高一年级数学科上学期期末试卷(B

合集下载

2013-2014学年高一数学上学期期末考试B卷 文 及答案(新人教A版 第66套)

2013-2014学年高一数学上学期期末考试B卷 文 及答案(新人教A版 第66套)

试卷类型:B 卷 河北冀州中学 2013—2014学年度上学期期末考试高一年级文科数学试题考试时间120分钟 试题分数150分 命题人:张世成第Ⅰ卷(选择题 共60分)一.选择题(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1、已知1cos 2x =-,且[]0,2x π∈,则角x 等于( ) A 、32π或34π B 、3π-或32π C 、23π-或32πD 、32π-或3π2、若角︒600的终边上有一点()4,a -,则a 的值是( )A 、34-B 、34±C 、3D 、34 3、设函数()sin(2)2f x x π=-,x R ∈,则()f x 是( )A 、最小正周期为2π的奇函数 B 、最小正周期为2π的偶函数 C 、最小正周期为π的奇函数D 、最小正周期为π的偶函数4、函数2sin ()63y x x ππ=≤≤的值域是( )A 、[]1,1-B 、1,12⎡⎤⎢⎥⎣⎦C 、12⎡⎢⎣⎦D 、2⎤⎥⎣⎦ 5、已知函数)(x f 为奇函数,且当0>x 时,21()f x x x=+,则)1(-f =( )A 、-2B 、0C 、1D 、2 6、函数()23xf x x =+的零点所在的一个区间为( )A 、()2,1--B 、()1,0-C 、()0,1D 、()2,1 7、设0.53a =,35log b =,cos 3c =,则( )A 、a b c <<B 、c a b <<C 、c b a <<D 、b c a <<8、要得到函数)42sin (3π+=x y 的图象,只需将函数x y 2sin 3=的图象( ) A 、向左平移4π个单位 B 、向右平移4π个单位C 、向左平移8π个单位D 、向右平移8π个单位9、函数2sin(2)3y x π=+的图象( )A 、关于原点对称B 、关于点(-6π,0)对称C 、关于y 轴对称D 、关于直线x=6π对称 10、A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为( ) A 、锐角三角形 B 、钝角三角形 C 、等腰直角三角形 D 、等腰三角形11、设函数f (x )=sin(ωx +φ)+cos(ωx +φ)(0,)2πωφ><的最小正周期为π,且f (-x )=f (x ),则( ) A 、()(0,)2f x π在上单调递增 B 、f (x )在3(,)44ππ上单调递增C 、()(0,)2f x π在上单调递减D 、f (x )在3(,)44ππ上单调递减 12、设函数()f x 的定义域为D ,若满足:①()f x 在D 内是单调函数; ②存在[],a b D ⊆()b a >,使得()f x 在[],a b 上的值域为[],a b ,那么就称()y f x =是定义域为D的“成功函数”.若2()log ()(0,1)xa g x a t a a =+>≠是定义域为R 的“成功函数”,则t 的取值范围为( )A 、1(,)4-∞ B 、1(0,)4C 、1(0,]4D 、1(,1)4第Ⅱ卷 (非选择题)二、填空题(本题共4小题,每小题5分,共20分。

2023-2024学年上海建平中学高一上学期数学期末试卷及答案(2024.01)

2023-2024学年上海建平中学高一上学期数学期末试卷及答案(2024.01)

1建平中学2023学年第一学期高一数学期末2024.1一、填空题(每题3分,满分36分)1.已知扇形的面积是4,半径为2,则扇形的圆心角为________弧度.2.已知α是第二象限角,且35sin α=,则tan α=________.3.若函数()()23(0a f x log x a =−−>且1)a ≠的图像恒过定点A ,则A 的坐标是______.4.已知02,πα∈−,若728cos α=,则sin α=________.5.方程)20sin xx =≤≤π的解集为________. 6.函数()2f x x =+的值域是________. 7.已知α为锐角,167cos πα+=,则cos α=________.8.已知函数()9999999f x ax bx x =+−+,且()210f −=,则()2f =________. 9.若存在x R ∈,使34cosx sinx k =+成立,则实数k 的取值范围是________.10.已知函数()(2x f x ln x =+,若()2561f m m +−<,则实数m 的取值范围是_____.11.已知函数()()242,1,23,1xx f x g x x ax x x −< ==++ −≥ ,若函数()()y g f x =有6个零点,则实数a 的取值范围是________.12.若存在实数,a b ,对任意实数[]01x ,∈,不等式32x m ax b x −≤+≤恒成立,则实数m 的取值范围是________.二、选择题(每题3分,满分12分) 13.“1sinx =”是“0cosx =”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件214.已知实数,a b 满足a b >,则下列不等式恒成立的是( )A.11a b −−>;B.22a b >;C.33a b >;D.a b >.15.对于ABC ∆,角,,A B C 的对边分别为,,a b c ,有如下判断:(1)若cosA cosB =,则ABC ∆为等腰三角形;(2)若A B >,则sin sinA B >;(3)若8,10,60a c B === ,则符合条件的ABC ∆有两个;(4)若sinAsinB cosAcosB <,则ABC ∆是钝角三角形.其中正确的个数是( ) A.1个 B.2个 C.3个 D.4个16.已知集合S 是由某些正整数组成的集合,且满足:若a S ∈,则当且仅当(a m n =+其中正整数,m n S ∈,且)m n ≠或(a p q =+其中正整数,p q S ∉,且)p q ≠.现有如下两个命题:(1)5S ∈;(2)集合{}*3xx n,n N S =∈⊆∣.则下列判断正确的是( ) A.(1)是真命题,(2)是真命题. B.(1)是真命题,(2)是假命题. C.(1)是假命题,(2)是真命题. D.(1)是假命题,(2)是假命题. 三、解答题(本题共有5大题,满分52分) 17.已知角α的终边经过点()12M ,−, (1)求()23sin cos cos sin α+π−αα−α的值.(2)求24tan πα+的值.18.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2sin B =. (1)求角B 的大小.(2)若ABC ∆的面积为6,4a =,求b 的长.319.某乡镇响应“绿水青山就是金山银山”的号召,将该镇打造成“生态水果特色小镇”.经调研发现,某水果的产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()()2217,02850,251x x W x x x +≤≤=−<≤−,且施用肥料及其它成本总投入为20x 元.已知这种水果的市场售价大约10元/千克,且生产的水果都能售出.记该水果利润为()f x (单位:元)(利润=销售额-成本)(1)写出利润()f x (元)关于施用肥料x (千克)的关系式.(2)当施用肥料为多少千克时,该水果利润最大?最大利润是多少?20.对于函数()f x ,若存在0x R ∈,使()00f x x =成立,则称0x 为()f x 的不动点. (1)已知函数()23f x x x =−−,求函数()f x 的不动点.(2)若对于任意的b R ∈,二次函数()()()2180f x ax b x b a =+−+−≠恒有两个相异的不动点,求实数a 的取值范围.(3)若函数()()211f x mx m x m =−+++在区间()02,上有唯一的不动点,求实数m 的取值范围.421.若函数()f x 满足:对任意正数,s t ,都有()()()f s f t f s t +<+,则称函数()f x 为“H 函数”. (1)试判断函数()21f x x =与()()21f x ln x =+是否为“H 函数”,并说明理由. (2)若函数33x y x a =+−是“H 函数”,求实数a 的取值范围.(3)若函数()f x 为“H 函数”,()11f =,对任意正数,s t ,都有()()0,0f s f t >>,求证:对任意()()122k k x ,k N +∈∈,都有()122x f x f x x −>−.5参考答案一、填空题 1.2 ; 2. 34−3.()33,−4.14−;5.388,ππ ;6.54,⋅−∞; 8.8; 9.[]55,⋅−; 10.()61,−;11.(3,⋅−− 12.14,+∞二、选择题13.A 14. C 15. C 16.A 三.解答题17.【答案】(1)-1 (2)-7【解析】(1)由已知得2tan α=−,()22211333sin cos sin cos tan cos sin cos sin tan α+π−αα−αα−∴===−α−αα−α−α;(2)2tan α=− ,224231tan tan tan α∴α==−α,则2127412tan tan tan πα+α+==− −α. 18.【答案】(1)4B π=(2)b = 【解析】(1)因为2sin B =,所以2sinBcosB =. 因为0sinB ≠,所以cosB =,又,0B <<π,所以4B π=.(2)因为114622ABC S acsinB c ∆==××=,所以c =由余弦定理可得222216182410b a c accosB +−+−××,所以b =. 19.【答案】(1)()22020340,028050020,251x x x f x x x x −+≤≤= −−<≤−(2)肥料为3千克时,该水果的利润最大,最大利润是400元【解析】(1)由已知()()1020f x W x x =−,又()()2217,02850,251x x W x x x +≤≤= −<≤ −,6所以()()2201720,028050020,251x x x f x x x x +−≤≤= −−<≤ − ,整理得()22020340,028050020,251x x x f x x x x −+≤≤ = −−<≤− . (2)当02x ≤≤时,()2212020340203352f x x x x−+−+,∴当02x ≤≤时,()()2380f x f ≤=,当25x <≤时,()80500201f x x x =−−−, ()80500201201x x =−+−+ − ()804802014804001x x−+−≤− −当且仅当()802011x x =−−,即3x =时等号成立,()400max f x =,因为380400<综上,所以()f x 的最大值为400.故当施用肥料为3千克时,该水果的利润最大,最大利润是400元. 20.【答案】(1)1,3− (2)()06,(3)11m −<≤或m =【解析】(1)设0x 为不动点,因此20003x x x −−=,解得01x =−或03x =,所以1,3−为函数()f x 的不动点.(2)方程()f x x =,即()218ax b x b x +−+−=,有()22800ax b x b a +−+−=≠,, 于是得方程()2280ax b x b +−+−=有两个不等实根, 即()()()22(2)480414810Δb a b b a b a =−−−>⇔−+++>, 依题意,对于任意的b R ∈,不等式()()2414810b a b a −+++>恒成立, 则()216(1)16810,Δa a ′=+−+<整理得260a a −<,解得06a <<, 所以实数a 的取值范围是()06,.(3)由于函数()f x 有且只有一个不动点在()02,上所以()211mx m x m x −+++=, 即()2210mx m x m −+++=在()02,上有且只有一个解令()()221g x mx m x m =−+++7①()()020g g ⋅<,则()()110m m +−<,解得11m −<<;②()00g =即1m =−时,方程可化为20x x −−=,另一个根为-1,不符合题意,舍去; ③()20g =即1m =时,方程可化为2320x x −+=,另一个根为1,满足; ④0∆=,即()()22410m m m +−+=,解得m =(I)当m =时,方程的根为()2222m m x m m −++=−=,满足; (II)当m =时,方程的根为()2222m m x m m −++=−=,不符合题意,舍去; 综上,m 的取值范围是11m −<≤或m =. 21.【答案】(1)不是 (2)13a ≥(3)见解析【解析】(1)对于任意()()()()()222111,0,,s t ,f s f t s t f s t s t ∈+∞+=++=+,()()()()222111()20f s t f s f t s t s t st ∴+−+=+−+=> ,即()()()111f s f t f s t +<+成立;故()21f x x =是“H 函数”.对于()()21f x ln x =+,取1s t ==,则()()()22222,3f s f t ln f s t ln +=+=. 因为22ln 3ln >,故()()21f x ln x =+不是“H 函数”.(2)因为函数33x y x a =+−是“H 函数”,故对于任意的(),0s t ,∈+∞有 ()333333s t s t s t a s a t a +++−>+−++−恒成立,即3333s t s t a +−−>−恒成立所以()()313113s t a −−>−恒成立.又(),0s t ,∈+∞,故()3,31s t ,∈+∞,则()()()31310s t ,−−∈+∞则130a −≤,即13a ≥. (3)由函数()f x 为“H 函数”,可知对于任意正数,s t , 都有()()0,0f s f t >>,且()()()f s f t f s t +<+,8令s t =,可知()()22f s f s >,即()()22f s f s >,故对于自然数k 与正数s ,都有()()()()()()()()111122222,22k k k k k k f s f s f s f s f s f s f s f s +++−=⋅>对任意()()122k k x ,k N +∈∈,可得111122k k,x +∈,又()11f =, 所以()()()()()122222122k kkkkxf x f x f f f +>−+>≥=>,同理()1111111122222222k k k k k k f f f f f x x x + <−−<≤==< ,故()122x f x f x x−>− .。

