, especially fast, impact load, can lead to GongDianWang voltage unbalance, voltage fluctuations and flicker. Keywords: heat dissipation structure design SVG 引言: SVG是当今最先进的无功补偿装置,能对动态无功负荷的功率因数校正;改善电压调整;提高电力系统的静态和动态稳定性,阻尼功率振荡;降低过电压;减少电压闪烁;减少电压和电流的不平衡。 SVG装置作为电力电子综合应用的大型设备,拥有复杂的电气、电子、控制系统,同时其结构设计的质量直接影响设备性能的好坏。大功率、小型化、轻型化是未来SVG的发展方向。在拓扑结构相似的情况下,产品结构设计将成为SVG生产商提高竞争力的主要因素。国内厂商在结构设计方面的研究与在电力电子应用、控制策略、主电路拓扑结构等方面的研究,相比之下,前者比后者相对滞后。虽然各厂家也致力于产品的结构优化设计,但未引起足够重视,缺乏相关的理论研究。针对这种现状,论文着重介绍了SVG功率器件的散热结构设计的常规思路和案例介绍。 论文以SVG结构设计案例为主线,首先介绍了SVG的一次工作原理以及主要器件;

散热器的选型与计算

散热器的选型与计算 以7805为例说明问题. 设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出. 正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-T a)/Pd Tjmax :芯组最大结温150℃ Ta :环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率-输出功率 ={24×0.75+(-24)×(-0.25)}-9.8×0.25×2 =5.5℃/W

总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d:散热器厚度cm A:散热器面积cm2 C:修正因子取1 按现有散热器考虑,d=1.0A=17.6×7+17.6×1×13 算得散热器热阻RQd-a=4.1℃/W, 散热器选择及散热计算 目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散

宽禁带半导体

半导体材料种类繁多,分类方法各不相同,一般将以硅(Si)、锗(Ge)等为代表的元素半导体材料称为第一代半导体材料;以砷化镓(GaAs)、磷化铟(InP)、磷化镓(GaP)等为代表的化合物半导体材料称为第二代半导体材料;以碳化硅(SiC)、氮化镓(GaN)、氮化铝(AlN)、氧化锌(ZnO)、金刚石为代表的宽禁带半导体材料称为第三代半导体材料[1]。以硅材料为代表的第一代半导体材料的发展是从20世纪50年代开始,它取代了笨重的电子管,导致了以集成电路为核心的微电子工业的发展和整个IT产业的飞跃,广泛应用于信息处理和自动控制等领域[2]。 20世纪90年代以来,随着移动无限通信的飞速发展和以光纤通信为基础的信息高速公路和互联网的兴起,第二代半导体材料开始兴起。由于其具有电子迁移率高、电子饱和漂移速度高等特点,适于制备高速和超高速半导体器件,目前基本占领手机制造器件市场[3]。 当前,电子器件的使用条件越来越恶劣,要适应高频、 大功率、耐高温、抗辐照等特殊环境。为了满足未来电子器件需求,必须采用新的材料,以便最大限度地提高电子元器件的内在性能。近年来,新发展起来了第三代半导体材料--宽禁带半导体材料,该类材料具有热导率高、电子饱和速度高、击穿电压高、介电常数低等特点[4],这就从理论上保证了其较宽的适用范围。目前,由其制作的器件工作温度可达到600℃以上、抗辐照1×106rad;小栅宽GaNHEMT器件分别在4GHz下,功率密度达到40W/mm;在8GHz,功率密度达到30W/mm;在18GHz,功率密度达到9.1W/mm;在40GHz,功率密度达到10.5W/mm;在80.5GHz,功率密度达到2.1W/mm,等。因此,宽禁带半导体技术已成为当今电子产业发展的新型动力。从目前宽禁带半导体材料和器件的研究情况来看,研究重点多集中于碳化硅(SiC)和氮化镓(GaN)技术,其中SiC技术最为成熟,研究进展也较快;而GaN技术应用广泛,尤其在光电器件应用方面研究比较深入[5]。氮化铝、金刚石、氧化锌等宽禁带半导体技术研究报道较少,但从其材料优越性来看,颇具发展潜力,相信随着研究的不断深入,其应用前景将十分广阔。 1宽禁带半导体材料 1.1碳化硅单晶材料 在宽禁带半导体材料领域就技术成熟度而言,碳化硅是这族材料中最高的,是宽禁带半导体的核心。SiC材料是IV-IV族半导体化合物,具有宽禁带(Eg:3.2eV)、高击穿电场(4×106V/cm)、高热导率(4.9W/cm.k)等特点[6]。从结构上讲,SiC材料属硅碳原子对密排结构,既可以看成硅原子密排,碳原子占其四面体空位;又可看成碳原子密排,硅占碳的四面体空位[7]。对于碳化硅密排结构,由单向密排方式的不同产生各种不同的晶型,业已发现约200种[8]。目前最常见应用最广泛的是4H和6H晶型。4H-SiC特别适用于微电子领域,用于制备高频、高温、大功率器件;6H-SiC特别适用于光电子领域,实现全彩显示。 第一代、第二代半导体材料和器件在发展过程中已经遇到或将要遇到以下重大挑战和需求[9,10]: (1)突破功率器件工作温度极限,实现不冷却可工作在300℃~600℃高温电子系统。 (2)必须突破硅功率器件的极限,提高功率和效率,从而提高武器装备功率电子系统的性能。 (3)必须突破GaAs功率器件的极限,在微波频段实现高功率密度,实现固态微波通讯系统、雷达、电子对抗装备更新换代。 (4)必须拓宽发光光谱,实现全彩显示、新的光存储、紫外探测以及固态照明。 随着SiC技术的发展,其电子器件和电路将为系统解决上述挑战奠定坚实基础。因此SiC材料的发展将直接影响宽禁带技术的发展。 SiC器件和电路具有超强的性能和广阔的应用前景,因此一直受业界高度重视,基本形成了美国、 欧洲、日本三足鼎立的局面。目前,国际上实现碳化硅单晶抛光片商品化的公司主要有美国

