面向未来的产品设计——SOLIDWORK SElectrical 在风电上的运用
solidworks案例教程《风扇叶片建模》

目录
• 引言 • Solidworks基础操作 • 风扇叶片设计理念 • 风扇叶片建模过程 • 风扇叶片后处理与优化 • 课程总结与展望
01
引言
课程背景
风扇叶片作为机械设备中的重要组成部分,其设计质量和加工精度直接影响设备 的性能和安全性。
随着计算机技术的发展,CAD(计算机辅助设计)软件在机械设计领域得到了广泛 应用,其中SolidWorks是一款功能强大、易学易用的CAD软件,广泛应用于各种机 械设计领域。
06
课程总结与展望
本课程学习重点回顾
风扇叶片设计原理
Solidworks基本操作
理解风扇叶片的工作原理和设计要求,以 便更好地进行建模。
掌握Solidworks的基本操作,如草图绘制 、特征创建、装配体设计等。
参数化设计
优化设计
学习如何使用Solidworks的参数化设计功 能,提高设计效率和准确性。
倒角
在实体的边角上添 加倒角,使实体更 加坚固。
实例操作:简单零件建模
打开Solidworks软件, 新建一个零件文件。
执行拉伸命令,将矩 形拉伸成一个长方体。
在草图绘制模式下, 绘制一个矩形,作为 拉伸特征的基础。
实例操作:简单零件建模
在长方体的顶部绘制一个圆形 草图,作为旋转特征的基础。
执行旋转命令,将圆形草图旋 转成一个圆柱体。
提供常用命令的快速访 问按钮,方便用户操作。
显示当前零件的结构和 特征,方便用户进行编
辑和修改。
绘图区域
用于显示和编辑零件的 三维模型。
基础命令介绍
拉伸
将草图沿着一个方 向拉伸,形成三维 实体。
Solidworks建模设计的排风扇,操作简单,小白也能上手完成。

Solidworks建模设计的排风扇,操作简单,小白也能上手完
成。
排风扇用Solidworks建模,keyshot6.0渲染。
排风扇
排风扇主要有两部分构成:固定座和风扇。
一、固定座
1、在前视基准面绘制草图并拉伸。
2、拉伸切除
3、拉伸切除形成4个安装孔。
4、抽壳
固定座主体建模已经完成,只需4步操作,完成好搜对直角处进行圆角处理。
二、风扇
1、在右视基准面上绘制草图并旋转。
2、绘制螺旋线
首先在前视基准面上绘制如下草图。
选择螺旋线命令,按下图参数设置。
3、扫描
在上视基准面上绘制如下草图。
选择扫描命令,这样一个风叶片建模完成,圆角处理。
4、阵列
将上面绘制好的一个风叶片进行阵列即可形成风扇整体。
这样整个风扇的建模也已经完成,将风扇和固定座装配在一起,排风扇就建模完成。
整个排风扇的建模过程十分简单,有兴趣的小伙伴可以按照文中步骤试着练习一下,如果有不清楚的地方可以在文末留言,也可以私信获取模型源文件。
创作不易,欢迎大家转发+关注,大家的每一次转发关注都是对我最大的支持,谢谢大家。
solidworks吹风机模型分享

关于solidworks工业产品设计,灭蚊器产品造型造型教程
今天我们蓝天设计公司项目组接下来一个灭蚊器开发项目,请看下面的图片效果图
这是一个仿造生物学造型设计,类似夏天出现的昆虫,知了的外形,初一看起来非常难以下手,特别是这个翅膀的地方,一层一层的,我想对于初学者非常的难,今天我们就来手把手的教会法、大家学习这个教程。
这个产品需要用到曲面的知识点:
第一部我们建立主体外观:建3个草图,2给草图之间平行距离是100mm
当构建好了草图以后我们利用放样功能做出我们想要的曲面
下面我们来做出知了的尾巴部分,做一个曲面来然后来裁剪
然后我们把曲面上部分填充起来,然后把曲面缝合起来然后倒圆角,就可以基本形成了一个主体的外形,然后我们再来做一些细节的东西.
下面我们来做一下知了的翅膀的外形,我们做一个曲面将背面切掉一个缺口出来
下面我们来画出它的引导线,然后通过放样可以做出外观的效果
其他的结果就比较简单了,我在这里就不一一的说明了
通过这个实例,我们来总结一下,其一是我们
在这个例子里面我们主要用到了solidworks软件的曲面功能,放样功能,裁剪功能,合并功能
在拿到一个项目的时候必须冷静分析,不要怕,因为我们必须一步一步的去试,这个可能不是很难的,只是我们边做,边观察,边思考,调节,我们是可以做出来的。
面向未来的产品设计