2023-2024学年上海中学高一上学期数学期末试卷及答案(2024.01)

2023-2024学年上海中学高一上学期数学期末试卷及答案(2024.01)

1上海中学2023学年第一学期高一年级数学期末2024.01一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.函数224y x x =−+的图像关于直线________成轴对称. 2.已知函数()21,2,lg ,2,x x f x x x +<= ≥ 则()()()05f f f +=________.3.已知扇形的弧长和半径都是4,则扇形的面积为________.4.已知点()sin ,cos P αα在第二象限,则角α的终边在第________象限.5.化简:4224441sin cos sin cos sin cos θ⋅θ+θ⋅θ=−θ−θ________.6.若函数()1f x x a =−+在区间[)1,+∞上是严格增函数,则实数a 的取值范围为______. 7.函数()21yf x =−的定义域为()0,1,则函数()1yf x =−的定义域为________.8.函数3132xx y −=−的值域是________.9.已知函数()y f x =是定义域为R 的偶函数,且当0x >时,其表达式为()22x f x x =+,则当0x <时,其表达式为()f x =________.10.已知函数()3log ,034,3x x f x x x <<= −≥,若存在0a b c <<<满足()()f a f b ==()f c ,则()()f a f c abc的取值范围为________.11.已知函数()f x ,()g x ,()h x 的定义域均为R .给出以下3个命题: (1)()f x 一定可以写成一个奇函数和一个偶函数之差;(2)若()f x 是奇函数,且在().0−∞是严格减函数,则()f x 在R 上是严格减函数; (3)若()()f x g x +,()()g x h x +,()()h x f x +在R 上均是严格增函数;则()f x ,()g x ,2()h x 中至少有一介在R 上是严格增函数.其中,假命题的序号为________.12.已知函数()f x 满足:()()()()22114f x f x f x f x +−++−=则下列三个结论: (1)()()()()2220242024186518654f f f f −+−=;(2)()()20232024f f =; (3)()()202418654f f +≤.其中正确的结论是________. 二、选择题(本大题共有4题,满分20分,每题5分) 13.若幂函数()()22235mm f x mm x −−=+−的图像不经过原点,则m 的值为( )A .2B .3−C .3D .3−或214.存在函数()f x 满足:x R ∀∈都有( ) A .()31fx x +=B .211f x x=−C .()211f x x +=+D .()221f x x x +=+15.已知函数()()1,0,2,0,x x f x x x x +< =−≥ 若(1)f x −在区间I 上恒负,且是严格减函数,则区间I 可以是( ).A .()2,1−−B .()1,0−C .()0,1D .()1,216.定义域和值域均为[],a a −(常数0a >)的函数()y f x =和()y g x =的图像如图所示,给出下列四个命题:其中正确的个数是( ). (1)函数()()f g x 有且仅有三个零点; (2)函数()()g f x 有且仅有三个零点; (3)函数()()f f x 有且仅有九个零点; (4)函数()()g g x 有且仅有一个零点,A .1B .2C .3D .43三、解答题(共5道大题,其中17题14分,18题14分,19题14分,20题16分,21题18分,共计76分)17.(本题满分14分.本题共2小题,第(1)小题7分,第(2)小题7分.)已知函数()f x 是R 上的严格增函数,()g x 是R 上的严格减函数,判断函数()()f x g x −的单调性,并利用定义证明.18.(本题满分14分.本题共2小题,第(1)小题8分,第(2)小题6分.) 在下面的坐标系中画出下列函数的图像: (1)2y x −=(2)22x y =−.419.(本题满分14分.本题共2小题,第(1)小题6分,第(2)小题8分.) 解下列关于x 的方程:(1)162log log 163x x +=; (2)()()2416290x x x a a a −+⋅−−⋅=.20.(本题满分16分.本题共有3小题,第(1)小题满分4分,第(2)小题满分6分.第 (3)小题满分6分)某地中学生社会实践小组为研究学校附近某路段交通拥堵情况,经实地调查、数学建模,得该路段上平均行车速度v (单位:km/h )与该路段上的行车数量n (单位:辆)的关系为:2600,9,1033000,10,n n v n n k ≤ += ≥ + 其中常数k R ∈.该路段上每日t 时的行车数量22(125)100n t =−−−+,[)0,24t ∈,t Z ∈.已知某日17时测得的平均行车速度为3km/h .(1)求实数k 的值;(2)定义q nv =,求一天内q 的最大值(结果四舍五入到整数).521.(本题满分18分.本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,在第(3)小题满分8分)若对任意的1a b ≤<,()f x 在区间(],a b 上不存在最小值,且对任意正整数n ,当(),1x n n ∈+时有()()()()()()11f n f x f x f n f n f n −+−+=−+.(1)比较()f n 与()1f n +,*n N ∈的大小关系; (2)判断()f x 是否为[)1,+∞上的增函数,并说明理由; (3)证明:当1x ≥时,()()2f x f x >.6参考答案一、填空题1.1x =;2.1;3.8;4.四;5.12; 6.(],2−∞; 7.()0,2; 8.()1,1,2−∞∪+∞;9.212x x +; 10.10,3; 11.(3); 12.(1)(3); 二、选择题13.A ; 14.D ; 15.B ; 16.B16.定义域和值域均为[],a a −(常数0a >)的函数()y f x =和()y g x =的图像如图所示,给出下列四个命题:其中正确的个数是( ).(1)函数()()f g x 有且仅有三个零点; (2)函数()()g f x 有且仅有三个零点; (3)函数()()f f x 有且仅有九个零点; (4)函数()()g g x 有且仅有一个零点,A .1B .2C .3D .4B(1)方程()0f g x = 有且仅有三个解;()g x 有三个不同值,由于()y g x =是减函数,所以有三个解,正确;(2)方程()0g f x = 有且仅有三个解;从图中可知,()()0f x ,a ∈可能有1,2,3个解,不正确; (3)方程()0f f x = 有且仅有九个解;类似(2)不正确;(4)方程()0g g x = 有且仅有一个解.结合图象,()y g x =是减函数,故正确.7故选B . 三、解答题 17.严格增,证明略 18. 画图略 19. (1)416x or =(2)①当0a ≤时,()23log 1x a =−;②当01a <<时,()()122233log 1,log 2x a x a =−=;③当1a ≥时,()23log 2x a =20.某地中学生社会实践小组为研究学校附近某路段交通拥堵情况,经实地调查、数学建模,得该路段上平均行车速度v (单位:km/h )与该路段上的行车数量n (单位:辆)的关系为:2600,9,1033000,10,n n v n n k≤ +=≥ + 其中常数k R ∈.该路段上每日t 时的行车数量22(125)100n t =−−−+,[)0,24t ∈,t Z ∈.已知某日17时测得的平均行车速度为3km/h .(1)求实数k 的值;(2)定义q nv =,求一天内q 的最大值(结果四舍五入到整数). (1)1000k = (2)522(1)由17时测得的平均行车速度为3/km h ,得100n =, 代入*2600,9,1033000,10,……n n vn N n n k +∈ +,可得2330003100k =+,解得1000k =. (2)①当9…n 时,60060010101nq nv n n===++为增函数,所以6009300109…q ×<+; ②当10…n 时,330001000q nv n n==+在(0,上单调递增,在,)+∞上单调递减,8且由()31.631.7,知,当31,32n n ==时,较大的q 值为最大值, 分别代入31n =和32n =计算,结果均约为522,故522max q ≈. 综上可知,一天内车流量q 的最大值为522.21.若对任意的1a b ≤<,()f x 在区间(],a b 上不存在最小值,且对任意正整数n ,当(),1x n n ∈+时有()()()()()()11f n f x f x f n f n f n −+−+=−+.(1)比较()f n 与()1f n +,*n N ∈的大小关系; (2)判断()f x 是否为[)1,+∞上的增函数,并说明理由; (3)证明:当1x ≥时,()()2f x f x >.(1)()f n <()1f n + (2)不是 (3)证明见解析(3)①首先证明对于任意*n N ∈,()()1.f n f n <+当()1x n,n ∈+时,由()()()()()()11f n f x f x f n f n f n −+−+=−+∣∣ 可知()f x 介于()f n 和()1f n +之间.若()()1,…f n f n +则()f x 在区间(]1n,n +上存在最小值()1f n +,矛盾. 利用归纳法和上面结论可得:对于任意*,k n N ∈,()(),.n k f n f k <<当时 ②其次证明当1…n 且x n >时,()()f x f n >;当2…n 且x n <时,()()…f x f n . 任取x n >,设正整数k 满足1剟n k x k <+,则()()()()1剟剟f n f k f x f k …+. 若存在01厖k x k n +>使得()()0…f x f n ,则()()()()00剟?f x f n f k f x , 即()()0f k f x =.由于当()1x k ,k ∈+时,()()…f k f x , 所以()f x 在区间(0k ,x 有最小值()0f x ,矛盾.9类似可证,当2…n 且x n <时,()()…f x f n .③最后证明:当1…x 时,()()2f x f x >.当1x =时,()()21f f >成立.当1x >时,由21x x x −=>可知,存在*n N ∈使得2x n x <<,所以()()()2…f x f n f x <.当()1x n,n ∈+时,有:()()()()()()11f n f x f x f n f n f n −+−+=−+∣∣ 若()()1f n f n =+,则()()()1,f x f n f n ==+所以()f x 在(]1n,n +上存在最小值,故不具有性质p ,故不成立.若()()1f n f n ≠+,则()(){}()()(){},11min f n f n f x max f n ,f n +<<+假设()()1f n f n +<,则()f x 在(]1n,n +上存在最小值,故不具有性质p ,故假设不成立. 所以当()1x n,n ∈+时,()()()1f n f x f n <<+对于任意*n N ∈都成立. 又()()1f n f n <+,故当()*m n m n N <∈、所以()()()()11,f m f m f n f n <+<…<−<即()()f m f n <.所以当x n <时,则存在正整数m 使得1剟m x m n −<,则()()()()1剟f m f x f m f n −< 所以当x n <时,()()f x f n <,同理可证得当x n >时,()()f x f n >.所以当1x >时,必然存在正整数n ,使得2x n x <<,所以()()()2f x f n f x <<; 当1x =时,()()21f f >显然成立; 所以综上所述:当1…x 时,()()2f x f x >.。