电源功率器件散热器计算

电源功率器件散热器计算 一、7805 设计事例 设I=350mA,Vin=12V,则耗散功率 Pd=(12V-5V)*0.35A=2.45W。按照TO-220 封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么 将会达到7805 的 热保护点150℃,7805 会断开输出。 二、正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出民品7805 的最高结 温 Tj(max)=125℃,那么允许的温升是65℃。要求的热阻是 65℃/2.45W=26℃/W。 再查7805 的热阻,TO-220 封装的热阻θJA=54℃/W, TO-3 封装(也就是大家说的“铁壳”)的热阻θJA=39℃/W,均 高于要求值,都不能使用(虽然达不到热保护点,但是超指标使用还 是不对的),所以不论那种封装都必须加散热片。资料里讲到加散热片 的时候,应该加上4℃/W 的壳到散热片的热阻。 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即 54//x=26, x=50℃/W。其实这个值非常大,只要是个散热片即可满足。 三、散热片尺寸设计 散热片计算很麻烦的,而且是半经验性的,或说是人家的实测结果。 基本的计算方法是:

1.最大总热阻θja =(器件芯的最高允许温度TJ -最高环境 温度 TA )/ 最大耗散功率 其中,对硅半导体,TJ 可高到125℃,但一般不应取那么高,温度太高会降 低可靠性和寿命。 最高环境温度TA 是使用中机箱内的温度,比气温会高。 最大耗散功率见器件手册。 2.总热阻θja=芯到壳的热阻θjc +壳到散热片的θcs +散热片到环 境的θsa 其中,θjc 在大功率器件的DateSheet 中都有,例如3---5 θcs对TO220 封装,用2 左右,对TO3 封装,用3 左右,加导热硅脂后, 该值会小一点,加云母绝缘后,该值会大一点。 散热片到环境的热阻θsa 跟散热片的材料、表面积、厚度都有关系,作为 参考,给出一组数据例子。 a.对于厚2mm 的铝板,表面积(平方厘米)和热阻(℃/W)的对应关系是: 中间的数据可以估计了。

