功率半导体器件

合集下载

SiC功率半导体器件的优势和发展前景

SiC功率半导体器件的优势和发展前景

SiC功率半导体器件的优势和发展前景SiC(碳化硅)功率半导体器件是一种新兴的半导体材料,具有许多优势和广阔的发展前景。

以下是SiC功率半导体器件的优势和发展前景。

1.高温工作能力:与传统的硅功率半导体器件相比,SiC器件能够在高温环境下工作,其工作温度可达到300摄氏度以上。

这使得SiC器件在航空航天、军事装备和汽车等应用领域具有巨大的潜力。

2.高电压耐受能力:SiC器件具有更高的击穿电场强度和较低的导通电阻,可以实现更高的电压耐受能力。

这使得SiC器件在高压和高电场应用中具有优势,如电力电子转换、电力传输和分配、电网充放电和电动车充电等。

3.高频特性:由于SiC材料的电子迁移率和终端速度较高,SiC器件具有优秀的高频特性。

这使得SiC器件在高频交流/直流转换器和射频功率放大器中具有广泛的应用。

4.低导通和开启损耗:SiC材料的电阻率较低,电流密度较大。

这导致SiC器件在导通过程中的能耗更低,进而减少了开关损耗。

相对于硅器件,SiC器件具有更高的效率和更小的温升。

这使得SiC器件在能源转换和电源管理领域具有潜在的应用前景。

5.小体积和轻量化:SiC器件的小体积和轻量化特性,使得其在高功率密度应用和紧凑空间条件下的应用更具优势。

这对于电动汽车、风力和太阳能发电系统、飞机和船舶等领域都有重要意义。

6.高可靠性和长寿命:由于SiC器件的抗辐射、抗高温、耐压击穿和抗电荷扩散等特性,它具有较高的可靠性和长寿命。

这对于军事装备、航空航天和核电等关键领域的应用具有重要意义。

SiC功率半导体器件的发展前景广阔。

随着科技的不断进步和物联网的快速发展,对于功率器件的要求愈发严苛。

在电力转换、能源管理和电动汽车等领域,对功率器件的需求将进一步增加,而SiC器件作为一种高温、高电压和高频特性都优异的功率半导体器件,将有望取代传统的硅器件,成为未来功率电子的主流。