高一上学期期末数学考试卷及答案

高一上学期期末数学考试卷及答案

高一上学期期末数学考试卷及答案2020-2021学年度上学期高一年级期末数学考试卷注意事项:1.本试卷分为第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。

考生答题前,务必在答题卡上填写姓名和准考证号。

2.考生在作答时,请仔细阅读答题卡上的注意事项,并将答案填写在答题卡上。

在试卷上作答无效。

一、单选题本题共8小题,每小题5分,共40分。

在每小题中,仅有一个选项符合题目要求。

1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(C ∪ A) ∩ B = ()。

A。

{0}B。

{1}C。

{-1}D。

{0,1}2.“a < 1”是“a < ”的()A。

充分不必要条件B。

必要不充分条件C。

充要条件D。

既不充分也不必要条件3.已知函数f(x)={x+1.x≥2.f(x+3)。

x<2},则f(1) - f(9) =()A。

-1B。

-2C。

6D。

74.已知f(x) = (x-a)(x-b) + 2(a<b),且α,β(α<β)是方程f(x)= 0的两根,则α,β,a,b的大小关系是()A。

a<α<β<bB。

a<α<b<βC。

α<a<b<βD。

α<a<β<b5.f(x)是定义在R上的偶函数,在(-∞,0)上是增函数,且f(3) = 0,则使f(x) < 0的x的范围是()A。

(-3,3)B。

(-∞,-3) ∪ (3,+∞)C。

(3,+∞)D。

(-∞,-3)6.已知a≥0,b≥0,且a+b=2,则()A。

ab ≤ 1/2B。

ab ≥ 1/2C。

a^2 + b^2 ≥ 2D。

a^2 + b^2 ≤ 37.函数f(x) = log2(1/(2x-1))的定义域是()A。

(1/2,∞)B。

(1,+∞)C。

(-∞,1/2]+∞D。

(-∞,1/2)8.函数f(x) = xln(x+1) - x - 1的零点个数有()A。

浙江省温州市2020-2021学年高一上学期期末教学质量统一检测数学试题(B卷) (解析版)

浙江省温州市2020-2021学年高一上学期期末教学质量统一检测数学试题(B卷) (解析版)

2020-2021学年浙江省温州市高一(上)期末数学试卷(B卷)一、选择题(共8小题).1.已知集合A={1,2,3},B={2,4},则A∪B=()A.{2}B.{2,3}C.{1,2,3}D.{1,2,3,4}2.下列函数既不是奇函数也不是偶函数的是()A.y=x3B.y=x2C.y=x D.3.已知函数,则f(x2)的定义域为()A.(﹣∞,﹣1)∪(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣1,1)D.(0,1)4.在平面直角坐标系中,角α的顶点与原点重合,终边与单位圆的交点为,则sin(π-α)=( ) A.B.C.D.5.已知a=e0.3,b=ln0.3,c=0.3e,则()A.a>b>c B.a>c>b C.c>b>a D.b>c>a6.已知a,b,c是实数,且a≠0,则“∀x∈R,ax2+bx+c<0”是“b2﹣4ac<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.已知a>0,b>0,a+b=1,则下列等式可能成立的是()A.a2+b2=1B.ab=1C.a2+b2=D.a2﹣b2=8.某工厂有如图1所示的三种钢板,其中长方形钢板共有100张,正方形钢板共有60张,正三角形钢板共有80张.用这些钢板制作如图2所示的甲、乙两种模型的产品,要求正方形钢板全部用完,则制成的甲模型的个数最少有()A.10个B.15个C.20个D.25个二、多项选择题(共4小题).9.已知函数y=x2﹣2x+2的值域是[1,2],则其定义域可能是()A.[0,1]B.[1,2]C.[]D.[﹣1,1]10.已知,且tanθ=m,则下列正确的有()A.B.tan(π﹣θ)=m C.D.11.已知函数f(x)=2sin(ωx+φ)(ω>0)的图象过两点,则ω的可能取值为()A.1B.2C.3D.412.在同一直角坐标系中,函数f(x)=log a(x﹣b),g(x)=b x﹣a的图象可能是()A B C D三、填空题:本题共4小题,每小题5分,共20分。