宽禁带半导体功率器件

综 述 宽禁带半导体功率器件 刘海涛 陈启秀 (浙江大学信电系功率器件研究所,杭州310027) 摘要 阐述了宽禁带半导体的主要特性与Si C、金刚石等主要宽禁带半导体功率器件的最新发展动态及其存在的主要问题,并对其未来的发展作出展望。 关键词 宽禁带半导体 功率器件 碳化硅 金刚石 W ide Bandgap Sem iconductor Power D ev ices L iu H aitao,Chen Q ix iu (Institu te of P o w er D ev ices,Z hej iang U niversity,H ang z hou310027) Abstract T he p ap er p resen ts the m ain characteristics of w ide bandgap sem iconduc2 to rs,and elabo rates the latest developm en t of Si C and diam ond pow er devices.A t the sam e ti m e,the fu tu re developm en t of Si C and diam ond pow er devices is fo rcasted. Keywords W ide bandgap sem iconducto r Pow er devices Si C D iam ond 1 引 言 由于Si功率器件已日趋其发展的极限,尤其在高频、高温及高功率领域更显示出其局限性,因此开发研制宽带半导体器件已越来越被人们所关注。所谓宽带半导体(W B G)主要是指禁带宽度大于212电子伏特的半导体材料,包括 —O、 —S、 —Se、 —N、Si C、金刚石以及其他一些化合物半导体材料。这些材料一般均具有较宽的禁带、高的击穿电场、高的热导率、高的电子饱和速率,因此他们比Si及GaA s更适合于制作高温、高频及高功率器件。其中John son优值指数(JFOM=E c v s 2Π,E c 为临界电场;v s为电子饱和速率)、Keyes优值指数(KFOM=Κ[C v s 4ΠΕ]1 2,其中C为光速;Ε为介电常数)和B aliga优值指数(B FOM=ΕΛE G3,其中E G为禁带宽度,Λ为迁移率)分别从功率频率能力、耐热能力及导通功率损耗三方面说明了这一科学事实[1]。表1[2]列出了常见宽带半导体与Si,GaA s的比较。 由表1可知宽禁带半导体具有许多优点: 1)W B G具有很高的热导率(尤其是Si C与金刚石),使得它们能够迅速转移所产生的热量,广泛用于高温及高功率领域;2)由于W B G的禁带宽度很大,因此相应器件的漏电流极小,一般比Si半导体器件低10~14个数量级,有利于制作CCD器件及高速存储器;3)W B G具有比普通半导体更低的介电常数及更高的电子饱和速率,使之比Si,GaA s更适合于制作毫米波放大器及微波放大器。除此之外,W B G还具有负的电子亲和势及很高的异质结偏置电势,使得它们特别适合于阴极发射的平板显示器。 鉴于近几年Si C与金刚石材料的生长技术及氧化、掺杂、欧姆接触等工艺的成熟,使得Si C与金刚石器件得到了突飞猛进的发展,下面我们将主要评述Si C及金刚石的最新发展。 2 Si C功率器件 近年来Si C功率器件的研究引起了世界科学界的高度重视,尤其是美国、欧洲等发达国

半导体器件基础测试题

第一章半导体器件基础测试题(高三) 姓名班次分数 一、选择题 1、N型半导体是在本征半导体中加入下列物质而形成的。 A、电子; B、空穴; C、三价元素; D、五价元素。 2、在掺杂后的半导体中,其导电能力的大小的说法正确的是。 A、掺杂的工艺; B、杂质的浓度: C、温度; D、晶体的缺陷。 3、晶体三极管用于放大的条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 4、晶体三极管的截止条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 5、晶体三极管的饱和条件,下列说法正确的是。 A、发射结正偏、集电结反偏; B、发射结正偏、集电结正偏; C、发射结反偏、集电结正偏; D、发射结反偏、集电结反偏; 6、理想二极管组成的电路如下图所示,其AB两端的电压是。 A、—12V; B、—6V; C、+6V; D、+12V。 7、要使普通二极管导通,下列说法正确的是。 A、运用它的反向特性; B、锗管使用在反向击穿区; C、硅管使用反向区域,而锗管使用正向区域; D、都使用正向区域。 8、对于用万用表测量二极管时,下列做法正确的是。 A、用万用表的R×100或R×1000的欧姆,黑棒接正极,红棒接负极,指针偏转; B、用万用表的R×10K的欧姆,黑棒接正极,红棒接负极,指针偏转; C、用万用表的R×100或R×1000的欧姆,红棒接正极,黑棒接负极,指针偏转; D、用万用表的R×10,黑棒接正极,红棒接负极,指针偏转; 9、电路如下图所示,则A、B两点的电压正确的是。 A、U A=3.5V,U B=3.5V,D截止;