此外,随着SiC材料的制备工艺和工艺技术的不断改进,SiC器件的成本也在逐渐下降。

功率半导体器件要点

功率半导体器件要点

功率半导体器件要点功率半导体器件是指用于控制和转换电力的半导体器件,其具有承载高电流和高电压的特点。

在电力电子领域中,功率半导体器件广泛应用于电力变换、传输和控制系统中,起到关键的作用。

本文将重点介绍功率半导体器件的要点,包括常见的功率半导体器件类型、特性与工作原理、应用领域和发展趋势等方面。

1.常见的功率半导体器件类型常见的功率半导体器件包括功率二极管、功率晶体管、功率场效应管(MOSFET)、可控硅(SCR)和绝缘栅双极晶体管(IGBT)等。

每种器件都有自己特殊的工作原理、结构和性能特点,适用于不同的应用场合。

2.功率半导体器件的特性与工作原理不同类型的功率半导体器件具有不同的特性和工作原理。

例如,功率二极管通常用作电流开关和快速恢复整流器,其主要特点是低电压降、快速开关速度和高导通电流能力。

功率晶体管在电力放大和开关电路中广泛使用,具有高功率放大能力和较高的开关速度。

功率场效应管主要有MOSFET和IGBT两种类型,其特点是低输入阻抗、高开关速度和较低的控制电压。

可控硅主要用于交流电控制和直流电开关,其工作原理是通过施加门极电压来控制器件的导通。

3.功率半导体器件的应用领域功率半导体器件在电力电子领域有广泛的应用。

例如,功率二极管通常用于电源、电机驱动和变频器等电路中。

功率晶体管广泛应用于功率放大、开关和变换器等电路。

功率场效应管主要用于集成电路和电力开关等领域。

可控硅被广泛应用于交流变频器、电动机起动和照明控制等场合。

绝缘栅双极晶体管(IGBT)结合了晶体管和可控硅的特点,逐渐成为高功率应用的主流器件。

4.功率半导体器件的发展趋势随着电力电子的广泛应用和需求的增加,功率半导体器件面临着高功率、高频率、高效率和小型化等方面的挑战。

近年来,功率半导体器件在结构设计、材料改进和工艺制造等方面取得了重大进展。

新型材料如碳化硅(SiC)和氮化镓(GaN)的应用,使功率半导体器件具有更高的工作温度、更高的开关速度和更低的导通电阻。

第十五章 半导体功率器件

第十五章 半导体功率器件

α2Ig + ICO1 +ICO2 IA = 1− α1 +α2) (
Figure 15.27
• 栅控电流是作为空穴的漂移电流而流进p2区的。多余的空 穴提高了P2区的电势,同时也增加了npn晶体管B-E结的正 偏电压以及晶体管的α1, npn晶体管的效应增加会增加集 电极电流IC2,而IC2的增加又会使pnp晶体管的效应提高, 于是整个pnpn器件从关态过度到低阻的导通态。 • 用于使SCR导通的栅控电流是mA量级,即小电流就能开启 SCR。 • 开启后,栅电流可以关断,但SCR仍处于导通状态
Figure 15.1 典型垂直式npn功率BJT的横截面图 典型垂直式npn功率 功率BJT的横截面图
电流集边效应 BJT的梳状结构
15.1.2 功率晶体管的特性
• 功率BJT与普通BJT比较: 1. 电流增益 β小。(原因基区宽度大) 2. 截止频率低。(原因器件尺寸大,结电容大) 3. 最大额定电流IC,MAX: 使功率BJT保持正常工作的 最大允许电流。与此相关的因素有: (1)连接半导体与外部电极的导线所能承受的最 大电流 (2)电流增益下降到某一最小值以下的集电极 (3)晶体管在饱和状态达到最大功耗时的电流
第十五章 半导体功率器件
15.1 功率双极晶体管
15.1.1 垂直式功率晶体管的结构 15.1.2 功率晶体管的特性 15.1.3 达林顿组态
15.1.1 垂直式功率晶体管的结构
对于功率晶体管,必须考虑晶体管的几何尺寸、结构,最 大额定电力、最大额定电压和最大额定功率 1. 2. 3. 4. C极的位置:普通的BJT,C极可在表面,功率BJT,C 极在器 件底部,这样使电流流过的横截面最大化 C极掺杂浓度:由低掺杂和重掺杂两个区共同组成,低 掺杂区提高击穿电压,重掺杂区减小集电极串联电阻 基区的宽度:功率BJT的基区宽度比普通BJT的基区宽 度宽,目的防止基区穿通,但导致电流增益减小。 几何尺寸大,发射极和基极作成梳状结构,减少电流集 边效应

第一章功率半导体器件

第一章功率半导体器件

第一章功率半导体器件1.1 概述1.1.1 功率半导体器件的定义图1-1为电力电子装置的示意图,输入电功率经功率变换器变换后输出至负载。

功率变换器即为通常所说的电力电子电路(也称主电路),它由电力电子器件构成。

目前,除了在大功率高频微波电路中仍使用真空管(电真空器件)外,其余的电力电子电路均由功率半导体器件组成。

图1-1 电力电子装置示意图一个理想的功率半导体器件、应该具有好的静态和动态特性,在截止状态时能承受高电压且漏电流要小;在导通状态时,能流过大电流和很低的管压降;在开关转换时,具有短的开、关时间;通态损耗、断态损耗和开关损耗均要小。

同时能承受高的di/dt和du/dt以及具有全控功能。

1.1.2功率半导体器件的发展功率半导体器件是电力电子技术的基础,也是电力电子技术发展的“龙头”。

从1958年美国通用电气公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由功率半导体器件构成的变流器时代。

功率半导体器件的发展经历了以下阶段:大功率二极管产生于20世纪40年代,是功率半导体器件中结构最简单、使用最广泛的一种器件。

目前已形成整流二极管(Rectifier Diode)、快恢复二极管(Fast Recovery Diode —FRD)和肖特基二极管(Schottky Barrier Diode—SBD)等3种主要类型。

晶闸管(Thyristor, or Silicon Controlled Rectifier—SCR)可以算作是第一代电力电子器件,它的出现使电力电子技术发生了根本性的变化。

但它是一种无自关断能力的半控器件,应用中必须考虑关断方式问题,电路结构上必须设置关断(换流)电路,大大复杂了电路结构、增加了成本、限制了在频率较高的电力电子电路中的应用。

此外晶闸管的开关频率也不高,难于实现变流装置的高频化。

晶闸管的派生器件有逆导晶闸管、双向晶闸管、光控晶闸管等。

功率半导体器件.

功率半导体器件.