浙江省杭州2023-2024学年高一上学期期末数学试题含答案

浙江省杭州2023-2024学年高一上学期期末数学试题含答案

杭州2023学年第一学期高一年级期末考数学试卷(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个符合题目要求.1.函数()1ln f x x x =-的零点所在的大致区间是()A.()1,2 B.()2,e C.()e,3 D.()e,+∞【答案】A 【解析】【分析】由零点存在定理结合函数单调性得到结论.【详解】因为函数ln y x =在()0+∞,上为增函数,函数1y x=在()0+∞,上为减函数,所以函数1()ln f x x x=-在()0+∞,上为增函数,又(1)ln1110f =-=-<,112211(2)ln 2ln 4ln e 02212f =-=->-=,即(2)0f >,所以零点所在的大致区间(1,2).故选:A.2.设函数()()sin f x x θ=+,则“cos 0θ=”是“()f x 为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】由三角函数的性质求出ππ,Z 2k k θ=+∈,即可判断.【详解】解:由cos 0θ=,得ππ,Z 2k k θ=+∈,由()()sin f x x θ=+为偶函数,得ππ,Z 2k k θ=+∈,则“cos 0θ=”是“()()sin f x x θ=+”为偶函数的充分必要条件.故选:C3.下列四个函数中的某个函数在区间ππ,22⎡⎤-⎢⎥⎣⎦上的大致图象如图所示,则该函数是()A.322xxx xy --=+ B.cos222xxx xy -=+ C.2122xxx y --=+ D.sin222x xx y -=+【答案】B 【解析】【分析】利用题给函数在π0,2⎡⎤⎢⎥⎣⎦上先正值后负值的变化情况排除选项A ;利用题给图象可知函数是奇函数排除选项C ;利用当π2x =时题给函数值为负值排除D ;而选项B 均符合以上要求.【详解】当01x <<时,30x x -<,3022x xx xy --=<+.排除A ;由偶函数定义可得2122x xx y --=+为偶函数,由题给图象可知函数是奇函数,排除C ;当π2x =时,ππ222πn 22si 02y -⎛⎫⎝+ ⎭⨯==⎪.排除D ;cos222x x x x y -=+为奇函数,且当π04x <<时,cos2022x xx x y -=>+,当π2x =时,ππππ2222cos 20π2222ππ222y --⨯==⎛⎫⋅- ⎪⎭<++⎝.B 均符合题给特征.故选:B.4.《九章算术》是一部中国古代的数学专著.全书分为九章,共收有246个问题,内容丰富,而且大多与生活实际密切联系.第一章《方田》收录了38个问题,主要讲各种形状的田亩的面积计算方法,其中将圆环或不足一匝的圆环形天地称为“环田”.书中提到这样一块“环田”:中周九十二步,外周一百二十二步,径五步,如图所示,则其所在扇形的圆心角大小为()(单位:弧度)(注:匝,意为周,环绕一周叫一匝.)A.4B.5C.6D.7【答案】C 【解析】【分析】设中周的半径是1R ,外周的半径是2R ,圆心角为α,根据中周九十二步,外周一百二十二步,径五步,列关系式即可.【详解】设中周的半径是1R ,外周的半径是2R ,圆心角为α,1221921225R R R R αα=⎧⎪=⎨⎪-=⎩,解得6α=.故选:C 5.已知π3cos(124θ-=,则πsin(2)3θ+=()A.716-B.18-C.18D.716【答案】C 【解析】【分析】利用诱导公式,结合二倍角的余弦公式计算即得.【详解】当π3cos()124θ-=时,2πππππ1sin(2)sin(2)cos 2()2cos ()136212128θθθθ+=-+=-=--=.故选:C6.已知函数()()cos f x x ωϕ=+π0,2ωϕ⎛⎫><⎪⎝⎭的部分图象如图所示,1x ,2x 是()f x 的两个零点,若214x x =,则下列不为定值的量是()A.ϕB.ωC.1x ω D.1x ωϕ【答案】B 【解析】【分析】求函数()f x 的周期,估计1x 的范围,再求函数()f x 的零点,由此确定1x ,2x ,结合条件化简可得结论.【详解】函数()()cos f x x ωϕ=+()0ω>的周期为2πω,由图象可得1π02x ω<<,令()0f x =,可得:ππ,Z 2x k k ωϕ+=+∈,所以ππ2k x ϕω+-=,即2ππ22k x ϕω+-=,又π0,2ωϕ><,所以1π22x ϕω-=,23π22x ϕω-=,又因为214x x =,所以3π2π2422ϕϕωω--=⨯,所以π6ϕ=,1π2ππππ22263x ϕωωϕω-=⨯=-=-=,1π32π6xωϕ==为定值.故选:B7.已知0x >,0y >,且311x y +=,则2x x y y++的最小值为()A.9B.10C.12D.13【答案】D 【解析】【分析】借助基本不等式中“1”的妙用即可得.【详解】()31322261x x y x x x y x y y x y y x y y⎛⎫++=+++=++++ ⎪⎝⎭337713y x x y =++≥+,当且仅当33y xx y=,即4x y ==时,等号成立.故选:D.8.若关于x 的方程()()2221151x m x xx +-+=+恰有三个不同的实数解1x ,2x ,3x ,且1230x x x <<<,其中m ∈R ,则123x x x ++的值为()A.32B.12C.1D.2【答案】A 【解析】【分析】利用换元法化简题目所给方程,结合二次函数零点分布、对勾函数的性质等知识求得正确答案.【详解】由题知0x ≠,由()()2221151x m x x x +-+=+,得到12301m x m x x x+-+-=+,令1t x x =+,由对勾函数的图像与性质知,2t ≤-或2t ≥,且1t x x =+图像如图,则230mt m t-+-=,即2(3)20t m t m +--=,又方程()()2221151x m x xx +-+=+恰有三个不同的实数解1x ,2x ,3x ,且1230x x x <<<,所以2(3)20t m t m +--=有两根12,t t ,且122,2t t =->,故42620m m -+-=,得到52m =,代入2(3)20t m t m +--=,得到21502t t --=,解得2t =-或52t =,由12x x +=-,得到=1x -,由152x x +=,得到22520x x -+=,所以2352x x +=,所以12353122x x x ++=-+=,故选:A.【点睛】方法点晴:对于复杂方程的根有关的问题求解,可根据题目所给已知方程进行转化,转化的方向是熟悉的函数类型,即将不熟悉的问题转化为熟悉的问题来进行求解.对钩函数是函数题目中常见的函数,对其性质要注意总结.二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题正确的是()A.设α是第一象限角,则2α为第一或第三象限角B.cos 2sin 3πααα⎛⎫+=+ ⎪⎝⎭C.在ABC 中,若点O 满足0OA OB OC ++=,则O 是ABC 的重心D.()a b c a b c⋅ ≤【答案】ACD 【解析】【分析】对A ,根据象限角的概念可判断;对B ,根据辅助角公式化简即可;对C ,取BC 中点D ,得出2OA OD =-,根据重心的性质可判断;对D ,根据cos ,a b a b a b ⋅=⋅⋅,结合向量数乘运算性质即可判断.【详解】对A ,因为α是第一象限角,所以π2π2π,2k k k α<<+∈Z ,则πππ,24k k k α<<+∈Z ,其为第一或第三象限角,故A 正确;对B 1cos 2sin cos 2sin 226πααααα⎛⎫⎛⎫+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,故B 错误;对C ,取BC 中点D ,则2OB OC OD +=,又0OA OB OC ++= ,所以2OA OD =-,所以O 在中线AD 上,且2OA OD =,所以O 为ABC 的重心,故C 正确;对D ,因为cos ,a b a b a b ⋅=⋅⋅ ,cos ,1a b ≤,所以a b a b ⋅≤ ,所以()a b c a b c a b c ⋅=⋅≤,故D 正确.故选:ACD .10.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-,那么下列命题中正确的是()A.函数{}x 的值域为[]1,0-B.函数{}x ⎡⎤⎣⎦的值域为{}1,0-C.函数{}x 是周期函数D.函数{}x 是减函数【答案】BC 【解析】【分析】结合函数性质逐项判断即可得.【详解】对A :当x ∈Z ,则{}[]0x x x x x =-=-=,当x ∉Z ,则{}[]()1,0x x x =-∈-,故函数{}x 的值域为(]1,0-,故A 错误;对B :当x ∈Z ,则{}[]0x x x x x =-=-=,{}0x ⎡⎤=⎣⎦,当x ∉Z ,则{}[]()1,0x x x =-∈-,{}1x ⎡⎤=-⎣⎦,即函数{}x ⎡⎤⎣⎦的值域为{}1,0-,故B 正确;对C :{}[][]{}111x x x x x x +=+--=-=,故函数{}x 是周期函数,故C 正确;对D :由函数{}x 是周期函数,故函数{}x 不是减函数,故D 错误.故选:BC.11.已知函数()()2sin 1f x x ωϕ=++π02,ωϕ⎛⎫>< ⎪⎝⎭,满足()π23f x f x ⎛⎫+--= ⎪⎝⎭,且对任意x ∈R ,都有()5π12f x f ⎛⎫≥-⎪⎝⎭,当ω取最小值时,则下列正确的是()A.()f x 图象的对称中心为ππ,1Z 26k k ⎛⎫-∈⎪⎝⎭B.()f x 在ππ,126⎡⎤-⎢⎥⎣⎦上的值域为1,3⎤+⎦C.将2sin 21y x =+的图象向左平移π6个单位长度得到()f x 的图象D.()f x 在ππ,62⎡⎤⎢⎥⎣⎦上单调递减【答案】ACD 【解析】【分析】由题意可得()f x 的图象关于π(,1)6-对称,()f x 在5π12x =-处取得最小值,推得ϕ,ω的值,可得函数解析式()π2sin 213f x x ⎛⎫=++ ⎪⎝⎭,结合正弦函数的对称中心、值域和图象变换、单调性,可得结论.【详解】函数()()2sin 1f x x ωϕ=++π02,ωϕ⎛⎫>< ⎪⎝⎭,满足()π23f x f x ⎛⎫+--= ⎪⎝⎭,可得()f x 的图象关于π(,1)6-对称,故11ππ(Z)6k k ωϕ-+=∈,即11(Z)ππ6k k ϕω∈=+,由于对任意x ∈R ,都有()5π12f x f ⎛⎫≥- ⎪⎝⎭,可得()f x 在5π12x =-处取得最小值,即225ππ2π(Z)122k k ωϕ-+=-+∈,可得22π5π2π(Z)212k k ϕω=-++∈,则21π5ππ2ππ2126k k ϕωω=-++=+,化简得1224(2)πk k ω=+-12(2Z)k k -∈,因为0ω>,当ω取最小值时,1220k k -=,可得2ω=,则11ππ(Z)3k k ϕ=+∈且π2ϕ<,得π3ϕ=,所以()π2sin 213f x x ⎛⎫=++ ⎪⎝⎭,对于A ,令π2π3x k +=,Z k ∈,解得ππ62k x =-+,则()f x 图象的对称中心为ππ,1Z 26k k ⎛⎫-∈⎪⎝⎭,故A 正确;对于B ,当ππ,126x ⎡⎤∈-⎢⎣⎦时,ππ2π2,363x ⎡⎤+∈⎢⎥⎣⎦,可得π1sin 2,132x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以()f x 在ππ,126⎡⎤-⎢⎥⎣⎦上的值域为[]2,3,故B 不正确;对于C ,将2sin 21y x =+的图象向左平移π6个单位长度得到ππ2sin 2(12sin(21()63y x x f x =++=++=的图象,故C 正确;对于D ,当ππ,62x ⎡⎤∈⎢⎥⎣⎦时,π2π4π2,333x ⎡⎤+∈⎢⎥⎣⎦,所以()f x 在ππ,62⎡⎤⎢⎥⎣⎦上单调递减,故D 正确;故选:ACD.12.如图所示,在边长为3的等边三角形ABC 中,23AD AC =,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,若BP xBA yBC =+,则()A.1233BD BA BC=+ B.x y +的最大值为13+C.BP BC ⋅ 最大值为9 D.1BO DO ⋅=【答案】AC 【解析】【分析】对于AD ,将,,BD BO DO 分别用,BA BC表示,再结合数量积的运算律即可判断;对于BC ,以点O 为原点建立平面直角坐标系,设()[]cos ,sin ,π,2πP ααα∈,根据平面向量的坐标表示及坐标运算即可判断.