损耗与散热设计

第8章 损耗与散热设计 开关电源是功率设备,功率元器件损耗大,损耗引起发热,导致元器件温度升高,为了使元器件温度不超过最高允许温度,必须将元器件的热量传输出去,需要散热器和良好的散热措施,设备的体积重量受到损耗限制。同时,输出一定功率时损耗大,也意味着效率低。 8.1热传输 电子元器件功率损耗以热的形式表现出来,热能积累增加元器件内部结构温度,元器件内部温度受最高允许温度限制,必须将内部热量散发到环境中,热量通过传导、对流和辐射传输。当损耗功率与耗散到环境的功率相等时,内部温度达到稳态。 1. 传导 传导是热能从一个质点传到下一个质点,传热的质点保持它原来 的位置的传输过程,如图8-1固体内的热传输。热量从表面温度为T 1 的一端全部传递到温度为T 2的另一端,单位时间传递的能量,即功 率表示为 T R T l T T A P ?=-= )(21λ (8-1) 式中 A l R T λ= (8-2) 称为热阻(℃/ W );l -热导体传输路径长度(m);A -垂直于热传输路径的导体截面积(m 2);λ-棒材料的热导率(W/m ℃),含90%铝的热导率为220W/ m ℃,几种材料的热导率如表8-1所示;ΔT =T 1-T 2温度差(℃)。 例:氧化铝绝缘垫片厚度为0.5mm ,截面积2.5cm 2,求热阻。 解:由表8-1查得λ=20 W/m ℃,根据式(8-2)得到 3 4 0.5100.120 2.510t R --?==??℃/ W 式(8-1)类似电路中欧姆定律:功率P 相当于电路中电流,温度差;ΔT 相当于电路中电压。 半导体结的热量传输到周围空气必然经过几种不同材料传输,每种材料有自己的热导率,截面积和长度,多层材料的热传输可以建立热电模拟的热路图。图8-2是功率器件由硅芯片的热传到环境的热通路(a)和等效热路(b)。由结到环境的总热阻为 sa cs jc js R R R R ++= (8-3) 上式右边前两个热阻可以按式(8-2)计算,最后一项的热阻在以后介绍的方法计算。如果功率器件损耗功率为P ,则结温为 a sa cs jc j T R R R P T +++=)( (8-4) 式中R jc , R cs 及R sa 分别表示芯片结到管壳,管壳到散热器和散热 器到环境热阻。除了散热器到环境的热阻R sa 外,其余两个热阻可以按式(8-2)计算。 (a) (b) 图8-2功率器件热传输和等效热路图

