合并同类项与移项(一)教案
解一元一次方程(一)——合并同类项和移项教案(教学设计)

解一元一次方程(一)——合并同类项和移项
【教学目标】
1.掌握解方程中的合并同类项。
2.熟练运用移项变号法则解决一些实际问题。
3.亲历移项变号进行解方程的探索过程,体验分析归纳得出移项变号法则,进一步发展学生的探究、交流能力。
【教学重难点】
重点:掌握利用合并同类项移项变号法则解一元一次方程。
难点:正确地找到等量关系列一元一次方程,会用“数学建模思想”解决实际问题,用“化归思想”分析以及分类讨论思想解方程。
初步养成了学生与他人合作交流、勇于探索的良好习惯。
【教学过程】
一、直接引入
师:今天这节课我们主要学习解一元一次方程(一)——合并同类项和移项,这节课的主要内容有解一元一次方程(一)——合并同类项和移项,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。
二、讲授新课
(1)教师引导学生在预习的基础上了解解一元一次方程(一)——合并同类项和移项内容,形成初步感知。
(2)首先,我们先来学习解一元一次方程(一)——合并同类项和移项,它的具体内容是:
只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。
利用合并同类项解一元一次方程的一般步骤是:①合并同类项;②系数化为1;合并同类项的作用是:起“化简”的作用。
结合实际问题,建立一元一次方程解决实际问题。
它是如何在题目中应用的呢?我们通过一道例题来具体说明。
例:解方程:529x x -=。
解析:合并同类项,得39x =,系数化为1,得:3x =。
解一元一次方程(一)合并同类项与移项(第一课时)教学设计-精选教学文档

解一元一次方程(一)合并同类项与移项(第一课时)教学设计教材分析合并同类项与移项是解方程的基础,解方程其移项根据是等式性质1、系数化为1其根据是等式性质2,解方程是今后进一步学习不可缺少的知识。
因而,解方程是初中数学中必须要掌握的重点内容。
学生分析学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中,虽然所教班级的学生受基础知识和思维发展水平的限制,抽象概括能力不强,但学生上进心强,有强烈的好奇心和好胜心,初步养成了与他人合作交流、勇于探索的良好习惯。
【教学目标】(一)知识技能1.掌握解方程中的合并同类项.2.理解并掌握移项变号法则进行解方程.3.灵活的运用移项变号法则解决一些实际问题.(二)数学思考使学生在解决问题的过程中进一步体验方程是刻画现实世界的一个有效的模型,感受方程的作用.(三)解决问题能够用合并同类项和移项法则解相应的一元一次方程;能够解决相关实际问题.(四)情感态度解方程时渗透数学变未知为已知的数学思想,培养学生独立思考问题的能力【教学重点】利用合并同类项、移项变号法则解方程.【教学难点】合并同类项、移项变号法则.【学习过程】一、新课导入1.约公元825年,数学家阿尔-花拉子米写了一本代数书,重点论述了怎样解方程.这本书的译本名称为《对消与还原》.“对消”“还原”是什么意思呢?我们先讨论下面的内容,然后再回答这个问题。
2.引导学生探索新知问题1:某校三年共买了新桌椅270套,去年买的数量是前年的2倍,今年又是去年的3倍,前年这个学校买了多少套桌椅?【师生活动】教师:同学们,在我们生活中存在很多这样的问题,请你帮忙解决一下,你准备怎么做,谁能说一说自己的想法。
请说出你的理由?学生:我准备用方程解决这个问题。
用方程解比较简单,设出的未知数就可以当成已知的条件来用了。
教师:那我们就按这位同学的意思用方程的方法来解,哪位同学能说一下第一步应当先干什么呢?举手回答。
合并同类项教案3篇

合并同类项教案3篇合并同类项教案(一):教学目标:(一)知识目标(1)了解同类项的概念,能识别同类项;(2)会合并同类项,明白合并同类项所依据的运算律。
(二)本事目标培养学生的观察、分析、归纳的本事,进一步培养学生的思维本事。
(三)情感、态度、价值观(1)进取营造亲切和谐的课堂氛围,激励全体学生进取参与数学活动,进一步培养学生团结协助,严谨求实、合作交流、勇于创新的精神。
(2)激发学生探究数学的兴趣,发扬合作学习的精神,培养学生的语言表达本事,并学会与他人合作的本事,在合作中体验成功的喜悦,建立自信心。
教学重点和难点:重点:同类项的概念、合并同类项的法则及应用。
难点:正确确定同类项;准确合并同类项。
教学过程:一、出示问题,引出同类项的概念1、问题:我们到动物园参观,发现老虎与老虎关在一个笼子里,鹿与鹿关在另一个笼子里。
为何不把老虎与鹿关在同一个笼子里呢?问题:在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.2、议一议:归为同类需要有什么共同的特征?8n和5n3ab和-2ab6xy和-3yx,-7a2b和2a2b5和-33、概念:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
注意:(1)两同:所含字母相同,相同字母的指数也相同(2)两无关:同类项与系数无关,与字母的排列顺序也无关(3)几个常数项也是同类项。