【详解】对于A ,因为23AD AC =,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,所以113OA OD DC AC ====,则()11123333BD BC CD BC CA BC BA BC BA BC =+=+=+-=+,故A 正确;对于B ,()22213333BO BC CO BC CA BC BA BC BA BC =+=+=+-=+,211211333333DO BO BD BA BC BA BC BA BC ⎛⎫=-=+-+=- ⎪⎝⎭,则2211212113333999DO BO BA BC BA BC BA BC BA BC⎛⎫⎛⎫⋅=-⋅+=--⋅ ⎪ ⎪⎝⎭⎝⎭1112133922=--⨯⨯⨯=,故D 错误;对于C ,如图,以点O 为原点建立平面直角坐标系,则()()1331,0,,,2,022A B C ⎛⎫- ⎪ ⎪⎝⎭,因为点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,所以点P 的轨迹方程为221x y +=,且在x 轴的下半部分,设()[]cos ,sin ,π,2πP ααα∈,则133333333cos ,sin ,,,,222222BP BC BA αα⎛⎫⎛⎫⎛⎫=--=-=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以333327πcos 3cos 624243BP BC ααα⎛⎫⋅=--+=++ ⎪⎝⎭ ,因为[]π,2πα∈,所以π4π7π,333α⎡⎤+∈⎢⎥⎣⎦,所以当π2π3α+=时,BP BC ⋅ 取得最大值9,故C 正确;因为BP xBA yBC =+ ,所以133333333cos ,sin ,,222222x y αα⎛⎫⎛⎫⎛⎫--=--+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()()133333cos ,sin ,2222x y x y αα⎛⎫⎛⎫--=---+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()3333sin 22x y α-=-+,所以23sin 19x y α+=-+,因为[]π,2πα∈,所以当3π2α=时,x y +取得最大值2319+,故B 错误.故选:AC.三、填空题:本题共4小题,每小题5分,共20分.13.函数tan y x =的定义域为_____________.【答案】,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭【解析】【详解】函数tan y x =的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭故答案为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭14.若sin1a =,ln sin1b =,sin1e c =,则a ,b ,c 三数中最小数为_________.【答案】b 【解析】【分析】根据给定条件,利用指数函数、对数函数的单调性,结合sin1的范围比较大小即得.【详解】依题意,0sin11<<,ln sin1ln10b =<=,10sin 1e e c >==,所以,,a b c 三数中最小数为b .故答案为:b15.在解析几何中,设()111,P x y ,()222,P x y 为直线l 上的两个不同的点,则我们把12PP及与它平行的非零向量都称为直线l 的方向向量,把与直线l 垂直的向量称为直线l 的法向量,常用n表示,此时120P P n ⋅=.若点P l ∉,则可以把PP 在法向量n上的投影向量的模叫做点P 到直线l 的距离.现已知平面直角坐标系中,()2,2P --,()12,1P ,()21,3P -,则点P 到直线l 的距离为__________.【答案】13【解析】【分析】先求出直线方程,后利用点到直线的距离公式求解即可.【详解】设l 的斜率为k ,点P 到直线l 的距离为d ,则3123k -==--1-2,l 的直线方程为2370x y +-=,由点到直线的距离公式得31d ==.故答案为:1316.对于非空集合M ,定义()0,Φ1,M x M x x M ∉⎧=⎨∈⎩,若sin 2A x x ⎧⎪=≥⎨⎪⎪⎩⎭,(),2B a a =,且存在x ∈R ,()()2A B x x Φ+Φ=,则实数a 的取值范围是_____________.【答案】π3π9π,,848∞⎛⎫⎛⎫⋃+ ⎪ ⎪⎝⎭⎝⎭##π3π84a <<或9π8a >【解析】【分析】首先解三角不等式求出集合A ,依题意A B ⋂≠∅,则π2a ≥时一定满足,再考虑π02a <<时,求出A B ⋂≠∅时参数的取值范围,即可得解.【详解】因为sin 2A x x ⎧⎪=≥⎨⎪⎪⎩⎭,所以π3{|2}ππ2π4Z 4()A x k x k k =+∈<<+,因为(),2B a a =,B ≠∅,所以2a a >,所以0a >,因为()()2A B x x Φ+Φ=,所以1A B Φ=Φ=,所以A B ⋂≠∅,此时区间长度π2a ≥时一定满足,故下研究π02a <<时,此时02πa a <<<,因此满足题意的反面情况024πa a <<≤或92443ππa a ≤<≤,解得π02a <≤或834ππ9a ≤≤,因此满足题意a 的范围为π3π9π,,848⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭ .故答案为:π3π9π,,848⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭.【点睛】关键点点睛:本题关键在于考虑π02a <<时,求出A B ⋂≠∅时参数的取值范围.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.已知角α的始边与x 轴的非负半轴重合,终边与单位圆的交点M 的坐标为04,5y ⎛⎫ ⎪⎝⎭,且3π,2π2α⎛⎫∈ ⎪⎝⎭.(1)求cos α,sin α的值;(2)求()()πcos πcos 2πsin tan π2αααα⎛⎫+++ ⎪⎝⎭⎛⎫-⋅- ⎪⎝⎭的值.【答案】(1)35-(2)13-【解析】【分析】(1)根据任意角三角函数定义和同角基本关系式可解;(2)利用诱导公式化简即可求值.【小问1详解】∵角α的终边与单位圆的交点为04,5M y ⎛⎫⎪⎝⎭,∴4cos 5α=,∵3π,2π2α⎛⎫∈⎪⎝⎭∴sin 0α<,∴3sin 5α==-.【小问2详解】原式()cos sin cos sin 1cos tan sin 3ααααααα--+===-⋅-.18.如图所示,设Ox ,Oy 是平面内相交成60︒角的两条数轴,1e ,2e分别是与x 轴,y 轴正方向同向的单位向量,若向量()12,OP xe ye x y =+∈R ,则把有序数对(),x y 叫做向量OP在坐标系xOy 中的坐标.(1)设()0,3OM = ,()4,0ON = ,求OM ON ⋅的值;(2)若()3,4OP =,求OP 的大小.【答案】(1)6(2【解析】【分析】(1)根据平面向量数量积的定义进行求解即可;(2)根据平面向量数量积的运算性质进行求解即可.【小问1详解】∵23OM e = ,14ON e = ,∴121212cos 606OM ON e e ⋅=⋅=︒=;【小问2详解】∵()222212112234924162524cos 6037OP e e e e e e =+=+⋅+=+︒= ,∴OP =19.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且向量(),m c a b =-,()sin sin ,sin sin n B C A B =-+ ,m n ⊥ .(1)求角A 的大小;(2)若2a =,ABC 的周长为l ,面积为S ,求Sl的最大值.【答案】(1)π3A =(2)6【解析】【分析】(1)利用平面向量数量积的坐标表示,结合正弦定理的边角变换与余弦定理即可得解;(2)利用(1)中结论与三角形面积公式将Sl表示为b c +的表达式,再利用基本不等式求得b c +的最大值,从而得解.【小问1详解】因为m n ⊥,故()(),sin sin ,sin sin 0m n c a b B C A B ⋅=-⋅-+=,即()()()sin sin sin sin 0c B C a b A B -+-+=,由正弦定理得,()()()0c b c a b a b -+-+=,整理得到222a b c bc =+-,则221cos 22b c bc A bc +-==,又()0,πA ∈,故π3A =.【小问2详解】由(1)知222a b c bc =+-,则224b c bc =+-,所以()243b c bc =+-,即()2143bc b c ⎡⎤=+-⎣⎦,因为1sin 24S bc A bc ==,2l b c =++,所以()()()()243324212212b c S b c l b c b c ⎡⎤+-⎣⎦===+-++++,又()24b c bc +≤,所以()()22434b c b c bc +=+-≥,所以4b c +≤,当且仅当2b c ==时,等号成立,所以)()33324212126S b c l =+-⨯-=≤,即S l 的最大值为36.20.如图所示,有一条“L ”,河道均足够长.现过点D 修建一条栈道AB ,开辟出直角三角形区域(图中OAB )养殖观赏鱼,且π02OAB θθ⎛⎫∠=<<⎪⎝⎭.点H 在线段AB 上,且OH AB ⊥.线段OH 将养殖区域分为两部分,其中OH 上方养殖金鱼,OH 下方养殖锦鲤.(1)养殖区域面积最小时,求θ值,并求出最小面积;(2)若游客可以在栈道AH 上投喂金鱼,在河岸OB 与栈道HB 上投喂锦鲤,且希望投喂锦鲤的道路长度不小于投喂金鱼的道路长度,求θ的取值范围.【答案】(1)π6θ=,(2)ππ,62⎡⎫⎪⎢⎣⎭【解析】【分析】(1)求出养殖观赏鱼的面积13tan tan OAB S θθ=++ ,再由基本不等式求解;(2)由题意BH OB AH +≥,则11sin 1cos tan cos tan cos sin ≥≥θθθθθθθ++⇔即可求解.【小问1详解】过D 作DM ,DN 垂直于OA ,OB ,垂足分别为M ,N ,则DM ON ==DN OM ==tan tan DM AM θθ==,tan BN DN θθ==,养殖观赏鱼的面积)1113tan 22tan tan OAB S OA OB θθθθ⎫=⋅=+=++⎪⎪⎭,由π0,2θ⎛⎫∈ ⎪⎝⎭可得tan 0θ>,则13tan tan θθ+≥,当且仅当tan 3θ=即π6θ=时取等号,故π6θ=时,OAB S 最小=.【小问2详解】由2AOB OHA π∠=∠=,可得BOH θ∠=,则tan OH AH θ=,tan BH OH θ=,cos OHOB θ=,由题意BH OB AH +≥,则()2211sin 1cos tan sin 1sin cos 1sin cos tan cos sin θθθθθθθθθθθ++≥⇔≥⇔+≥=-,则1sin 1sin sin 2θθθ-⇔≥≥,结合π02θ<<,则ππ,62θ⎡⎫∈⎪⎢⎣⎭.21.设a ∈R ,函数()2sin cos f x x x a =--,π,π2x ⎛⎫∈⎪⎝⎭.(1)讨论函数()f x 的零点个数;(2)若函数()f x 有两个零点1x ,2x ,试证明:12121tan tan 31tan tan x x x x --≤.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)利用分离参数法分类讨论函数()f x 的零点个数;(2)利用根与系数关系和三角函数单调性证明123ππ2x x <+<,即()12cos 0x x +<,令1201tan tan x x λ=<-,则将原命题转化为证明2210λλ++≥,显然成立,进而原命题成立得证.【小问1详解】()2cos cos 1f x x x a =---+,令()0f x =,即2cos cos 1x x a +=-+,当π,π2x ⎛⎫∈⎪⎝⎭时,令()cos 1,0t x =∈-,所以21,04t t ⎡⎫+∈-⎪⎢⎣⎭,则()0f x =即21t t a +=-+,所以当10a -+≥或114a -+<-时,即1a ≤或54a >时,21t t a +=+无解;当114a -+=-时,即54a =时,21t t a +=+仅有一解;当1104a -<-+<即514a <<时,21t t a +=+有两解,综上,1a ≤或54a >时,()f x 无零点;54a =时,()f x 有一个零点;514a <<时,()f x 有两个零点.【小问2详解】若()f x 有两个零点1x ,2x ,令11cos t x =,22cos t x =,则1t ,2t 为21t t a +=+两解,则121t t +=-,则12cos cos 1x x +=-,则1222211c cos 2c o os os c s x x x x ++=,由12π,,π2x x ⎛⎫∈⎪⎝⎭可得1cos 0x <,2cos 0x <,则120c 2os cos x x >,所以2212cos cos 1x x +<,所以2221223πcos sin cos 2x x x ⎛⎫<=-⎪⎝⎭,由2π,π2x ⎛⎫∈⎪⎝⎭可得23,22πππx ⎛⎫-∈ ⎪⎝⎭,所以23πcos 02x ⎛⎫-<⎪⎝⎭,则123πcos cos 2x x ⎛⎫>- ⎪⎝⎭,由cos y x =在π,π2⎛⎫⎪⎝⎭递减,可得123π2x x <-,所以123ππ2x x <+<,所以()12cos 0x x +<令121tan tan x x λ=-,则()1212121212cos cos cos sin sin 0cos cos cos cos x x x x x x x x x x λ+-==<要证12121tan tan 31tan tan x x x x --≤成立,即证:1132λλλ--=--≤;即证:2210λλ++≥,因为()222110λλλ++=+≥显然成立,故原式成立.【点睛】函数零点的求解与判断方法:(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[],a b 上是连续不断的曲线,且()()0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.。