功率半导体器件是什么

“power semiconductor device”和“power integrated circuit(简写为power IC或PIC)”直译就是功率半导体器件和功率集成电路。 在国际上与该技术领域对应的最权威的学术会议就叫做International Symposium on Power Semiconductor Devices and ICs,即功率半导体器件和功率集成电路国际会议。 “power”这个词可译为动力、能源、功率等,而在中文里这些词的含义不是完全相同的。由于行业的动态发展,“power”的翻译发生了变化。 从上世纪六七十年代至八十年代初,功率半导体器件主要是可控硅整流器(SCR)、巨型晶体管(GTR)和其后的栅关断晶闸管(GTO)等。它们的主要用途是用于高压输电,以及制造将电网的380V或220V交流电变为各种各样直流电的中大型电源和控制电动机运行的电机调速装置等,这些设备几乎都是与电网相关的强电装置。因此,当时我国把这些器件的总称———power semiconductor devices没有直译为功率半导体器件,而是译为电力电子器件,并将应用这些器件的电路技术power electronics没有译为功率电子学,而是译为电力电子技术。与此同时,与这些器件相应的技术学会为中国电工技术学会所属的电力电子分会,而中国电子学会并没有与之相应的分学会;其制造和应用的行业归口也划归到原第一机械工业部和其后的机械部,这些都是顺理成章的。实际上从直译看,国外并无与电力电子相对应的专业名词,即使日本的“电力”与中文的“电力”也是字型相同而含义有别。此外,当时用普通晶体管集成的小型电源电路———功率集成电路,并不归属于电力电子行业,而是和其他集成电路一起归口到原第四机械工业部和后来的电子工业部。 20世纪80年代以后,功率半导体行业发生了翻天覆地的变化。功率半导体器件变为以功率金属氧化物半导体场效应晶体管(功率MOSFET,常简写为功率MOS)、绝缘栅双极晶体管(IGBT)以及功率集成电路(power IC,常简写为PIC)为主。 这一转变的主要原因是,这些器件或集成电路能在比以前高10倍以上的频率下工作,而电路在高频工作时能更节能、节材,能大幅减少设备体积和重量。尤其是集成度很高的单片片上功率系统(power system on a chip,简写PSOC),它能把传感器件与电路、信号处理电路、接口电路、功率器件和电路等集成在一个硅芯片上,使其具有按照负载要求精密调节输出和按照过热、过压、过流等情况自我进行保护的智能功能,其优越性不言而喻。国际专家把它的发展喻为第二次电子学革命。

影响功率器件散热器散热性能的几何因素分析

Analysis of G eometric F actors on E ffect Upon the C apability of H eat Sink of Pow er Component FU Gui2cui,G AO Ze2xi (Beijing Univer sity o f Aeronautics and Astronautics,Dept.o f Systems Engineering,Beijing100083,China) Abstract: Heat sink consist of base and fin,the main parameters include the length of fin,the thickness of fin,the thickness of base and the width of base.Introduces the geometric structure of heat sink and researches on the geometric factors effecting the capability of heat sink.Investigate that thermal resistance can be lowered effectively by changing the geometric parameters of heat sink and get better effect.Provides the gist for the choice and the optimization of heat sink. K ey w ords: power com ponent;thermal design;heat sink;thermal resistance EEACC: 8550 影响功率器件散热器散热性能的几何因素分析 ① 付桂翠,高泽溪 (北京航空航天大学,工程系统工程系,北京 100083) 摘要:型材散热器的几何结构由肋片和基座构成,主要几何参数包括肋片长、肋片厚,肋片数、基座厚、基座宽等,研究了型材散热器几何因素对其热性能的影响,通过改变散热器的几何参数,可以有效的降低散热器的热阻,获得好的散热效果。本文的研究为型材散热器的的选择及优化设计提供了依据。 关键词:功率器件;热设计;散热器;热阻 中图分类号:T N305194;T N609 文献标识码:A 文章编号:1005-9490(2003)04-0354-03 功率器件是多数电子设备中的关键器件,其工作状态的好坏直接影响整机可靠性。功率器件尤其是大功率器件发热量大,仅靠封装外壳散热无法满足散热要求,需要配置合理散热器有效散热,而散热器的选择是否合理又直接影响功率器件的可靠性,因此分析影响散热器散热性能的因素,有利于合理选取散热器,提高功率器件的可靠性[1]。 1 散热器的选择 在电子设备热设计中,型材散热器由于结构简单,加工方便、散热效果好而得到了广泛的应用,其物理模型示意图如图1所示[2]。 它由肋片和基座构成,主要的几何参数包括肋片长、肋片厚,肋片数、基座厚、基座宽等。在选择散热器时一般需要依据散热器热阻来合理选择,同时还需要考虑以下几点:安装散热器允许的空间、气流流量和散热器的成本等。散热器散热的效果与散热器热阻的大小密切相关,而散热器的热阻除了与散热器材料有关之外,还与散热器的形状、尺寸大小以及安装方式和环境通风条件等有关,目前没有精确的数学表达式能够用来计算散热器的热阻,通常是通过实际测量得到。而散热器的有效面积与散热器几何参数密切相关[3]。 第26卷第4期2003年12月 电 子 器 件 Chinese Journal of E lectron Devices V ol.26,N o.4 Dec.2003 ①收稿日期:2003-07-01 作者简介:付桂翠(1968-),女,副教授,现主要从事可靠性工程,电子设备热设计技术研究工作,曾在国内外核心刊物上发 表论文十余篇,fuguicui@https://www.360docs.net/doc/1713166192.html,或fuguicui@https://www.360docs.net/doc/1713166192.html,; 高泽溪(1940-),男,教授,主要从事可靠性工程、电子设备热设计技术研究,获国防科工委、航空工业部科技进 步奖多次,在国内外核心刊物上发表论文数十篇.

