几种常用的功率器件(电力半导体)及其应用(精)
半导体功率器件的特点

半导体功率器件的特点常见的功率器件有:功率二极管、金属-氧化物半导体场效应晶体管(MOSFET)、绝缘栅双极型晶体管(电力电子行业“CPU”IGBT)、基材禁带宽度较高(大于2.3eV)的功率器件-宽禁带功率器件,他们的特点介绍如下:1、功率二极管:最简单的功率器件二极管是用半导体材料制成的具有单向导电性的二端器件,一般由P极和N极形成PN结结构,电流只能从P极流向N极。
二极管由电流驱动,无法自主控制通断,电流只能单向通过。
半导体二极管按应用领域不同可分为用于电力转换的功率二极管,主要为普通整流二极管、快恢复二极管(Fast Recovery Diode,FRD)、肖特基二极管(Schottky Barrier Diode,SBD);用于显示用的发光二极管,如LED、OLED;用于将光信号转化成电信号的光电二极管等。
功率二极管是最简单的功率器件,利用其单向导电的特性,通常用于整流电路、稳压电路、开关电路、检波电路等。
1.1整流二极管是利用PN结的单向导电性,把电路中工频交流电转换成脉动直流电的一种二极管。
是结面积大、结电容大、工作频率较低,一般在几十千赫兹,为了可靠往往选用二极管的最大整流电流和最高反向工作电压要有2倍余量。
1.2开关二极管也是利用PN结的单向导电性而完成电流开关功能的一种二极管,当开关二极管加上一个较大的正脉冲信号时,进入导通状态,正向压降很小,正向电阻很低,相当一个闭合开关;当负脉冲到达时,进入截止状态,反向电阻很大,反向电流很小,相当一个断开的开关。
1.3稳压二极管是利用PN结反向击穿时电压基本不变,而电流可在很大范围内变化的特性制做的,它可以在一定电流变化范围内对电路起稳压作用。
1.4检波(也称解调)二极管是利用其单向导电性将高频或中频无线电信号中的低频信号或音频信号取出来,广泛应用于半导体收音机、收录机、电视机及通信等设备的小信号电路中,其工作频率较高,处理信号幅度较弱。
电力电子器件知识讲座(一) 电力电子器件的分类及应用概述

端是 阳极 ,另 一端 是 阴极 。与 电子 电路 中的二 极管 一 样 ,具 有单 向导 电性 。其 开关 操作 仅 取 决 于其 在 主 电
路 中施 加在 阳 、阴极 间 的 电压和 流 过它 的 电流 ,正 向
控 型器 件 ,晶闸管 属 于半 控 型器 件 ,其 他 均属 于全 控 型器 件 。S R、G O G R 电流 驱 动 型 器 件 ,功 率 C T 及 T属
MO F T G T I 为 电压驱 动 型器件 。 S E 、I B 及P C 在直接 用 于处理 电能 的主 电路 中 .实 现 电能变 换 和控 制 的 电子器 件称 为 电力 电子器 件 。 电力 电子 器 件
知 识讲 座 》
d i 03 6  ̄i n1 6 - 7 52 1 .40 8 o: . 9 .s .5 3 4 9 .0 1 .1 1 9 s 0
【 者按 】 电力 电子器 件是 半导 体 功率 器件 的总称 ,是 构成 电力 电子 设备 的基 础 ,是 从 事 电力 电子 编
_矗
器件设 计 、研发 、生产 、 营销 和 应 用人 员 以及 电源技 术 工作 者应 该 熟 悉的 内容 。本刊从 今 年4 l Y份
的是 电力 半 导体 器件 ,与普 通半 导 体器 件 一样 ,电力 半 导体 器件 所采 用 的主要 材料 仍然 是硅 。
作 原理 、结 构 和 电气 参数 ,正 确 安全 使 用 电力 电子 器 件 是完成 一 部 电力 电子装 置最 关键 的一 步 。 电力 电子器 件种 类 繁 多 .各种 器 件具 有 自身 的特 点并 对驱 动 、保 护 和缓 冲 电路 有一 定 的要 求 。一 个 完 善 的驱 动 、保 护和缓 冲 电路 是 器件 安 全 、成 功使 用 的 关键 ,也 是本 讲座 重点 讲述 的部 分 。 电力 电子 变换 电路 常用 的半 导 体 电力 器件 有 快 速 功 率 二 极 管 、大 功 率 双 极 型 晶 体 管 f T ) G R 、晶 闸 管