4、课堂检测1:下列各组中的两项是不是同类项?为什么?(1)ab与3ab(2)6b2a与2ab(3)3xy与-xy(4)2a与2ab(5)-2.1与3(6)5与b二、如果一个多项式中包含同类项,那么常常把同类项合并起来,使结果得到简化,那么怎样才能把同类项合并起来呢?请同学们思考下头的问题?问题1:3ab+5ab=_______理由是________-4xy-2xy=_______理由是_______-3a+2b=_______理由是_______问题2:不在一齐的同类项能否将同类项结合在一齐?为什么?例如:试化简多项式3xy-2ab–3+5xy+3ba+5解:3xy-2ab-3+5xy+3ba+5--------------找出同类项=3xy+5xy-2ab+3ba-3+5----------加法交换律=(3xy+5xy)+(-2ab+3ba)+(-3+5)--加法结合律=(3+5)xy+(-2+3)ab+2---------乘法分配律逆用=8xy+ab+2----------合并同类项合并同类项:把同类项合并成一项就叫做合并同类项问题3:探讨合并同类项后,所得项的系数、字母以及字母的.指数与合并前各同类项的系数、字母及字母的指数有什么联系?合并同类项后,所得项的系数等于合并前各同类项的系数之和;合并同类项后,字母以及字母的指数与合并前字母以及字母的指数相同。
3.2 合并同类项与移项教案

教案反思一元一次方程的解法是在学生已经具备了代数初步知识、系统学习了整式加减的基础上安排的,是对整式运算的进一步深化和认识。
本节课是在教授了一元一次方程解法第一课时因此尤为重要。
同时着力培养学生积极思维的优良品格,逐步形成具体问题具体分析的哲学思想,养成正确思考,善于思考的良好习惯,从而提高分析问题,解决问题的能力。
教学过程方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x )=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c合并同类项法则:把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
移项法则:把等式一边的某项变号后移到另一边,叫做移项.新课例1.某校三年级共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x 台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x ;这样就可以把含x 的项合并为一项,合并时要注意x 的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a 、b 是常数.练习:1.合并:x+3x-6x,z+0.5z-1.8z,5y+4y-y2.解方程:5x-2x=9 -3x+0.5x=10例2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60•人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,•那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.关键:本题中相等关系是什么?_____________________________________.解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,•列方程:_______________合并,得________系数化为1,得x=___所以2x=____,3x=_____,5x=______答:甲组_____人,乙组___人,丙组______人.请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,•且这三组人数之和是否等于60;【要点归纳】:列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系;合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;例3.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个列方程_________合并,得_________系数化为1,得x=_____黑色皮块为___×___=____(个),白色皮块有____×___=____(个)例4. 某学生读一本书,第一天读了全书的三分之一多2页,第二天读了全书的二分之一少1页,还剩23页没读,问全书共有多少页?解:设全书共有____页,那么第一天读了()页,第二天读了()页.本问题的相等关系是:_____________+_______________+_____________=全书页数;列方程:_______________________。
《合并同类项与移项》 教学设计

《合并同类项与移项》教学设计一、教学目标1、知识与技能目标学生能够理解合并同类项和移项的概念,掌握合并同类项和移项的方法。
学生能够熟练地运用合并同类项和移项来解方程。
