统计学 第六章 抽样与参数估计

合集下载

统计学 第 6 章 抽样与参数估计

统计学  第 6 章   抽样与参数估计

第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。

统计学第六章 抽样法

统计学第六章  抽样法
31
第六章 抽样法
序号
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16 合计
样本变量x
40、40 40、50 40、70 40、80
50、40 50、50 50、70 50、80
70、40 70、50 70、70 70、80
80、40 80、50 80、70 80、80

x
x E(x)
总体
研究如何利用 样本数据来 推断总体特 征。
内容包括:参 数估计和假 设检验。
目的:对总体
特征作出推
样 本
断。
这是推断统计学研 究的问题
5
第六章 抽样法
描述统计与推断统计的关系
反映客观 现象的数

概率论
(包括分布理论、大 数定律和中心极限定
理等)
样本数
描述统计
推断统计

总体数 据
(统计数据的搜集 、整理、显示和分
13
第六章 抽样法
第二节 有关抽样的基本概念(2)
(二)抽样总体
也称子样,样本或样本总体,它是从全 及总体中随机抽取出来的,代表全及总体的 那部分单位的集合体。抽样总体的单位数称 为样本容量,用n表示,对于N来说,n是很 小的。
总体
样 本
14
第六章 抽样法
第二节 有关抽样的基本概念(3)
• 二 全及指标和抽样指标p.249 (一) 全及指标
研究总体中 的品质标志
总体成数 P N1
N
总体成数标准差 P
P1 P
17
第六章 抽样法
第二节 有关抽样的基本概念(5)
(二)抽样指标
抽样指标是由样本总体各单位标志值 或标志特征计算的综合指标,也称统计量。 与全及指标相对应有:样本平均数,样本 标准差;样本成数,样本成数的标准差。

统计学第六章抽样和抽样分布

统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布

第六章抽样与参数估计

第六章抽样与参数估计
5、假设4个人工资分别为:400、500、700、800元,现随机 抽选2人进行调查。
(1)验证 E(x) X
(2)计算重复抽样及不重复抽样的抽样平均误差。 24
第2节 参数估计的基本方法
参数估计——以实际观察的样本数据所计算的统计量作为未 知总体参数的估计值。
一、点估计(Point estimate) 点估计也称定值估计,就是直接以样本统计量作为总体参数
29
大样本(n≥30)下总体均值的区间估计
区间估计就是根据样本求出总体未知参数的估计区间,并使其 可靠程度达到预定要求。
(1) 总体方差σ 2已知时

由于 α ,有
z

x
/

n
N(0,1) ,所以对于给定的置信度1-
P {z 2
x/nz2}1


Px z/2
7
抽样法的特点:随机原则 部分估计总体 存在误差并可以控制
抽样法的应用:对某些不可能进行全面调查 而又需要了解其 全面情况的社会经济现象, 必须应用抽样法。(破坏性试验、总体过大、 单位过于分散,实际调查不可能的)
8
第1节 抽样与抽样分布
一、有关抽样的基本概念
总体(母体)(Population) 样本(子样)(Sample) 总体指标(总体参数)(Population parameter) 样本指标(样本统计量)(Sample statistic)
2、某工厂共生产新型聚光灯2000只,随机抽选400只进行耐 用时间调查,结果平均寿命为4800小时,标准差为300小时。 求抽样误差。
3、从某校学生中随机抽选400名,发现戴眼镜的有80人。计 算求抽样误差。

《国民经济统计学概论》_第六章_抽样推断

《国民经济统计学概论》_第六章_抽样推断
总体未分组: 2 (X X )2 N
总体分组: 2 (X X )2 F F
总体成数的方差为 P(1 - P)
2.统计量,又称样本指标,反映样本特 征的统计指标
(1)样本平均数( x ),样本各 单位数量标志值的平均数
未分组: x x
n
分组: x xf f
(2)样本成数(p) 是指样本中具有某一相同标志表现的单
要有四个:
(1)总体平均数( X )
总体各单位数量标志值的平均数
X
总体未分组情况下:X N
总体分组情况下:
XF
X
F
(2)总体成数(P)
是指总体中具有某一相同标志表现的单 位数占全部总体单位数的比重
多为交替指标
总体中具有相同标志表现的单位数用N1 表示
P N1 N
(3)总体方差和标准差 总体方差(σ2)
特点: 1.抽样方式组织简便,便于实施 2.在已知总体某些有关信息的情况下,
采用等距抽样能保证样本单位在总体中 均匀的分布,从而提高了样本对总体的 代表性,有利于降低抽样误差。
无关标志排队 有关标志排队
(三)类型抽样 首先把总体按某一标志分成若干个类型
组,使各组组内标志值比较接近,然后 分别在各组内按随机原则抽取样本单位。 特点:在于把分组法和随机抽样原则结 合起来。
i2ni
n
抽样成数的平均误差:
重置抽样:
p
P(1 P) n
不重置抽样:
第四节 抽样的组织形式及抽样方 案设计
一、抽样的组织形式 (一)简单随机抽样 从总体全部单位中直接按随机原则抽取
样本单位,使每个总体单位都有同等机 会被抽中
最基本形式
(1)直接抽选法 直接从调查对象中随机抽选。