面向未来的产品设计作者:王君来源:《智能制造》2017年第01期SOLIDWORKS E1ectrical软件在风电1.5Mw直驱风机塔基柜和2.0Mw风机变桨轴控柜的机电一体化设计与常规的柜体3D布局设计不同,该设计不仅完成柜体内元件的3D布局,完成了柜内几百根电线及电缆的连接,还可以输出电气原理图,线缆连接清单(含线长),元件清单,如图1所示。
经过前一段时间SOLIDWORKS Electrical软件应用培训和工程实践,东方电气自动控制工程有限公司新能源部已成功完成了1.5MW直驱风机塔基柜和2.0MW风机变桨轴控柜的机电一体化设计。
经过对部分线缆的实际测试,软件布线计算的长度与实际布线长度保持较好的一致性。
该软件实现了机-电信息的互联互通,当你在柜体中任意选中一个元件,即可便捷的在原理图中查询出位置,元件的线缆连接信息、型号和主要电气参数,方便故障的分析处理。
在工程设计实践中,它可以使设计人员与生产实际联系的更加紧密。
在元件数据库的支持下,设计原理图时,连接的不再是两个简单的电气符号,而是通过选型将两个“实在的元件”用“导线”连接起来,然后在电气3D环境下进行布局和布线,最终形成与真实产品一致性较高的“数字样机”。
通过对“数字样机”的数据提取和应用,可以方便生产单位尽早熟悉新产品,并提前进行相关准备;设计人员可以据此提前编制直观形象的产品技术文档,提高设计的效率和质量;也可以将其进一步处理成用户可以直观体检的展示数据。
相比于传统的2D产品设计,3D设计提供了更加丰富的数据信息,能够更加直观地传递设计者的意图。
传统设计中,设计人员先是运用投影法将想象的产品进行转化,并绘制成2D工程图,然后“图纸用户”再通过视图关系在头脑里重构出产品的形状。
这对设计者和“图纸用户”都提出了较为专业的要求,然而基于3D的设计则大大降低了对“图形用户”的要求。
看图时,不再需要工程师在头脑重构产品的3D模型,降低识图难度,如果再运用虚拟现实技术,你或许还可以感受到产品温度。
专业的电气设计软件SolidWorks Electrical

专业的电气设计软件SolidWorks Electrical 摘要现在的设备制造可以说是机械设计与电气设计不分家.甚至一个工程师要完成机械设计与电气设计这两部分.南京东岱信息技术有限公司是SolidWorks老牌增值经销商,在与SolidWorks客户的技术沟通中,了解到机械设计部分SolidWorks是完成可以解决问题。
而现有的电气部分很多还是在AUTOCAD的平台上,但是随着技术的发展,现有的电气设计工具已经不能满足电气设计工作量的增加和产品的节能减排要求。
具体存在的不足之处大致如下:1.缺少一个很好的电气设计项目管理理念,所有的项目设计数据之间缺少电气关联;2.所有的电气设计全部使用CAD线条,缺少电气设计独有的电气属性,经常产生设计错误;3.电气符号之间缺少关联,更改过程繁琐,很难评估更改范围;4.各种清单,包括接线表都需要人工统计,增加了错误产生的机率;5.无法直接进行3D布线,获取布线的长度,造成连接线的大量浪费;6.设计过程无法直接调用产品编码等,及时获取目前零部件的库存信息;7.指导装配的是2D CAD图纸,因为接线比较多,很容易出现错误;8.没有布线图指导现场布线等;针对目前的现状与需求, SolidWorks Electrical软件帮助客户提高图纸的设计质量和效率,并且与企业的三维设计规范和信息化管理工具接轨;同时通过SolidWorks技术人员对国外先进的电气设计理念和设计方式的掌握,再结合软件应用,达到帮助企业培养合格设计人才的目的。
一. 项目技术方案目前企业在设计方面,需要一个平台化的软件能够多方位的电气设计。
结合目前设计中所遇的问题,SolidWorks针对性的阐释了SolidWorks Electrical在以下几个方面的能力:1.融入项目管理工具,图纸设计的高效性,准确性和安全性传统的AutoCAD设计软件仅仅是停留在绘图模式上,着重于对于线条和图形的处理。
SolidWorks Electrical作为专业的电气设计软件,拥有专业的设计工具,例如项目的管理、各部分图纸之间的信息关联、标准的数据库和符号库模型等。
基于Solidworks的风力发电机叶片的建模方法