高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题

某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。

北京市西城区(南区)2012-2013学年高一数学上学期期末考试新人教B版

北京市西城区(南区)2012-2013学年度第一学期高一年级期末考试数学试卷本试卷满分100分,考试时间120分钟。

一、选择题:本大题共14个小题,每小题3分,共42分。

在每小题的4个选项中,只有一项是符合题目要求的。

[ ]1. 已知全集R U =,集合{}12|<=xx A ,{}01|<-=x x B ,则B A C U ⋂)(=A. {}1|>x xB. {}10|<≤x xC. {}10|≤<x xD. {}1|≤x x[ ]2. 已知幂函数)(x f y =的图象经过点(2,4),则)(x f y =的解析式为A. xy 2=B. 2x y =C. x y =D. x y 2=[ ]3. 若32=a ,且0>a ,则a 3log 的值为 A. 3-B. 3C. 21-D.21 [ ]4. 已知0>a 且1≠a ,函数x y a log =,xa y =在同一坐标系中的图象可能是[ ]5. 已知2)(357++-=cx bx ax x f ,且m f =-)5(,则)5()5(f f --的值为 A. 42-mB. 42+mC. 4-D. 4[ ]6. 某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为 A. 72B. 36C. 27D. 18[ ]7. 同时投掷两颗骰子,所得点数之和是5的概率是 A.41 B.61 C.91 D.121 [ ]8. 下图是某学校举行的运动会上七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为A. 84,4.84B. 84,1.6C. 85,1.6D. 85,4[ ]9. 设9.04=a ,48.08=b ,5.1)21(-=c ,则A. b a c >>B. b c a >>C. c b a >>D. c a b >>[ ]10. 若下边的程序框图输出的S 是62,则条件①可为A. 4≤nB. 5≤nC. 6≤nD. 7≤n[ ]11. 设1>a ,函数x x f a log )(=在区间[a a 2,]上的最大值与最小值之差为21,则=a A. 4B. 2C. 22D. 2[ ]12. 下列函数中,函数图象关于y 轴对称,且在(0,+∞)上单调递增的是 A. xy 2=B. 12-=x yC. 21x y =D. ||log 21x y =[ ]13. 设0x 是函数x x f x2log )31()(-=的零点,若00x a <<,则)(a f 的值满足A. 0)(=a fB. 0)(<a fC. 0)(>a fD. )(a f 的符号不确定[ ]14. 已知函数⎩⎨⎧>-≤-=-0),1(0,12)(x x f x x f x ,若方程a x x f +=)(有且只有两个不相等的实数根,则实数a 的取值范围是A. )1,(-∞B. ]1,(-∞C. )1,0(D. ),0[+∞二、填空题:本大题共6个小题,每小题3分,共18分。

高一数学上册期末考试试卷及答案解析(经典,通用)