生物统计学答案 第六章 参数估计

生物统计学答案  第六章 参数估计

第六章参数估计6.1以每天每千克体重52 μmol 5-羟色胺处理家兔14天后,对血液中血清素含量的影响如下表[9]:y/(μg · L-1)s/(μg · L-1)n对照组 4.20 0.35 125-羟色胺处理组8.49 0.37 9建立对照组和5-羟色胺处理组平均数差的0.95置信限。

答:程序如下:options nodate;data common;alpha=0.05;input n1 m1 s1 n2 m2 s2;dfa=n1-1; dfb=n2-1;vara=s1**2; varb=s2**2;if vara>varb then F=vara/varb;else F=varb/vara;if vara>varb then Futailp=1-probf(F,dfa,dfb);else Futailp=1-probf(F,dfb,dfa);df=n1+n2-2;t=tinv(1-alpha/2,df);d=abs(m1-m2);lcldmseq=d-t*sqrt(((dfa*vara+dfb*varb)/(dfa+dfb))*(1/n1+1/n2));ucldmseq=d+t*sqrt(((dfa*vara+dfb*varb)/(dfa+dfb))*(1/n1+1/n2));k=vara/n1/(vara/n1+varb/n2);df0=1/(k**2/dfa+(1-K)**2/dfb);t0=tinv(1-alpha/2,df0);lcldmsun=d-t0*sqrt(vara/n1+varb/n2);ucldmsun=d+t0*sqrt(vara/n1+varb/n2);cards;12 4.20 0.35 9 8.49 0.37;proc print;id f;var Futailp alpha lcldmseq ucldmseq lcldmsun ucldmsun;title1 'Confidence Limits on the Difference of Means';title2 'for Non-Primal Data';run;结果见下表:Confidence Limits on the Difference of Meansfor Non-Primal DataF FUTAILP ALPHA LCLDMSEQ UCLDMSEQ LCLDMSUN UCLDMSUN1.11755 0.42066 0.05 3.95907 4.62093 3.95336 4.62664首先,方差是具齐性的。

统计学课件第六章抽样调查PPT课件

统计学课件第六章抽样调查PPT课件

特点
每个样本被选中的机会都 相等,样本的代表性相对 较好。
分层抽样
定义
先将总体按一定标准分成 若干层次或群,然后从各 层或群中按随机原则抽取 样本。
方法
分类抽样、比例抽样、类 型抽样。
特点
能够提高样本的代表性, 降低误差,减少资源浪费。
系统抽样
定义
先将总体中的所有个体按某种顺序排列,然后按 照固定的间隔或系统选取样本。
改进抽样方法
采用更科学的抽样方法和技术,如分层抽样、系统抽样等,以提 高样本的代表性。
提高样本代表性
在抽样过程中尽量减少非随机误差,如无回答、不完整数据等, 以提高样本对总体的代表性。
05 抽样调查的组织与实施
抽样调查的设计
确定调查目的
明确调查的目标和意图,为后 续的抽样设计提供指导。
确定调查对象
合理安排问题的顺序、布局和格式,以提高 问卷的易用性和回答率。
确定调查方式
选择合适的调查方式,如自填式、面访式等, 并确定数据收集的途径。
测试与修正
对问卷进行测试和修正,确保问卷的准确性 和可靠性。
调查的实施与质量控制
培训调查员
对调查员进行培训,确保他们了解调 查目的、问卷内容、调查方法等。
现场实施
将总体分成若干个群集或组,然后从每个 群集或组中抽取一定数量的样本,也称为 簇抽样或组抽样。
抽样调查的应用场景
01
02
03
04
市场调查
通过对目标市场的部分消费者 进行调查,了解市场需求、消 费者行为和产品反馈等信息。
社会调查
通过对一定范围内的社会成员 进行调查,了解社会现象、人 口状况和社会问题等信息。
统计学课件第六章抽样调查ppt课 件