大功率半导体器件IGBT产业化基地奠基

大功率半导体器件IGBT产业化基地奠基 5月25日,由公司负责具体实施的中国南车大功率半导体器件绝缘栅双极晶体管(简称“IGBT”)产业化基地在田心工业园奠基,我国首条8英寸IGBT芯片生产线项目随之启动。从芯片设计、到模块封装,再到系统应用,公司成为国内唯一掌握IGBT成套技术,形成完整产业链的企业。业内评价指出,“该基地的奠基,我国IGBT关键技术长期受制于人的局面由此改变”。 国家发改委产业协调司机械装备处处长李刚,铁道部运输局装备部副主任申瑞源,国家工业和信息化部装备工业司机械处处长王建宇,及铁道部、工信部、中国交通运输协会城市轨道交通专业委员会、湖南省经委、科技厅相关领导,中国南车董事长赵小刚、总工程师张新宁,株洲市市长王群、副市长肖文伟,公司决策委员会成员、部分中高层干部及员工代表参加了奠基仪式。 IGBT是功率半导体器件第三次技术革命的代表性产品,广泛应用于轨道交通、航空航天、智能电网、新能源汽车等战略性产业领域,是节能技术和低碳经济的主要支撑,被业界誉为功率变流装置的“CPU”、绿色经济的“核芯”。目前国内IGBT的主要供应商为外国厂商,为支持我国企业技术突围,IGBT成为国家产业政策重点支持和扶植的重大科技项目。相关研究机构指出,“在IGBT这个以技术为门槛的行业中,谁掌握了技术,谁就掌握了市场”。 据悉,轨道交通、新能源、 电动汽车等绿色经济产业在 未来十年甚至更长的时间里 将保持每年20-30%的高速增 长,发展绿色经济成为全球 各个主要经济体的共识。作 为绿色经济的功率“核芯”, IGBT市场发展前景光明。 中国南车总工程师张新宁致欢迎辞。对参加此次奠基仪式的领导及嘉宾表示欢迎。张新宁指出,作为电力电子技术的关键核心,IGBT已经逐步成为衡量一个企业、行业乃至国家电力电子技术水平的重要标志。

18_功率半导体器件应用教学大纲

《功率半导体器件应用》课程教学大纲 课程编号: 课程名称:功率半导体器件应用/ Applications of Power Semiconductor Devices 课程总学时/学分:48/3.0(其中理论36学时,实验12学时) 适用专业:电子科学与技术专业 一、教学目的和任务 功率半导体器件应用是电子科学与技术本科专业必修的一门专业核心课程。 功率半导体器件应用讲述功率器件(分立的和集成)的结构、功能、特性和特征,在此基础上分析当前电力电子技术中使用的各种类型功率半导体器件,包括功率晶体管、晶闸管、各类晶闸管及其应用、静电感应功率器件、双极-MOS功率器件,并包含了可靠工作条件,更进一步讲述其重要应用。根据电子科学与技术本科专业的特点和应用需要,在掌握功率半导体器件基本原理的基础上,使学生对功率半导体器件的应用有一个全面而系统的认识,并培养学生在工程实践中的应用能力,提高学生的创新能力。 二、教学基本要求 通过对计算机控制技术课程的学习,要求学生: (1)了解如何使用和选择功率半导体,以及半导体和PN结的物理特性以及功率器件可靠工作的条件。 (2)熟悉功率器件的可靠工作条件以及在电力电子中的应用。 (3)掌握功率晶体管、晶闸管、各类晶闸管及其应用、金属-氧化物-半导体场效应功率晶体管、双极-MOS功率器件的结构、功能及其应用。 (4)掌握功率晶体管、晶闸管、各类晶闸管及其应用、金属-氧化物-半导体场效应功率晶体管、双极-MOS功率器件的结构、功能及其应用。 三、教学内容与学时分配 第一章(知识领域1):功率半导体器件应用概述(2学时)。 (1)知识点:轨道交通系统中的应用;新能源技术中的应用;智能电网中的应用。 (2)重点与难点:重点是轨道交通系统中的应用、新能源技术中的应用和智能电网中的应用。 第二章(知识领域2):双极结型功率晶体管(2学时)。 (1)知识点:双极结型晶体管结构的基本特性;功率晶体管的基本特性;功率晶体管