宽禁带半导体功率器件——材料、物理、设计及应用

宽禁带半导体功率器件——材料、物理、设计及应用1.引言1.1 概述宽禁带半导体功率器件作为半导体领域中的重要分支,具有广阔的应用前景。
它是基于宽禁带半导体材料的器件,具备了高功率、高电压和高温度等特点,适用于能源领域、通信领域以及其他一系列领域。
在本文中,我们将对宽禁带半导体功率器件的材料、物理性质、设计原理以及应用领域进行深入研究和探讨。
首先,我们将介绍宽禁带半导体材料的定义和分类,以及其在器件制备中的重要性。
接着,我们将详细探讨宽禁带半导体材料的物理性质,包括载流子浓度、迁移率和反向饱和电流等关键参数的影响因素和变化规律。
其次,我们将深入研究宽禁带半导体功率器件的设计原理,包括器件结构、电场分布以及载流子输运等方面的理论基础。
这部分内容将着重介绍宽禁带半导体功率器件的设计要点,包括提高器件电流密度、减小漏电流和改善器件热特性等方面的关键技术和方法。
最后,我们将重点关注宽禁带半导体功率器件在能源领域和通信领域的应用。
特别是在能源领域,宽禁带半导体功率器件可以广泛应用于太阳能电池、风力发电和电动车等领域,为可再生能源的开发和利用提供支持。
在通信领域,宽禁带半导体功率器件的高频特性和高功率特性,使其成为无线通信系统中的重要组成部分。
总之,本文将全面介绍宽禁带半导体功率器件的材料、物理性质、设计原理以及应用领域,并对其现状进行总结和展望。
通过深入研究和探讨,我们希望能够进一步提高宽禁带半导体功率器件的性能和应用水平,为相关领域的发展做出贡献。
文章结构部分的内容如下:1.2 文章结构本文将分为引言、正文和结论三部分来展开对宽禁带半导体功率器件的讨论。
引言部分将首先对宽禁带半导体功率器件进行概述,介绍其基本概念和特点。
接着将介绍文章的结构和内容安排,以便读者能够清晰地理解全文的逻辑发展。
正文部分将分为三个主要章节:材料、设计和应用。
在材料章节中,我们将详细介绍宽禁带半导体材料的特点和性质,包括它们的禁带宽度、载流子浓度和迁移率等重要参数。
第9章--电力二极管、电力晶体管和晶闸管的应用简介

目录目录.............................................................................................................................................................................. 第9章电力二极管、电力晶体管和晶闸管的应用简介 . 09.1 电力二极管的应用简介 09.1.1 电力二极管的种类 09.1.2 各种常用的电力二极管结构、特点和用途 09.1.3 电力二极管的主要参数 09.1.4 电力二极管的选型原则 (1)9.2 电力晶体管的应用简介 (2)9.2.1 电力晶体管的主要参数 (2)9.2.2 电力晶体管的选型原则 (2)9.3 晶闸管的应用简介 (3)9.3.1 晶闸管的种类 (3)9.3.2 各种常用的晶体管结构、特点和用途 (3)9.3.3 晶闸管的主要参数 (4)9.3.4 晶闸管的选型原则 (5)9.4 总结 (6)第9章电力二极管、电力晶体管和晶闸管的应用简介9.1 电力二极管的应用简介电力二极管(Power Diode)在20世纪50年代初期就获得应用,当时也被称为半导体整流器;它的基本结构和工作原理与信息电子电路中的二极管相同,都以半导体PN结为基础,实现正向导通、反向截止的功能。
电力二极管是不可控器件,其导通和关断完全是由其在主电路中承受的电压和电流决定的。
电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的。