高一数学上册期末考试试卷及答案解析一、单选题 1.设全集2,1,0,1,2U,集合{}{}0,1,21,2A =-,B=,则()U A B =( )A .{}01, B .{}0,1,2 C .{}1,1,2- D .{}0,1,1,2-2.“5x >”是“3x >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对 4.下列命题中,既是全称量词命题又是真命题的是( ) A .矩形的两条对角线垂直 B .对任意a ,b ∈R ,都有a 2 + b 2≥ 2(a ﹣b ﹣1) C .∃x ∈R , |x | + x = 0 D .至少有一个x ∈Z ,使得x 2 ≤2成立5.已知02x <<,则y = )A .2B .4C .5D .66.若110a b <<,则下列结论不正确的是( ) A .22a b <B .1ba <C .2b aa b +>D .2ab b <7.命题p :“2R,240x ax ax ∃∈+-≥”为假命题的一个充分不必要条件是( ) A .40aB .40a -≤<C .30a -≤≤D .40a -≤≤8.集合{1,2,4}A =,{}2B x x A =∈,将集合A ,B 分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是( ) A .B .C .D .二、多选题9.已知集合222{2,1,4},{0,2}A a a a B a a =+-=--,5A ∈,则a 为( ) A .2B .2-C .5D .1-10.若正实数,a b 满足1a b +=,则下列说法正确的是( ) A .ab 有最小值14 B C .1122a b a b +++有最小值43D .22a b +有最小值1211.下列命题为真命题的是( ). A .若a b >,则11b a >B .若0a b >>,0c d <<,则abd c < C .若0a b >>,且0c <,则22cc a b > D .若a b >,且11a b>,则0ab < 12.若“x M x x ∀∈>,”为真命题,“3x M x ∃∈>,”为假命题,则集合M 可以是( )A .()5-∞-,B .(]31--,C .()3+∞,D .[]03,三、填空题13.若命题2:0,30p x x ax ∀≥-+>,则其否定为p ⌝:__________________.14.已知:282p x -≤-≤,:1q x >,:2r a x a <<.若r 是p 的必要不充分条件,且r 是q 的充分不必要条件,则实数a 的取值范围为______. 15.设集合{}{}21,2,R (1)0A B x x a x a ==∈-++=,若集合C = A B ,且C 的子集有4个,则实数a 的取值集合为______________. 16.若a ∈R ,0b >,3a b +=,则当=a ______时,1||3||a a b +取得最小值.四、解答题17.求解下列问题:(1)已知0b a <<,比较1a 与1b 的大小; (2)比较()()37x x ++和()()46x x ++的大小.18.已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-. (1)求A B ,R ()A B ⋃: (2)若BC C =,求实数m 的取值范围.19.已知不等式20x ax b -+<的解集为{}17x x <<. (1)求实数,a b 的值.(2)求不等式101ax bx +>-的解集.20.已知0,0x y >>,且280x y xy +-=,求(1)xy 的最小值; (2)x y +的最小值. 21.22.“绿水青山就是金山银山”,为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碳化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+,3050x ≤≤,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)当处理量为多少吨时,每吨的平均处理成本最少?(2)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?参考答案:1.A 【分析】先求出UB ,再根据交集的定义可求()U A B ∩.【详解】{}2,0,1UB =-,故(){}0,1UAB =,故选:A.2.A 【分析】根据集合与充分必要条件的关系,判断选项. 【详解】{}5x x > {}3x x >,所以“5x >”是“3x >”的充分不必要条件. 故选:A3.C 【分析】由集合的表示方法判断①,④;由集合中元素的特点判断②,③.【详解】①{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确; ③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示. 故选:C .4.B 【分析】根据全称量词和特称量词命题的定义判断,全称量词命题要为真命题必须对所以的成立,对选项逐一判断即可.【详解】A 选项为全称量词命题,却是假命题,矩形的两条对角线相等,并不垂直,故A 错误.C,D 选项是特称量词命题,故错误. B 选项是全称量词命题,用反证法证明, 因为()()2222222110a b a b a b +-++=-++≥所以对,a b ∀∈R ,()2221a b a b +--≥,故B 正确.故选:B. 5.【答案】A 【分析】设直角三角形的两个直角边为x ,y ,由此可得2225x y +=,又面积1=2S xy ,利用基本不等式可求面积的最大值. 【详解】设直角三角形的两个直角边为x ,y ,则2225x y +=, 又1=2S xy由基本不等式可得221125=2224x y S xy ⎛⎫+≤= ⎪⎝⎭(当且仅当x =y 立) 故选:A.6.B 【分析】由110a b <<得出0b a <<,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误. 【详解】110a b<<,0b a ∴<<,0b a ∴->->,22a b ∴<,A 选项正确;1b b a a-=>-,B 选项错误;由基本不等式可得2baa b +≥=,当且仅当1b a =时等号成立,1b a >,则等号不成立,所以2baa b +>,C 选项正确;0b a <<,2b ab ∴>,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.7.C 【分析】由题意,p ⌝为真命题,进而可得p ⌝为真命题时的充要条件,再根据充分与必要条件的性质判断选项即可. 【详解】命题2:R,240p x ax ax ∃∈+-≥为假命题,即命题2:R,240p x ax ax ⌝∀∈+-<为真命题.首先,0a =时,40-<恒成立,符合题意; 其次0a ≠时,则0a <且2(2)160a a ∆=+<,即40a ,综上可知,40a .结合选项可得,{}{}3040a a a a -≤≤⊆-<≤,即:30a -≤≤是40a 的一个充分不必要条件. 故选:C8.C 【分析】记U A B =⋃,然后分析每个选项对应的集合的运算并求解出结果进行判断即可.【详解】因为{}1,2,4A =,{}2B x x A=∈,所以{}2,B =--,记{}2,U AB ==--,对于A 选项,其表示(){}4U A B =,不满足;对于B 选项,其表示(){}2,U A B =--,不满足;对于C 选项,其表示(){2,U A B =--,满足;对于D 选项,其表示{}1,2A B =,不满足;故选:C.9.BC 【分析】结合元素与集合的关系,集合元素的互异性来求得a 的值.【详解】依题意5A ∈,当215a+=时,2a =或2a =-,若2a =-,则{}{}2,5,12,0,4A B ==,符合题意;若2a =,则220a a --=,对于集合B ,不满足集合元素的互异性,所以2a =不符合.当245a a -=时,1a =-或5a =,若1a =-,则212a +=,对于集合A ,不满足集合元素的互异性,所以1a =-不符合.若5a =,则{}{}2,26,5,0,18A B ==,符合题意. 综上所述,a 的值为2-或5. 故选:BC10.BCD 【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【详解】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误;由()222a b a b =+++=12a b ==时,,故B 选项正确;由11111(33)22322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭111[(2)(2)]3221222322a b a b a b a b a b a b a b a b ⎛⎫=++++ ⎪++⎝⎭++⎛⎫=++ ⎪++⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,所以1122a b a b +++有最小值43,故C 选项正确;由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确. 故选:BCD.11.BCD 【解析】举反例说明选项A 错误;利用不等式的性质证明出选项B ,C 正确;利用作差法证明出选项D 正确.【详解】选项A :当取1a =,1b =-时,11b a <,∴本命题是假命题. 选项B :已知0a b >>,0cd <<,所以110dc->->,∴abd c ->-,故abd c <,∴本命题是真命题. 选项C :222211000a b a b a b >>⇒>>⇒<<,∵0c <,∴22cca b >,∴本命题是真命题. 选项D :111100b aa b a b ab->⇒->⇒>, ∵a b >,∴0b a -<,∴0ab <,∴本命题是真命题. 故选:BCD【点睛】本题考查不等式的性质,考查命题的真假,属于基础题. 12.AB 【解析】根据假命题的否定为真命题可知3x M x ∀∈≤,,又x M x x ∀∈>,,求出命题成立的条件,求交集即可知M 满足的条件.【详解】3x M x ∃∈>,为假命题,3x M x ∴∀∈≤,为真命题,可得(,3]M ⊆-∞,又x M x x ∀∈>,为真命题, 可得(,0)M ⊆-∞, 所以(,0)M ⊆-∞,故选:AB【点睛】本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.13.20,30x x ax ∃≥-+≤【分析】直接利用存在量词写出其否定即可. 【详解】因为命题2:0,30p x x ax ∀≥-+>, 所以其否定p ⌝:20,30x x ax ∃≥-+≤.故答案为:20,30x x ax ∃≥-+≤.14.()5,6【分析】根据充分与必要条件,可得p ,q ,r 中集合的包含关系,再根据区间端点列式求解即可.【详解】易得:610p x ≤≤.记p ,q ,r 中x 的取值构成的集合分别为A ,B ,C ,由于r 是p 的必要不充分条件,r 是q 的充分不必要条件,则AC ,CB ,则016210a a a >⎧⎪≤<⎨⎪>⎩,解得56a <<,即实数a 的取值范围是()5,6.故答案为:()5,615.{}1,2【分析】先求出集合B 中的元素,再由C 的子集有4个,可知集合C 中只有2个元素,然后分1,2a a ==和1a ≠且2a ≠三种情况求解即可.【详解】由2(1)0x a x a -++=,得1x =或x a =, 因为集合C = A B ,且C 的子集有4个, 所以集合C 中只有2个元素, ①当1a =时,{}1B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以1a =满足题意,②当2a =时,{}1,2B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以2a =满足题意, ③当1a ≠且2a ≠时,{}1,B a =, 因为{}1,2A =,所以{}1,2,A B a =,即{}1,2,C a =,不合题意,综上,1a =或2a =,所以实数a 的取值集合为{}1,2, 故答案为:{}1,216.32-【分析】由题知3a <,进而分0<<3a 和0a <两种情况,结合基本不等式求解即可.【详解】解:因为3a b +=,0b >,所以30b a =->,即3a <.当0<<3a 时,11173||99999a ab a b a a b a b a b ++=+=++≥+, 当且仅当34a =时取等号,所以当34a =时,13a a b+取得最小值79;当0a <时,11139999a a b a b a a ba b a b ++=--=---≥-+59=, 当且仅当32a =-时取等号,所以当32a =-时,13a a b+取得最小值59.综上所述,当32a =-时,13a a b+取得最小值.故答案为:32-17.(1)11a b <(2)()()()()3746x x x x ++<++【分析】(1)利用差比较法比较大小. (2)利用差比较法比较大小.(1)11110,0,0,0,b a b a ab b a a b ab a b-<<>-<-=<<.(2)()()()()()()()()4630,737634x x x x x x x x ++=-<-+<+++++.18.(1){|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或;(2)52m ≤. 【分析】(1)由并集的定义及补集的定义进行计算即可; (2)BC C =等价于C B ⊆,按B =∅和B ≠∅讨论,分别列出不等式,解出实数m 的取值范围. (1)∵集合{|15}A x x =<≤,{}|04B x x =<<, ∴{|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或.(2) 因为BC C =,所以C B ⊆,当B =∅时,则121m m +≥-,即2m ≤;当B ≠∅时,则12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,解得522m <≤;综上,实数m 的取值范围为52m ≤.19.(1)8,7a b ==;(2)11(,)(,)87-∞-⋃+∞【分析】(1)由解集得到方程20x ax b -+=的根,利用韦达定理可求,a b .(2)利用(1)中的结果并把分式不等式转化为一元二次不等式可求解集.【详解】(1)因为不等式20x ax b -+<的解集是{}17x x <<. 所以20x ax b -+=的解是1和7.故1771ab +=⎧⎨⨯=⎩,解得 87a b =⎧⎨=⎩. (2)由101ax bx +>-得81071x x +>-,即()()81710x x +->, 解得18x <-或17x >,故原不等式的解集为11(,)(,)87-∞-⋃+∞. 20.(1)64;(2)18.【解析】(1)由280x y xy +-=,得到821x y +=,利用基本不等式,即可求解. (2)由280x y xy +-=,得821x y +=,根据8282()()10y xx y x y x y x y +=++=++,结合不等式,即可求解.【详解】(1)由280x y xy +-=,可得821x y +=,又由0,0x y >>,可得821x y =+≥,当且仅当82x y =,即4x y =时,等号成立,即64xy ≥, 所以xy 的最小值为64. (2)由280x y xy +-=,得821x y +=,因为0,0x y >>,可得8282()()101018y x x y x y x y x y +=++=++≥+, 当且仅当82y xx y =,即12,6x y ==时等号成立,所以x y +的最小值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 21.(1)[0,254] (2){}|2a a <【分析】(1)首先求解集合A ,再求二次函数的值域;(2)首先将不等式,参变分离得2452x x a x -+-<-,转化为求函数的最值,即可求解. (1)2230x x --≤等价于()()2310x x -⋅+≤,.解得312x -≤≤所以3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭. ∴二次函数223253424y x x x ⎛⎫=-++=--+ ⎪⎝⎭, 函数在区间31,2⎡⎤-⎢⎥⎣⎦单调递增,所以当32x =时,y 取最大值为254, 当1x =-时,y 取最小值为0,所以二次函数234y x x =-++.x A ∈的值域是[0,254]. (2)由(1)知3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭ ∵()24520x a x a +-+->恒成立. 即24520x ax x a +-+->恒成立.∴()2245x a x x -⋅>-+-恒成立. .∵312x -≤≤.∴20x -<.()()222214545122222x x x x x a x x x x x-+-+--+∴<===-+----∵20x ->,∴()1222x x-+≥-.. 当且仅当122x x -=-且312x -≤≤时,即1x =时,等号成立,. ∴2a <,故a 的取值范围为{}|2a a < 22.(1)31a b ==, (2)32a -≤<-或45a <≤ (3)53a ≥-【分析】(1)根据二次函数与对应不等式和方程的关系,利用根与系数的关系,即可求出a 、b 的值;(2)由()1f x b <-得()23220x a x a -+++<,令()()2322h x x a x a =-+++,求出()0h x <解集中恰有3个整数时a 的取值范围即可.(3)由()f x b ≥在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立,化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,,()2111t t g t t t t+-==-+,求出()g t 的最大值,进一步求出实数a 的取值范围;(1)解:因为函数()()2321f x x a x a b =-++++,a ,b R ∈,又()0f x >的解集为{2|x x <或4}x >,所以2,4方程()23210x a x a b -++++=的两根,由()2432421a a b ⎧+=+⎨⨯=++⎩, 解得31;a b ==, (2)由()1f x b <-得()23220x a x a -+++<, 令()()2322h x x a x a =-+++,则()()()()12h x x a x =-+-,知()20h =,故()0h x <解集中的3个整数只能是3,4,5或1-,0,1;①若解集中的3个整数是3,4,5,则516a <+≤,得45a <≤;②解集中的3个整数是1-,0,1;则211a -≤+<-,得32a -≤<-;综上,由①②知,实数a 的取值范围为32a -≤<-或45a <≤. (3)因为函数()()2321f x x a x a b =-++++,a ,b R ∈,由()f x b 在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立, 化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,, 设()2111t t g t t t t +-==-+,因为在()g t 在[]53--,上单调递增, 即()153133g t --+=--,所以53a ≥-. 23.(1)40吨(2)不会获利,700万元【分析】(1)根据已知条件,结合基本不等式的公式,即可求解.(2)当3050x ≤≤时,该工厂获利S ,则()2220401600(30)700S x x x x =--+=---,再结合二次函数的性质,即可求解. (1)由题意可得,二氧化碳的平均处理成本1600()40yP x x x x==+-,3050x ≤≤,当3050x ≤≤时,1600()404040P x x x =+-≥=, 当且仅当1600x x=,即40x =等号成立, 故()P x 取得最小值为(40)40P =,故当处理量为40吨时,每吨的平均处理成本最少. (2)当3050x ≤≤时,该工厂获利S , 则()2220401600(30)700S x xx x =--+=---,当3050x ≤≤时,max 7000S =-<,故该工厂不会获利,国家至少需要补贴700万元,该工厂不会亏损.。