2、过程与方法目标通过实际问题的引入,让学生经历从实际问题中抽象出数学模型的过程,培养学生的抽象思维能力和建模能力。
通过观察、比较、分析等活动,让学生体会数学中的转化思想,培养学生的逻辑思维能力和推理能力。
3、情感态度与价值观目标让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的信心。
通过小组合作学习,培养学生的合作意识和团队精神。
二、教学重难点1、教学重点合并同类项和移项的概念及方法。
运用合并同类项和移项来解方程。
2、教学难点理解移项的依据和目的。
正确地进行合并同类项和移项。
三、教学方法讲授法、练习法、讨论法、启发式教学法四、教学过程1、导入新课教师通过多媒体展示一个实际问题:学校图书馆有故事书和科技书共 1000 本,其中故事书的数量是科技书的 3 倍,问故事书和科技书各有多少本?引导学生设未知数,列出方程:设科技书有 x 本,则故事书有 3x 本,可列出方程 x + 3x = 1000。
2、讲授新课合并同类项教师引导学生观察方程 x + 3x = 1000,提问:方程左边的 x 和 3x 有什么特点?学生通过讨论得出:x 和 3x 都含有字母 x,并且 x 的指数都是 1,它们是同类项。
教师讲解合并同类项的概念:把多项式中的同类项合并成一项,叫做合并同类项。
教师示范合并同类项的方法:x + 3x =(1 + 3)x = 4x,所以方程 x + 3x = 1000 可以化为 4x = 1000。
教师让学生练习合并同类项:2x + 5x,3y 2y 等。
移项教师展示方程 4x 2 = 3x + 1,提问:如何将方程变形,使含 x 的项在等号左边,常数项在等号右边?学生通过讨论,尝试变形方程。
教师讲解移项的概念:把等式一边的某项变号后移到另一边,叫做移项。
《合并同类项与移项》 教学设计

《合并同类项与移项》教学设计一、教学目标1、知识与技能目标学生能够理解合并同类项和移项的概念,熟练掌握合并同类项和移项的方法,能够正确地解一元一次方程。
2、过程与方法目标通过实际问题的引入和解决,培养学生观察、分析和解决问题的能力,提高学生的运算能力和逻辑思维能力。
3、情感态度与价值观目标让学生在学习过程中体验成功的喜悦,增强学习数学的兴趣和自信心,培养学生严谨的治学态度和勇于探索的精神。
二、教学重难点1、教学重点合并同类项和移项的法则及其应用。
2、教学难点移项法则的理解和正确应用,以及如何准确地找出方程中的同类项并进行合并。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过一个实际问题引入:小明去商店买苹果和香蕉,苹果每斤3 元,香蕉每斤 5 元,小明买了 3 斤苹果和 2 斤香蕉,一共花了多少钱?学生列出算式:3×3 + 5×2 = 9 + 10 = 19(元)然后教师提问:如果设小明买苹果花了 x 元,买香蕉花了 y 元,那么可以列出方程 3x + 5y = 19 。
这个方程怎么解呢?从而引出本节课的内容——合并同类项与移项。
2、讲授新课(1)合并同类项①给出几个代数式,如 5x + 3x,7y 2y 等,让学生观察并讨论这些代数式有什么特点。
②引导学生得出同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
③讲解合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
④举例说明合并同类项的方法,如:2x + 3x =(2 + 3)x = 5x 。
(2)移项①给出方程 2x + 5 = 3x 1 ,让学生尝试求解。
②学生可能会遇到困难,教师引导学生观察方程两边的项,发现可以把 3x 移到左边,把 5 移到右边,得到 2x 3x = 1 5 。
③讲解移项的概念:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。
解一元一次方程(一)——合并同类项与移项 优秀教案设计
【教学目标】
知识目标:移项概念的理解与应用. 能力目标:会用移项法则解方程;能把简单的实际问题用方程形式表达出来;灵活应用 去括号法则. 情感态度与价值观:培养学生交流合作的能力,增强学习数学的兴趣和决心.
【教学重难点】
会用移项法则解方程. 去括号法则和分配律的正确应用. 知识考点:用移项法则解方程是中考考查的内容之一、 应注意灵活解题..
mx nm 0 .
2 x 10
例 1.解方程
x 2 8 3x .
解:移项,得
x 3x 8 2
合并同类项,得
3.去括号法则: 如: 5 2 x 3 4 x 解:去括号,得
5 2x 3 4x
未知数系数化为 1,得
x 5
∴ x 5 是原方程 的解.
【教学过程】
教 师 活 动 一、创设情境、引出新课 师:上节课我们学了通过利 用等式的基本性质 2,将未知数 的系数化为 1,来解形如
mx nm 0 的最简方程.
5x 1 3 .
学 生 活 动
教 学 评 价
解:根据等式的基本性 质 1,方程两边同时加上 1, 得
5x 3 1
例 2.解方程:
(1)6 x 2 x 1 3 (2)6 x 2 x 1 3
练习:解方程:
(1)5 x 1 x 13
(2)2 y 6 3 4 y 8 .