抽样与估计知识点

抽样与估计知识点

抽样与估计知识点抽样与估计是统计学中的重要概念,它们在数据分析和统计推断中起着关键作用。

通过合适的抽样方法和有效的估计技术,我们可以从一个总体中获取有关特征的信息,并对未知参数进行推断。

本文将介绍抽样与估计的基本概念和相关知识点。

一、抽样方法1. 简单随机抽样简单随机抽样是最基本的抽样方法之一。

它要求从总体中随机地选择样本,每个样本有相同的机会被选中。

简单随机抽样可以保证样本的代表性和独立性,但其实施过程相对繁琐。

2. 系统抽样系统抽样是指按照一定的规则和顺序从总体中选择样本。

例如,我们可以按照每隔k个元素选取一个样本的原则进行抽样。

系统抽样是一种简便有效的抽样方法,在满足一定条件下可以得到具有代表性的样本。

3. 分层抽样分层抽样是将总体划分为若干个相似的层次,然后分别从每个层次中进行简单随机抽样或系统抽样。

通过分层抽样,我们可以充分考虑总体的异质性,提高估计的准确性和可靠性。

二、估计方法1. 点估计点估计是根据样本数据,通过某种统计量来估计总体参数的值。

常见的点估计方法包括样本均值估计总体均值、样本比率估计总体比率等。

点估计给出了参数的一个具体值,但其估计结果可能存在偏差和不确定性。

2. 区间估计区间估计是利用抽样数据,通过构造一个置信区间来估计总体参数的范围。

置信区间表示总体参数落在一定范围内的概率,通过选择合适的置信水平和估计方法,我们可以得到较为准确的参数估计结果。

3. 假设检验假设检验是根据样本数据,对总体参数的某个假设进行推断和判断。

通过设置假设和选择适当的检验统计量,我们可以判断总体参数的真实情况。

假设检验可用于检验差异、关联和拟合等方面的假设。

三、误差与效应1. 抽样误差抽样误差是指抽取样本所引入的随机误差,它是由样本本身的随机变动和抽样方法的影响所引起的。

抽样误差是不可避免的,但可以通过增大样本容量和改善抽样方法来减小。

2. 非抽样误差非抽样误差是指除抽样误差外的其他误差源所引起的误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《统计学》 第六章 抽样与参数估计
1、某市劳动和社会保障局想调查下岗职工中女性所占的比重,随机抽取300个下岗职工,发现其中195个为女性职工。

试以95.45%的概率保证程度,估计该市下岗职工中女性比重的区间范围。

解:
已知n=300,概率保证程度95.45%,Z 0.0455/2 =2
P=300195=65% 区间范围P n )1(2
p p -Z ±α=0.65300
)
65.01(65.02-±=0.65±0.055 该市下岗职工中女性比重的区间范围为59.5%~70.5之间
2、某灯管厂生产10万只日光灯管,现采用简单随机重复抽样方式抽取1‰灯管
根据上述资料:
(1)试计算抽样总体灯管的平均耐用时间
(2)在99.73%的概率保证程度下,估计10万只灯管平均耐用时间的区间范围。

(3)按质量规定,凡耐用时间不及800小时的灯管为不合格品,试计算抽样总体灯管的合格率,并按95%的概率保证程度下,估计10万只灯管的合格率区间范围。

(4)若上述条件不变,只是抽样极限误差可放宽到40小时,在99.73%的概率保证程度下,作下一次抽样调查,需抽多少只灯管检验?
(1)平均耐热时间x =
∑∑f xf =
100
97000
=970(小时) (2)S
2
=
∑∑-f
f
x x 2
)( =
100
1360000
=13600 x σ=n s 2=100
13600=11.66 x ∆=3×11.66=34.98 x x ∆±=970±34.98
在 99.73%的概率保证程度下,该灯管平均耐用时间在935.02~1004.98小时之间
(3)p=100
15
253515+++=0.9
p σ=
03.0100
)
9.01(9.0)
1(≡-≡-n p p
p ∆=1.96×0.03=0.0588 p ±p ∆=0.9±0.0588
在95%的概率保证程度下,该灯管的合格率在84.12%~95.88%之间 (4)n=
x
2
222
∆Z s α=2
240
13600
3⨯=76.5≈77(只)。

相关文档
最新文档