(2.2)
(2.2) Dn, Dp: 电子和空穴的扩散系数 : 高注入条件下漂移区载流子寿命
方程 (2.2)X ( p p) ,(2.3)X (n n ) 得到 (2.4)
稳态条件下 (2.4) 应该为
(2.5)
上式中利用了双极扩散系数:
(2.6)
在 N/N+ 阴极处 (x = +d), 电流主要由电子承载,采用100%电子效率假设,可得 到:
反向阻断电压
反向阻断电压要小于击穿电压,而击穿电压主要有低掺杂去所决定。半导体材料决定 了最大击穿电场EC,对于单边突变结:
VBD
s Ec
2
பைடு நூலகம்2qN D
提高要击穿电压(反向阻断电压)的措施: 1.漂移区足够厚(d),以使在反偏时能够建立起足够宽的耗尽层,这与降低正向压降有 冲突,需要折衷考虑 2.使用低掺杂浓度和高电阻率晶圆,在生产中严格控制化学试剂的质量 3.使用具有高击穿电场的材料,如SiC,GaN
1.7 用于制备功率器件的半导体材料优值
1.8 课程内容及考核
• P-i-n整流器件,双极功率器件,功率MOSFET, 晶闸管类器件,双极-MOS功率器件 • 学时32:周二(1~16周) • 考核方式:平时60%+随堂测试40%
第二章 p-i-n二极管
• • • •
应用:整流器 额定电流: 1A 到几百安培 反向阻断电压: 几十伏特到几千伏特 设计目标: 高反向阻断电压、低正向压降、开关态 间快的转换速度
IC1 M (1I E1 IC 01 )
IC 2 M (2 I E 2 IC 02 )
4.3 晶闸管开关的能带变化
正向阻断态: J1,J3正偏,J2反偏, 空穴从P1注入N1被J2的反偏电场抽 运到P2,使其能带降低,导致J3更 加正偏;与之对应,电子聚集在N1 区使之能带升高,导致J1更加正偏。 在器件端电压不是足够大时,注入 的过剩载流子完全被复合掉 正向导通态:端电压不是足够高时, 载流子除了复合外,剩下的流入外 部电路

功率半导体器件基础知识讲解

功率半导体器件基础知识讲解

理想伏安特性
2024年1月2日
导通过程
0
vAK
反向阻断
正向阻断
11
第二章 功率半导体器件
晶闸管
现代电力电子技术原理与应用
2024年1月2日
12
第二章 功率半导体器件
螺栓型晶闸管外观
现代电力电子技术原理与应用
2024年1月2日
13
第二章 功率半导体器件
螺栓型晶闸管外观
现代电力电子技术原理与应用
2024年1月2日
现代电力电子技术原理与应用
2024年1月2日
18
第二章 功率半导体器件
常用全控型电力电子器件
现代电力电子技术原理与应用
• 功率晶体管(巨型晶体管,BJT,GTR) • 金属氧化物半导体场效应晶体管(MOSFET) • 绝缘栅型双极型晶体管(IGBT) • 门极可关断晶闸管(GTO) • ……
2024年1月2日
功率半导体器件基础知识讲解
第二章 功率半导体器件
理想的开关器件
现代电力电子技术原理与应用
• 关断时可承受正、反向电压(越高越好) • 开通时可流过正、反向电流(越大越好) • 开通态、关断态均无损耗 • 状态转换过程无损耗 • 状态转换过程快速完成(越快越好) • 开关寿命长(允许的开关次数越多越好)
2024年1月2日
43
第二章 功率半导体器件
现代电力电子技术原理与应用
电路中开关器件符号的处理:进一步简化
2024年1月2日
44
第二章 功率半导体器件
现代电力电子技术原理与应用
电路中开关器件符号的处理:抽象化
2024年1月2日
45
14
第二章 功率半导体器件

功率半导体器件发展概述

功率半导体器件发展概述

功率半导体器件发展概述
原创
近几十年来,随着半导体技术及其相关应用的快速发展,半导体器件的性能也在不断提升。

首先,高功率半导体器件是指采用半导体材料制造的器件,其最大功率能力达到千瓦以上,能够满足电子设备发电、传输、控制等各种高功率应用需求。

高功率半导体器件在现代电子产品中有着越来越重要的地位,功率晶体管、功率MOSFET、IGBT、SCR、二极管、交流电动机控制器等是最重要的几种高功率半导体器件。

这些器件在现代社会发挥了重要作用,参与设计了大功率的电子设备和装置,如电源、励磁技术、变频装置、UPS等,有效地改善了电子设备的性能,为现代电子设备及相关应用提供了有效的支持。