9.1.1 电力二极管的种类电力二极管主要有普通二极管、快速恢复二极管和肖特基二极管。
9.1.2 各种常用的电力二极管结构、特点和用途名称结构特点、用途实例图片整流二极管多用于开关频率不高(1kHz以下)的整流电路中。
其反向恢复时间较长,一般在5s以上,其正向电流定额和反向电压定额可以达到很高。
功率组件原理的应用有哪些

功率组件原理的应用有哪些1. 功率组件原理介绍功率组件是指各种能够控制电能流动、转变电能形式的电子器件。
它们可以控制电能的传输和转换,从而在电力系统中发挥重要作用。
功率组件通常包括开关器件、变压器和各种电子电路。
以下介绍了一些常见的功率组件原理及其在现实应用中的作用。
2. 开关器件开关器件是实现电能传输控制的重要组成部分。
常见的开关器件有晶闸管(SCR)、可控硅(Thyristor)、场效应管(FET)、金属氧化物半导体场效应晶体管(MOSFET)等。
它们能够在不同的电压和电流条件下控制电能的传输,实现电能的开、关和控制。
开关器件广泛应用于电力调节、变换、调速、保护、逆变等领域。
•在电力调节方面,开关器件常用于调节某个电路或分支电路的电流或电压大小,以实现电力的合理平衡和分配。
•在电力变换方面,开关器件可以将交流电转换成直流电(整流)或将直流电转换成交流电(逆变)。
•在电力调速方面,开关器件能够根据需要控制电动机的运转速度,以适应不同的工作要求。
•在电力保护方面,开关器件可以起到断路或短路保护的作用,抵御过载和短路故障对整个电力系统的影响。
•在电力逆变方面,开关器件能够将直流电转换成交流电,在电网连接问题、储能技术、新能源开发等方面发挥重要作用。
3. 变压器变压器是一种通过磁耦合来实现电能转换的功率组件。
它能够改变交流电的电压大小,从而满足不同电气设备对电压要求的变化。
变压器包括升压变压器和降压变压器两种类型。
在电力系统中,变压器起到了电能传输、配电和电气设备保护等重要作用。
•电能传输方面,变压器用于提供电力长距离传输时所需的高电压,减少电线损耗,并通过升压变压器将电能升压到合适的输电电压。
•配电方面,变压器将高电压输电线路传输的电能变压为适用于用户使用的低电压(例如家庭、工业厂房等),确保电能可靠供应,并提高用电安全性。
•电气设备保护方面,变压器可以使用不同的绕组比例来实现电气设备的过载和短路保护,防止电气设备受到损坏。
13种常用的功率半导体器件介绍

13种常用的功率半导体器件介绍电力电子器件(Power Electronic Device),又称为功率半导体器件,用于电能变换和电能控制电路中的大功率(通常指电流为数十至数千安,电压为数百伏以上)电子器件。
可以分为半控型器件、全控型器件和不可控型器件,其中晶闸管为半控型器件,承受电压和电流容量在所有器件中最高;电力二极管为不可控器件,结构和原理简单,工作可靠;还可以分为电压驱动型器件和电流驱动型器件,其中GTO、GTR为电流驱动型器件,IGBT、电力MOSFET为电压驱动型器件。
1. MCT (MOS Control led Thyristor):MOS控制晶闸管MCT 是一种新型MOS 与双极复合型器件。
如上图所示。
MCT是将MOSFET 的高阻抗、低驱动图MCT 的功率、快开关速度的特性与晶闸管的高压、大电流特型结合在一起,形成大功率、高压、快速全控型器件。
实质上MCT 是一个MOS 门极控制的晶闸管。
它可在门极上加一窄脉冲使其导通或关断,它由无数单胞并联而成。