例 5.已知关于 x 的方程
2/3
a 2x a 5 无解,求
合并同类项,得 5 x 4 4 系数化为 1,得 x 5 4 ∴ x 移项是解方程时经常用到 的一种重要变形. 通常是把未知 项移到方程的左边,常数项移到 方程的右边后,进行合并同类 项,把方程左边化成 mx 的形式, 方程右边化成 n 的形式,即
解一元一次方程(一)——合并同类项与移项教案
解一元一次方程(一)——合并同类项与移项教案一元一次方程,指的是只有一个未知数,并且该未知数的最高次数为1的方程。
在数学中,解一元一次方程是最基本、最基础的一项技能。
它们广泛应用于物理学、工程学、商业、金融等各领域。
在本文中,我们将介绍如何解一元一次方程,包括如何合并同类项与移项。
一、合并同类项同类项指同一类变量的项。
例如,$3x$和$2x$是同类项,因为它们的未知数均为$x$。
同样,$7y^2$和$2y^2$也是同类项,因为它们的未知数均为$y^2$。
合并同类项就是把同类项合起来,化简方程的过程。
例如,将$5x + 3x - 2x$合并同类项,可以得到$6x$。
又例如,将$2y^2 - 3y^2 + 7y^2$合并同类项,可以得到$6y^2$。
二、移项移项指在方程两边同时加上或减去一个数,以使方程变形。
移项是解方程的重要步骤之一,因为它可以使方程更易于求解,简化计算过程。
例如,考虑如下一元一次方程:$$3x - 4 = 7$$我们可以使用移项的方法解决这个方程。
首先,将方程中的常数项-4移动到等号的右侧,得到:$$3x = 7 + 4$$然后,将右侧的常数项11除以3,得出方程的解:$$x = \frac{11}{3}$$这就是这个方程的唯一解。
下面我们通过一个例题来练习一下如何使用合并同类项与移项的方法解一元一次方程。
例题:求解下列一元一次方程:$$3x - 7 = 2x + 5$$解题步骤:首先,把方程中的同类项合并。
将$2x$移到等号左边,得到:$$3x - 2x - 7 = 5$$接着,移项。
将常数项-7移到等号右边,得到:$$x = \frac{5 + 7}{1}$$最后,化简。
简化式子,得到:$$x = 12$$因此,方程的解为$x=12$。
总结:通过本文的介绍,我们可以看出,解一元一次方程需要掌握许多技巧,其中合并同类项与移项就是其中非常重要的两个步骤。
掌握如何合并同类项与移项的方法,能够让我们更加顺畅地解决一元一次方程。
解一元一次方程(一)——合并同类项与移项 优秀教案设计
解一元一次方程(一)——合并同类项和移项【课时安排】2课时【第一课时】【教学目标】1.知识目标:会利用合并同类项解一元一次方程。
2.能力目标:探究并掌握利用合并同类项解一元一次方程。
3.情感、态度与价值观目标:通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。
【教学重难点】教学重点:探究并掌握利用合并同类项解一元一次方程。
教学难点:通过对实例的分析,体会一元一次方程作为实际问题的数学模型的作用。
【教学过程】一、引入新课。
(一)预习任务。
(1)解一元一次方程时,把含有未知数的项合并,把常数项也合并。
(2)解一元一次方程时,第一步:合并同类项,得;第二步系数2251x x +=⨯+113=x 化为1,得。
311=x (二)预习自测。
(1)下列各组中,两项不能合并的是( )A .与b 3b-B .与y 6-x3C .与a 21-a D .与23-100知识点:同类项的概念。
解题过程:解:A .与所含字母相同,并且相同字母的指数也相同的为同类项。
所b 3b -以可以合并;B .与所含字母不同,所以不是同类项,不能进行合并;C .与y 6-x 3a 21-a 所含字母相同,并且相同字母的指数也相同的为同类项,所以可以合并;D .与所有23-100的常数项也叫同类项,所以可以合并;因此选择B .思路点拨:所含字母相同,并且相同字母的指数也相同的项称为同类项,所有的常数项也叫同类项。
答案:B(2)方程两边合并后的结果是?16210+=-x x 知识点:合并同类项解一元一次方程。
解题过程:解:合并同类项,得:;系数化为1,得:。
78=x 87=x 思路点拨:解一元一次方程时,同类项有两类,即未知数的一次项和常数项,合并同类项是一种恒等变形,它使方程变得简单,更接近的形式。
a x =答案:87=x (3)方程的解是( )21022=++x x x A .20=x B .40=x C .60=x D .80=x 考点:合并同类项解一元一次方程。
解一元一次方程(一)合并同类项与移项说课稿
3.2 解一元一次方程(一)—合并同类项与移项说课稿(2)一、说教材“解一元一次方程——合并同类项与移项”是人教版七年级上册第三章第二节第二课时的内容。