高功率半导体器件的发展历程可以追溯到上世纪50年代,当时科学家发明出了可调谐晶体管和功率晶体管,但其最大功率并不能达到千瓦。

在1960年,科学家又发明出功率MOSFET,用于高功率电子设备设计,从而有效降低了设备整体尺寸,加快了技术迭代速度。

功率半导体的优劣势分析-功率半导体器件用途功率半导体器件概述

功率半导体的优劣势分析-功率半导体器件用途功率半导体器件概述

功率半导体的优劣势分析_功率半导体器件用途功率半导体器件概述电力电子器件(PowerElectronicDevice)又称为功率半导体器件,主要用于电力设备的电能变换和控制电路方面大功率的电子器件(通常指电流为数十至数千安,电压为数百伏以上)。

功率半导体器件分类按照电力电子器件能够被控制电路信号所控制的程度分类:1.半控型器件,例如晶闸管;2.全控型器件,例如GTO(门极可关断晶闸管)、GTR(电力晶体管),MOSFET(电力场效应晶体管)、IGBT(绝缘栅双极晶体管);3.不可控器件,例如电力二极管;按照驱动电路加在电力电子器件控制端和公共端之间信号的性质分类:1.电压驱动型器件,例如IGBT、MOSFET、SITH(静电感应晶闸管);2.电流驱动型器件,例如晶闸管、GTO、GTR;根据驱动电路加在电力电子器件控制端和公共端之间的有效信号波形分类:1.脉冲触发型,例如晶闸管、GTO;2.电子控制型,例如GTR、MOSFET、IGBT;按照电力电子器件内部电子和空穴两种载流子参与导电的情况分类:1.双极型器件,例如电力二极管、晶闸管、GTO、GTR;2.单极型器件,例如MOSFET、SIT;3.复合型器件,例如MCT(MOS控制晶闸管)、IGBT、SITH和IGCT;功率半导体器件优缺点分析电力二极管:结构和原理简单,工作可靠;晶闸管:承受电压和电流容量在所有器件中最高IGBT:开关速度高,开关损耗小,具有耐脉冲电流冲击的能力,通态压降较低,输入阻抗高,为电压驱动,驱动功率小;缺点:开关速度低于电力MOSFET,电压,电流容量不及GTOGTR:耐压高,电流大,开关特性好,通流能力强,饱和压降低;缺点:开关速度低,为电流驱动,所需驱动功率大,驱动电路复杂,存在二次击穿问题GTO:电压、电流容量大,适用于大功率场合,具有电导调制效应,其通流能力很强;缺点:电流关断增益很小,关断时门极负脉冲电流大,开关速度低,驱动功率大,驱动电路复杂,开关频率低MOSFET:开关速度快,输入阻抗高,热稳定性好,所需驱动功率小且驱动电路简单,工作频率高,不存在二次击穿问题;缺点:电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25
第二章 功率半导体器件
功率晶体管
现代电力电子技术原理与应用
• 电流控制器件 • 用于中小功率场合(数十千瓦~数百千瓦) • 开关频率较低(数千赫兹以下) • 二次击穿问题
2020年7月9日
26
第二章 功率半导体器件
MOSFET
现代电力电子技术原理与应用
• 电压控制器件 • 用于小功率场合(数十千瓦以下) • 开关频率较高(可至数兆赫兹) • 无二次击穿问题
2020年7月9日
5
第二章 功率半导体器件
电子开关的实现:问题
现代电力电子技术原理与应用
• 两个SPST开关并不完全等价于一个SPDT开关 二极管的单向导电特性使得DC/DC
• 电力电子换器流件器并出不现能间完断全电等流价工于作S模PS式T开关
• 电力电子器件的某些特性可能会显著地影响电 路的工作
2020年7月9日
10
第二章 功率半导体器件
现代电力电子技术原理与应用
功率半导体器件(实际电力电子开关)
F: Forward R: Reverse B: Bidirection C: Conducting B: Blocking
2020年7月9日
11
第二章 功率半导体器件
功率半导体器件分类
现代电力电子技术原理与应用
2020年7月9日
4
第二章 功率半导体器件
电子开关的实现:问题
现代电力电子技术原理与应用
• 两个SPST开关并不完全等价于一个SPDT开关
• 电力电子器件并不能完全等价于SPST开关
• 电力电子器件的• 单某向些导特通性可能会显著地影响电
路的工作
• 单向阻断
• 电力电子器件的• 不通可、控断器可件能依赖于主电路状态 • 半可控器件
现代电力电子技术原理与应用
2020年7月9日
24
第二章 功率半导体器件
常用全控型电力电子器件
现代电力电子技术原理与应用