它与GTR,MOSFET,IGBT,GTO 等器件相比,有如下优点:(1)电压高、电流容量大,阻断电压已达3 000V,峰值电流达1 000 A,最大可关断电流密度为6000kA/m2;(2)通态压降小、损耗小,通态压降约为11V;(3)极高的dv/dt和di/dt耐量,dv/dt已达20 kV/s ,di/dt为2 kA/s;(4)开关速度快,开关损耗小,开通时间约200ns,1 000 V 器件可在2 s 内关断;2. IGCT(Intergrated Gate Commutated Thyristors)IGCT 是在晶闸管技术的基础上结合IGBT 和GTO 等技术开发的新型器件,适用于高压大容量变频系统中,是一种用于巨型电力电子成套装置中的新型电力半导体器件。
IGCT 是将GTO 芯片与反并联二极管和门极驱动电路集成在一起,再与其门极驱动器在外围以低电感方式连接,结合了晶体管的稳定关断能力和晶闸管低通态损耗的优点。
常用电子元器件及应用

碳膜电阻(型号:RT)。在陶瓷骨架表面上,将碳氢化合物在真空中通过高温蒸发分解沉积成碳结晶导电膜。碳膜电阻价格低廉,阻值范围宽(10W~10MW),温度系数为负值。常用额定功率为1/8W~10W,精度等级为±5%、±10%、±20%,在一般电子产品中大量使用。
5.6
2.0
6.2
2.2
2.2
2.2
6.8
6.8
6.8
2.4
7.5
2.7
2.7
8.2
来表示电容器标称电容量,n为正或负整数。
注:用表中数值再乘以10n来表示电容器标称电容量,n为正或负整数。
有机实芯电位器
由导电材料与有机填料、热固性树脂配制成电阻粉,经过热压,在基座上形成实芯电阻体。该电位器的特点是结构简单、耐高温、体积小、寿命长、可靠性高,广泛用于焊接在电路板上作微调使用;缺点是耐压低、噪声大。
线绕电位器
多圈电位器属于精密电位器。它分有带指针、不带指针等形式,调整圈数有5圈、10圈等数种。该电位器除具有线绕电位器的相同特点外,还具有线性优良,能进行精细调整等优点,可广泛应用于对电阻实行精密调整的场合。
E24
E12
E6
E24
E12
E6
1.0
1.0
1.0
3.3
3.3
3.3
1.1
3.6
1.2
1.2
反向重复峰值电压URRM

退出
3.3 功率场效应管
功率场效应管(MOSFET)是20世纪70年代中期发展起来的 新型半导体电力电子器件。同双极型晶体管相比,功率 MOSFET 具有开关速度快、损耗低、驱动电流小、无二次击穿 现象等优点。目前功率 MOSFET 越来越受到人们的重视,广泛 应用于高频电源变换、电机调速、高频感应加热等领域。
退出
(3)额定正向平均电流 IF 。其定义和二极管的额定整流电流意义 相同。要注意的是若晶闸管的导通时间远小于正弦波的半个周期, 即使IF值没超过额定值,但峰值电流将非常大,以致可能超过管子 所能提供的极限。 (4)正向平均管压降UF 。指在规定的工作温度条件下,使晶闸管 导通的正弦波半个周期内UAK的平均值,一般在0.4~1.2V。 (5)维持电流IH 。指在常温门极开路时,晶闸管从较大的通态电 流降到刚好能保持通态所需要的最小通态电流。一般IH值从几十到 几百毫安,视晶闸管电流容量大小而定。 (6)门极触发电流IG 。在常温下,阳极电压为6V时,使晶闸管能 完全导通所需的门极电流,一般为毫安级。
2
3 1
MT2
MT1
退出
ቤተ መጻሕፍቲ ባይዱ
( 1 )第一象限触发 MT2+ 、 G+ 。即相对于电极 MT1 、 MT2的电 压为正;门极G的触发电流为正。 (2)第二象限触发 MT2+、G–。即相对于电极MT1、MT2 的电 压为正;门极G的触发电流为负。
(3)第三象限触发 MT2–、G–。即相对于电极MT1、MT2的电压 为负;门极G的触发电流为负。
第三讲 几种常用的功率器件(电力 半导体)及其应用
3.1 普通晶闸管
普通晶闸管(又称可控硅)是一种大功率半导体器件,主 要用于大功率的交直流变换、调压等。晶闸管三个电极分 别用字母A(表示阳极)、K(表示阴极)、G(表示门极)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当触发二极管导通时,电容通过R2放电,可控硅再次截止; 电容又被充电,等等.