2022-2023学年上海交大附中高一上学期期末数学试卷及答案

第1页共7页交大附中2022学年第一学期高一年级数学期期末2023.1一、填空题(共75分,其中1-5每题4分,6-10每题5分,11-15每题6分)1、已知集合{}{}1,3,5,6,7,2,4,5,6,8A B ==,则A B ⋂=____________2、函数223y x x =--的零点是___________3、已知则函数y kxa =的图像过点12,4⎛⎫⎪⎝⎭,则k a +=___________4、某公司一年购买某种货物600吨,分若干次购买,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________5、已知3sin 45x π⎛⎫-= ⎪⎝⎭,则sin2x =___________6、已知()()4tan 114tan 17A B +-=,则()tan A B -=___________7、已知()()1e ,0,{4,0x x f x f x x +≤=->,则()2023f =___________8、命题“存在()()22,4210x R a x a x ∈-++-≥”为假命题,则实数a 的取值范围为___________9、如图,以0x 为始边作钝角a ,角a 的终边与单位圆交于点(1P x ,1y ),将角α的终边顺时针旋转3π得到角β.角β的终边与单位圆相交于点()22,Q x y ,则21x x -的取值范围为___________10、设()()21lg 11f x x x=+-+,则使()()232f x f x <-成立的x 取值范围是___________.(结果用不等式表示)11、已知12a b ≤≤≤,记3b a+的最大值为M ,最小值为m ,则22M m -=___________12、已知()[]11,y x x x a b =-+∈的值域为[]0,8,则a b +的取值范围是___________第2页共7页13、已知函数()y f x =是定义在R 上的周期为2的偶函数,[]()20,1,122x xx f x ∈=++,则函数()y f x =的图象与函数133x y =+的图象交点个数为____________14、已知()y f x =为定义在R 上的偶函数,当0x ≥时,有()()1f x f x +=-,且当[)0,1x ∈时,()()2log 1f x x =+.给出下列命题,其中正确的命题的个数为____________(1)()()202220230f f -+=;(2)函数()f x 在定义域上是周期为2的周期函数(3)直线y x =与函数()f x 的图像有1个交点;(4)函数()f x 的值域为()1,1-15、德国著名数学家狄利克雷在数学领域成就显著,他是数学史上第一位重视概念的人,并且有意识地“以概念代替直觉”,以其名命名的函数()1,0,x D x x ⎧=⎨⎩是有理数是无理数为狄利克雷函数,现定义一个与狄利克雷函数类似的函数(),0,x x L x x ⎧=⎨⎩是有理数是无理数“L 函数”,则关于狄利克雷函数和L 函数有以下四个结论:(1)()()0D D x =;(2)函数()D x 是偶函数;(3)L 函数图象上存在四个点A B C D 、、、,使得四边形ABCD 为矩形;(4)L 函数图象上存在三个点A B C 、、,使得ABC ∆为等边三角形.其中所有正确结论的序号是____________二、选择题(共75分,其中16-20每题4分,21-25每题5分,26-30每题6分)16、设全集U 与集合,M N 的关系如图所示,则图中阴影部分所表示的集合是()A.M N ⋂B.M N ⋃C.M N⋃ D.M N⋂第3页共7页17、函数23y x =+-的定义域是()A.()2,4 B.()3,4 C.()(]2,33,4⋃ D.[)()2,33,4⋃18、若0,0,x y n >>为正整数,则下列各式中,恒等的是()A.lg lg lg lg x y x y ⋅=+B.()22lg lg x x =C.1ln ln nx x n=D.ln ln x xn n=19、已知,R αβ∈.则“,k k Z αβπ=+∈”是“sin2sin2αβ=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件20、函数231x y x-=的图象可能是()21、函数()y f x =在(),-∞+∞为严格减函数,且为奇函数.若()11f =-,则满足()121f x -≤-≤的x 的取值范围是()A.[]2,2- B.[]1,1- C.[]0,4 D.[]1,322、已知()22log f x x x=-,则不等式()0f x >的解集是()A.()0,1 B.(),2-∞ C.()2,+∞ D.()0,223、若对任意x A ∈,均有1A x∈,就称集合A 是伙伴关系集合.设集合第4页共7页111,0,,,1,2,3,432M ⎧⎫=-⎨⎬⎩⎭,则M 的所有非空子集中,具有伙伴关系的集合的个数为()A.15B.16C.32D.12824、小张、小李、小王、小赵四名同学,仅有一人做了数学老师布置的一道题目.当他们被问到谁做了该题目时,小张说:“小王或小赵做了”;小李说:“小王做了”;小王说:“小张和小赵都没做”;小赵说:“小李做了”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一年级数学科上学期期末试卷(B )
一、选择题(每小题给出的答案中,正确答案唯一,把正确答案的英文代号填
入题后的( )内,每小题3分,本题36分)
1.设B A f →:是集合A 到B 的映射,下列命题中真命题的是…………( ) (A )A 中每一个元素在B 中必有象(B )B 中每一个元素在A 中必有原象 (C )A 中不同的元素必有不同的象(D )B 中每一个元素在A 中原象唯一 2.已知四组函数,每组有两个函数
①2)()(,)(x x g x x f ==②33)(,)(x x g x x f ==
③)(12)(,12)(N n n n g n n f ∈+=-=④t t t g x x x f 2)(,2)(2
2-=-=
其中表示同一函数的组别………………………………………………………( ) (A )仅有①(B )仅有②(C )仅有②④(D )有②③④
3.若奇函数)(x f 在区间],[b a 上是增函数,且有最大值为3,则)(x f 在区间],[a b --上是………………………………………………………………………………( ) (A )增函数,最大值为-3(B )增函数,最小值为-3 (C )减函数,最大值为-3(D )减函数,最小值为-3
4.设::p 3是1和5的等差中项,:q 4是2和5的等比中项,
则下列说法正确的是……………………………………………………………( ) (A )“非p ”为真(B )“非q ”为假(C )“p 且q ”为真(D )“p 或q ”为真 5.已知]8,1[∈x 则函数6log )(log )(2
222
1++=x x x f 的最小值是( )
(A )5(B )4(C )8(D )无最小值
6.当1>a 时,在同一坐标系中,函数x
a y =与x y a log -=的图象是……( )
(A ) (B ) (C ) (D )
7.设}{n a 为等差数列,且6321=++a a a ,9432=++a a a 若20=n a 则n 为……………………………………………………………………………( ) (A )16(B )18(C )20(D )22
8.已知数列}{n a 和}{n b 都是等差数列,它们的前n 项和分别为n S 和n T 并且
3412--=n n T S n n 则=10
10
b a …………………………………………………………( )
(A )
7337(B )21(C )3717(D )73
35 9.数列}{n a 满足)2()1(11≥-+=--n a a a n n n n ,且21=a 则=4a ………( ) (A )1(B )2(C )3(D )4
10.已知等比数列}{n a 中,2
9
,2333==
S a 则公比=q ……………………( ) (A )1(B )2
1-(C )211或-(D )21
1-或
11.已知等差数列}{n a 中,274=+a a ,等比数列}{n b 中,274=b b ,n S 是数列}{n a 的前n 项和,n T 是数列}{n b 的前n 项的积,则……………………………( ) (A )32,201010==T S (B )32,101010==T S (C )64,201010==T S (D )64,101010==T S
12. ac b =2
是a ,b ,c 成等比数列的…………………………………( )条件 (A )充要(B )充分而不必要(C )必要而不充分(D )非充分非必要
二、填空题(每小题4分,共16分)
13.函数)32ln(2
-+=x x y 的单调递增区间是 。

14.写出数列 9
1
5,714,513,312的一个通项公式 。

15.=++++n n
2
23222132 。

16.某工厂八年来某种产品总产量...c 随时间t (年)的函数关系如图: ①前3年中产量
..增长速度越来越慢; ②前3年中产量..增长速度越来越快; ③第三年后,这种产品停止生产; ④第三年后,产品增长的速度保持稳定 其中说法正确的有 。

三、解答题(要求写出完整的解题过程,本题共48分)
17.(本小题6分)已知31
=+-x x ,求(1)x
x 1+
(2)33
1x
x +
18. (本小题8分)已知)1,0)(22(log )(2≠>+-=a a rx x x f a 的定义域为R ,求实数r 的取值范围,并求)(x f 的值域。

19. (本小题8分)某商店积压
..了100件某商品。

为让这批货尽快脱手,该商店Array采取如下方案:将价格提高到原价的2.5倍,再作三次降价处理。

第Ⅰ次降低30%,标出“亏本价”,
第Ⅱ次再降低30%,标出“破产价”,
第Ⅲ次又降低30%,标出“跳楼价”。

结果:第Ⅰ次降价处理仅售出5件;
第Ⅱ次降价处理售出40件;
第Ⅲ次降价处理,剩下商品被一抢而空。

问:1)“跳楼价”与原价之比为多少?
2)该商店按新销售方案,比较与按原价全部销售,哪一种方案盈利多?
20.(本小题10分)设)(22)(R x x f x x ∈+=- (1)判断f (x )的奇偶性,并予以证明; (2)证明:)(x f 在),0(+∞上是增函数;
(3)判断)(x f 在)0,(-∞上的单调性;
21. (本小题6分)已知数列}{n a 满足c a =1,)0(1的常数为不为q a q a n n ⋅=+, 求}{n a 的通项公式及前n 项和n S
22. (本小题10分)已知数列}{n a 的前n 项和n n S n 102+-= (1)求数列}{n a 的通项公式并证明}{n a 是个等差数列; (2)问n 取何值时,n S 达到最大,最大值为多少; (3)求数列|}{|n a 的前n 项之和n T 的表达式。

相关文档
最新文档