解方程是代数中的主要内容之一。
解各种方程和方程组,都是通过降次、消元等方法,最后都归纳为解一元一次方程。
本章的学习重点在于使学生能根据具体问题中的数量关系列出一元一次方程,运用一元一次方程解决实际问题。
而学生能否正确的解方程的关键是这一节的学习。
二、说教学目标1、知识目标是:(1)通过自学和练习,归纳移项法则;(2)掌握利用移项解一元一次方程的基本方法。
2、能力目标是:通过学生观察、独立思考等过程,培养学生归纳、概括的能力。
3、情感目标是:激发学生浓厚的学习兴趣,培养学生严谨的思维品质。
三、说重点、难点重点是:移项法则及其应用难点是;移项的同时要变号。
四、说学法本节课是在前面学生已经很牢固地掌握了一元一次方程的概念,能利用等式性质熟练的解方程的基础上进行的,通过课本中的内容让学生自主观察发现规律并用自己的语言描述规律。
由于在移项时,学生常犯一些错误,如移项忘记变号,因此在例题的处理上我设计了两个练习题,使学生加深对移项法则的理解。
五、说教法教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习。
六、说教学设计1、自学引入:出示自学指导,让学生自学课本中本节内容引入新课。
(5分钟)2、尝试练习:对于例1,首先鼓励学生试着方程方程进行移项,教师注意发现学生可能出现的错误,把错误集中起来,组织学生进行组内交流。
例2,放手让学生去做,争取达到熟练运用。
(10分钟)3、小结移项法则:鼓励学生通过观察归纳,独立发现移项法则。
最后由学生对法则进行归纳总结补充,从而得出移项法则。
(5分钟)4、巩固练习:,我注意了学生的思维是一个循序渐进的过程,所以在习题的配备上由易而难,使学生在练习的过程中能够逐步的提高能力,得到发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、观察:上面方程的怎样变形.
3、解这个方程的具体过程:
一、学生首先分析问题,找出三年购买数量之间的关系。发表见解,与同伴交流,找出解决问题的办法为下一步列出方程准备
二、学生讨论找出列方程的条件,思考后回答
课题
解一元一次方程—合并同类项与移项
教学目标
知识与能力
找相等关系列一元一次方程,用合并解一元一次方程了解如何通过应用数学知识解决生活中问题
过程与方法
学习分析问题找到相等关系并通过列方程解决问题的方法通过学习和并解一元一次方程,体会到式子变形的转化作用
情感态度与价值观
通过学习“合并”,体会到古老的代数书的“对消”和“还愿”的思想,激发数学学习的热情
1、合并的根据是什么?
2、上面解方程“合并”起了什么作用?
3、你有什么收获和体会?
布置作业
课本第93页习题3.2第1题
板书设计
解一元一次方程—合并同类项与移项(一)
列方程的步骤:①设未知数
②找等量关系
③列方程
教学
反思
对于更多的实际问题,教师应该注重加强学生对剖析数学知识的方法和途径能力的训练。
从学生易于接受的问题入手,让学生发表见解,与同伴交流,找出解决问题的办法
二、[活动2]
由问题1入手解决问题方法.
设前年购买计算机X台.可以表示出:去年购买计算机台,今年购买计算机___________台。
这三个量之间有升么关系?本题哪个相等关系可作为列方程的依据呢?
教师与同学一起进行分析
三、[活动3]
“总量等于各部分的和
三、学生分小组讨论明确“合并”是解方程的基本思想及方法.
学生回答,应用所学乘法的
教学设计
教 师 导 学
学 生 活 动
x+2x+4x=140
合并
7x=140
系数化为1
x=20
四、[活动4]
1、思考:
合并的根据是什么?
上面解方程“合并”起了什么作用?
2、小结:
你有什么收获和体会?
五、活动5]
教学重点
找相等关系列一元一次方程,用合并同类项解一元一次方程
教学难点
找相等关系列方程,正确用合并解一元一次方程
教学方法
引导发现法
教学突破思路
从古代数学著作中提出问题入手,引起学生学习的兴趣,激发学生钻研问题的能力,进而进入知识的学习,形成知识网络
教学设计
教师导学
学生活动
一、[活动1]
某校三年共购买计算机40台,去年购买数量是前年的2倍,今年购买数量是去年的2倍。前年这个学校购买了多少台计算机?
1、练习
(1)2x+3x=15(2)3x-5x=12
(3)3x+3-2x=7 (4)
(5)
教师要及时加以纠正
运算律是合并的根据,依据等式的性质化系数为1,从而得出方程的解.
四、教师与同学一起进行分析
起到“合作者”的作用
师生共同小结
五、学生实际应用本节课所学知识,对于不准确的地方来自师要及时加以纠正课堂小结