可控硅器件的接口
VCC_CIRCLE
+5V
R1 150
2
1
MOC3021 11
2
74LS07
6
R2
1 2 1
R3 2K
2
Zf
VCC_CIRCLE
330 C 4 0.22uF
2
KS
¡ «220V
VCC_CIRCLE
3.3 功率场效应管
(4)第四象限触发 MT2–、G+。即相对于电极MT1、MT2 的电压为负; 门极G的触发电流为正。
双向晶闸管的最高触发灵敏度在第一、三象限,而在第二、四象限比较差。 故在实际应用中常采用第一、第三象限触发方式。 2. 应用电路 双向晶闸管主要用于电机控制、电磁阀控制、调温及调光控制等方面 。
光敏电阻应用电路:光控闪烁安全警示灯
3.晶闸管的正确使用
(1)管脚的判别。用万用表R×100W档,分别测量各管脚间的正、反向电阻。 因为只有门极G与阴极K之间正向电阻较小,而其他均为高阻状态,故一旦测出 两管脚间呈低阻状态,则黑表笔所接为门极G,红表笔所接为阴极K,另一端为 阳极A。
( 2 )管子质量的判别。用万用表 R×100W 档,若测的以下情况之一, 则说明管子是坏的。①任两极间正反向电阻均为零。②A、K间正向电阻 为低阻(注意:测量过程中黑表笔不要接触 G极)。③各极之间均为高 电阻。4.Βιβλιοθήκη 应用电路3.2 双向晶闸管
就其功能来说,双向晶闸管可以被认为是一对反并联连接的单向普 通晶闸管。它和单向晶闸管的区别是:第一,它在触发之后是双向导 通的;第二,在门极中所加的触发信号不管是正的还是负的都可以使 双向晶闸管导通。
1.双向晶闸管的特性
电 极2 MT2
N P N P N N 电 极1 电 极1 MT1 G 门 极( 控 制极 ) 电 极2 门 极( 控 制极 ) G
Chapter3 几种常用的功率器件(电力半导体)及其应用
3.1 普通晶闸管
普通晶闸管(又称可控硅)是一种大功率半导体器件,主 要用于大功率的交直流变换、调压等。晶闸管三个电极分 别用字母A(表示阳极)、K(表示阴极)、G(表示门极)。
阴极 K
1 2
G
控制极
A
3
阳极
1.晶闸管的伏安特性
晶闸管的伏安特性如图2.7.1所示。它表示晶闸管的阳极与阴 极间的电压和它的阳极电流之间的关系。通过特性曲线,可 得出晶闸管导通和关断的下列结论。
(3)晶闸管额定电压的选择。晶闸管实际工作时承受的正常峰值电压应 低于正、反向重复峰值电压UDRM和URRM,并留有2~3倍的额定电压值 的余量,还应有可靠的过电压保护措施。
(4)晶闸管额定电流的选择。晶闸管实际工作通过的最大平均电流应低 于额定通态平均电流ITa,并应根据电流波形的变化进行相应换算,还应 有1.5~2倍的余量及过电流保护措施。 (5)关于门极触发电压和电流的考虑。晶闸管实际触发电压和电流应大 于晶闸管参数UGT和IGT,以保证晶闸管可靠地被触发,但也不能超过允 许的极限值。
du dt。 在额定结温和门极开路的情况下, (8)断态电压临界上升率 不导致晶闸管从断态到通态转换的最大正向电压上升率。一般为每微秒几 十伏。