功率器件知识

功率器件知识 功率器件的主要功能是进行电能的处理与变换(比如变压、变流、变频、功放等)。主要应用领域是开关电源、电机驱动与调速、UPS 等等,这些装置都需输出一定的功率给予电器,所以电路中必须使用功率半导体。另一重要应用领域是发电、变电与输电,这就是原本意义上的电力电子。 功率器件的应用领域:消费电子24%,工业控制23.4%,计算机21.8%,网络通信20.5%,汽车电子5.2%。 任何电器设备都需要电源,任何用电机的设备都需要电机驱动。作为目前国际上主流的功率半导体器件,包括VD-MOSFET和IGBT,克服了以前功率半导体器件工业频率低、所需要的配套电感、电容、变压器等体积大、能耗高等缺点,制备工艺使用的设备和工艺线的要求与集成电路基本相同,完全不同于用台面技术和粗放光刻的晶闸管、台面二极管、功率BJT的制造。 全球能源需求的不断增长以及环境保护意识的逐步提升使得高效、节能产品成为市场发展的新趋势。MOSFET等功率器件越来越多地应用到整机产品中。我国用于电机的电能占我国总发电量的60%多。如果全国电机的驱动都采用功率半导体进行变频调速就可以节能大约 1/4 到 1/3,也就是说可节约全国总发电量的15%至20%。功率半导体还是信息产品、计算机、消费电子和汽车这4C产业的基础产品,当前用于4C产业的功率半导体已占功率半导体总量的70%多。

功率器件包括功率IC(半导体元件产品统称)和功率分立器件。 功率分立器件主要包括功率MOSFET、大功率晶体管和IGBT等半导体器件。功率IC和MOSFET的市场份额较大,分别占40.4%和26.0%市场份额,是中国功率半导体市场上最重要两个产品,此外大功率晶体管、达林顿管、IGBT和晶闸管也占有一定市场份额。 功率器件的中国市场结构:电源管理IC 40.4%,MOSFET26.0%,大功率晶体管13.7%,达林顿管5.3%,IGBT4.2%,晶闸管1.8%。 由于下游终端产品很多已向国内转移,其上游的功率器件市场也一直保持较快的发展速度。02-06年中国功率器件市场复合增长率29.4%,未来5年复合增长率19.1%,2011年达1680.4亿元。 国外厂商处于主导地位,国内厂商奋起直追。从功率半导体厂商的类型来看,多数功率芯片厂商是IDM(智能分销管理系统)厂商,Fabless(无生产线的IC设计公司)也占据了一定比例。美国、日本和欧洲功率芯片厂商大部分属于IDM 厂商,而中国台湾厂商则绝大多数属于Fabless厂商。 其中MOSFET在中国目前的市场规模为174.8亿元。MOSFET根据不同的耐压程度,有着不同的应用:耐压20v-应用领域手机、数码相机,30v-计算机主板、显卡,40v-机顶盒和电动自行车,60v-UPS、汽车雨刷、汽车音响、马达控制,80v-LCD TV、LCD 显示器和其他仪器仪表,150-400v-照明、CRT 电视、背投电视、电热水器和洗衣机等,400-800v-发动机启动器、车灯控制、电机控制,嵌入式电源和电源适配器,500-1000v-高压变频器、发电和变电设备。

相关文档
最新文档