• 功率晶体管(巨型晶体管,BJT,GTR) • 金属氧化物半导体场效应晶体管(MOSFET) • 绝缘栅型双极型晶体管(IGBT) • 门极可关断晶闸管(GTO) • ……
2020年7月9日
2020年7月9日
3
第二章 功率半导体器件
电子开关的实现:问题
现代电力电子技术原理与应用
• 两个SPST开关并不完全等价于一个SPDT开关 • 电力电子两器开件关并可不能能会完同全时等通价或于同S时P断ST开关 • 电力电子器件的某些特性可能会显著地影响电 路的工作 • 电力电子器件的通、断可能依赖于主电路状态
理想伏安特性
2020年7月9日
导通过程
0
vAK
反向阻断
正向阻断
17
第二章 功率半导体器件
晶闸管
现代电力电子技术原理与应用
2020年7月9日
18
第二章 功率半导体器件
螺栓型晶闸管外观
现代电力电子技术原理与应用
2020年7月9日
19
第二章 功率半导体器件
螺栓型晶闸管外观
现代电力电子技术原理与应用
2020年7月9日
电力系统谐波问题 计算机仿真的困难
2020年7月9日
14
第二章 功率半导体器件
功率二极管
现代电力电子技术原理与应用
iD
iD
A
iD
K
I VB
+ vD -
0 VF (I)
vD
0
反向 阻断区
符号
实际伏安特性
理想伏安特性
2020年7月9日
vD
15
第二章 功率半导体器件
晶闸管
现代电力电子技术原理与应用
• 四层三端半体器件
• 电力电子器件的通、断可能依赖于主电路状态
2020年7月9日
6
第二章 功率半导体器件
电子开关的实现:问题
现代电力电子技术原理与应用
• 两个SPST开关并不完全等价于一个SPDT开关 • 电力电子器件并不能完全等价于SPST开关 • 电力电子器件的某些特性可能会显著地影响电 路的工作二极管、晶闸管的单向导通特性 • 电力电子器件的通、断可能依赖于主电路状态
50120021
现代电力电子技术原理与应用
第二章
功率半导体器件
第二章 功率半导体器件
电子开关的实现:可能性
现代电力电子技术原理与应用
2020年7月9日
2
第二章 功率半导体器件
电子开关的实现:问题
现代电力电子技术原理与应用
• 两个SPST开关并不完全等价于一个SPDT开关 • 电力电子器件并不能完全等价于SPST开关 • 电力电子器件的某些特性可能会显著地影响电 路的工作 • 电力电子器件的通、断可能依赖于主电路状态
• 不控型-整流二极管 • 半控型-晶闸管 • 全控型-GTO、BJT、IGBT、MOSFET ……
2020年7月9日
12
第二章 功率半导体器件
现代电力电子技术原理与应用
功率半导体器件及换流技术年谱
2020年7月9日
13
第二章 功率半导体器件
功率二极管
现代电力电子技术原理与应用
• P-N结型半导体器件 • 单向导电器件 • 非线性器件
• 半可控电器件(控通不控断)
• 非线性器件
电力系统谐波问题 计算机仿真的困难
2020年7月9日
16
第二章 功率半导体器件
晶闸管
A
iA +
vA
iG
K-
反向击穿
K
现代电力电子技术原理与应用
iA
导通态
反向 阻断区
0 反向击 穿电压
脉冲电流作用 下导通过程
关断态
vAK 正向转折
电压
符号
实际伏安特性
iA 导通态
8
第二章 功率半导体器件
功率半导体器件的状态
现代电力电子技术原理与应用
• 导通态(on) • 关断态(off) • 切换态(换流与换相)
2020年7月9日
9
第二章 功率半导体器件
现代电力电子技术原理与应用
功率半导体器件(实际电力电子开关)
• 可承受单向或双向断态电压 • 可流过单向或双向通态电流 • 导通态和关断态的损耗可接受 • 切换过程的损耗可接受 • 切换速度可接受 • 正确应用时寿命很长
20
第二章 功率半导体器件
平板型晶闸管外观
现代电力电子技术原理与应用
2020年7月9日
21
第二章 功率半导体器件
平板型晶闸管外观
现代电力电子技术原理与应用
2020年7月9日
22
第二章 功率半导体器件
换流器中的晶闸管组件
现代电力电子技术原理与应用
2020年7月9日
23
第二章 功率半导体器件
高压直流输电 换流器
2020年7月9日
7
第二章 功率半导体器件
理想的开关器件
现代电力电子技术原理与应用
• 关断时可承受正、反向电压(越高越好) • 开通时可流过正、反向电流(越大越好) • 开通态、关断态均无损耗 • 状态转换过程无损耗 • 状态转换过程快速完成(越快越好) • 开关寿命长(允许的开关次数越多越好)
2020年7月9日
相关文档
最新文档