di dt 。 在规定条件下,晶闸管能承受的最 (9)通态电流临界上升率 大通态电流上升率。若晶闸管导通电流上升太快,则会在晶闸管刚开通时, 有很大的电流集中在门极附近的小区域内,从而造成局部过热而损坏晶闸管。
(2)反向重复峰值电压 URRM 。指门极开路而结温为额定值时,允许重复 加在器件上的反向峰值电压。当加在管子上反向电压大于 URRM时,管子可 能会被击穿而损坏。 通常把UDRM和URRM中较小的那个数值标作晶闸管型号上的额定电压。在选 用管子时,额定电压应为正常工作峰值电压的 2~3倍,以保整电路的工作 安全。
(3)额定正向平均电流 IF 。其定义和二极管的额定整流电流意义相同。 要注意的是若晶闸管的导通时间远小于正弦波的半个周期,即使IF值没超 过额定值,但峰值电流将非常大,以致可能超过管子所能提供的极限。 (4)正向平均管压降UF 。指在规定的工作温度条件下,使晶闸管导通的 正弦波半个周期内UAK的平均值,一般在0.4~1.2V。 (5)维持电流IH 。指在常温门极开路时,晶闸管从较大的通态电流降到 刚好能保持通态所需要的最小通态电流。一般IH值从几十到几百毫安,视 晶闸管电流容量大小而定。 (6)门极触发电流IG 。在常温下,阳极电压为6V时,使晶闸管能完全导 通所需的门极电流,一般为毫安级。 (7)门极触发电压UG 。产生门极触发电流所必须的最小门极电压,一般 为5V左右。
在正常情况下,晶闸管导通的必要条件 有两个,缺一不可: (1)晶闸管承受正向电压(阳极电位高 于阴极电位)。 (2)加上适当的正向门极电压(门极电 位高于阴极电位)。 晶闸管一旦导通,门极就失去了控制作 用。正因为如此,晶闸管的门极控制信 号只要是正向脉冲电压就可以了,称之 为触发电压或触发脉冲。
要使晶闸管关断,必须去掉阳极正向电压,或者给阳极加反向电压,或者 降低正向阳极电压,这样就使通过晶闸管的电流降低到一定数值以下。能 保持晶闸管导通的最小电流,称为维持电流。 当门极没有加正向触发电压时,晶体管即使阳极和阴极之间加上正向电压 ,一般是不会导通的。 2.晶闸管的主要参数 (1)断态重复峰值电压UDRM 。指在门极开路而器件的结温为额定值时, 允许重复加在器件上的正向峰值电压。若加在管子上的电压大于UDRM,管 子可能会失控而自行导通。
2
3 1
MT2
MT1
(1)第一象限触发 MT2+、G+。即相对于电极MT1、MT2的电压为正; 门极G的触发电流为正。
(2)第二象限触发 MT2+、G–。即相对于电极MT1、MT2 的电压为正; 门极G的触发电流为负。 (3)第三象限触发 MT2–、G–。即相对于电极MT1、MT2的电压为负; 门极G的触发电流为负。
功率场效应管(MOSFET)是20世纪70年代中期发展起来的 新型半导体电力电子器件。同双极型晶体管相比,功率 MOSFET 具有开关速度快、损耗低、驱动电流小、无二次击穿 现象等优点。目前功率 MOSFET越来越受到人们的重视,广泛 应用于高频电源变换、电机调速、高频感应加热等领域。