内蒙古工业大学学报JOU RN AL O F IN N ER M ON G OL IA第30卷 第2期 U N IV ERSIT Y OF T ECHN O LO GY V ol.30No.22011文章编号:1001-5167(2011)03-0081-05基于Solidworks的风力发电机叶片的建模方法王志德1,胡志勇1,曹 艳2,李艳霞3,张国兴1(1.内蒙古工业大学机械学院2.内蒙古工业大学理学院3.内蒙古工业大学图书馆呼和浩特010051)摘要:以G52-850kW风力发电机风轮叶片为例,利用Glauert涡流理论相关原理完成风力发电机风轮叶片的设计,基于三维CA D造型软件So lidw or ks,作出叶片断面的草图,用三种方法实现了叶片三维造型,对这三种建模方法进行了比较,具有一定的现实意义和实用价值。
关键词:风轮叶片;建模;造型分析中图分类号:T P391.72;T P31 文献标识码:A0 引 言风轮是风力发电机(以下称风力机)最重要的部件之一。
风力机就是依靠风轮把风所具有的动能有效转化为机械能并加以利用。
风轮的设计好坏对风力机有重大影响。
现代风力机风轮通常是采用三叶片的上风或下风结构。
风轮叶展形状、翼型形状与风力机的空气动力特性密切相关。
目前,在风力机风轮叶片的气动设计方面,还没有系统的设计模型和方法,只有针对某一方面的模型,这些模型还无法归纳成一套可靠的系统设计模型。
一台好的风力机应当尽量增加升力而减小阻力,使之尽量趋于最大值,以增加风力机的风能利用系数。
叶片气动设计主要是外形优化设计,这是叶片设计中至关重要的一步。
外形优化设计中叶片翼型设计的优劣直接决定风力机的发电效率,在风力机运转条件下,流动的雷诺数比较低,叶片通常在低速、高升力系数状态下运行,叶片之间流动干扰造成流动非常复杂。
针对叶片外形的复杂流动状态以及叶片由叶型在不同方位的分布构成,叶片叶型的设计变得非常重要。
毕业设计-基于solidworks的风机主传动系统三维建模

基于SolidWorks的风机主传动系统三维建模I摘要本文采用了风力发电机的计算机建模仿真的方法,对风力发电机的主传动系统性能及载荷计算的方法进行了研究,同时以1MW级风机说明了建模和仿真的基本方法和理论。
风力发电机的主传动系统的建模和仿真都是在SolidWorks 软件平台下完成的,文章对风力发电机组的塔架、轮毂、主轴、齿轮箱、电机、机舱底盘进行了建模。
对主传动系统各部件在风力发电机组上的作用作了介绍,并对其结构形式及选用进行了详细的分析。
风力发电机组的运转环境非常恶劣,受力情况复杂,所以对其主传动系统各部件材料的选用作了介绍。
为了确保风力发电机在其寿命期内能够正常工作,对主轴进行了强度分析。
由于齿轮箱在风力发电机组的特殊作用,对齿轮箱内的传动形式的种类、特点及应用作了介绍,并对其进行了合理的选择。
根据齿轮箱的增速要求,合理选择了齿轮箱内的各级齿轮轴和齿轮的参数。
发电机也是风力发电机组的重要部件之一,它将风轮的机械能转化为电能。
发电机的选择尤其重要,所以本文对所选择的双馈异步发电机的工作原理及作用作了介绍。
由于主传动系统安装的需要,对机舱底盘进行了建模,并在满足强度及刚度的前提下,对其材料和造型的合理选择作了介绍。
最后,在SolidWorks平台上把所有建模设计出的风力发电机主传动系统的零部件进行了装配,并在平台上进行了传动模拟演示,使人们更直观的了解风力发电机主传动系统的组成及工作情况。
关键词:风力发电机;主传动系统;建摸;仿真IIABSTRACTThe wind generator computer modeling simulation approach is adopted here, and the research of load calculation drivetrain system performance of the wind generator are conducted while 1MW-class air-compressors on modeling and simulation of the basic methods and theories. T he main drivetrain system‘s modeling and simulation of wind generators are operated on the SolidWorks software platform. The modeling of the round wheel, axle, gear boxes, electrical, cabin chassis of the wind generator is conducted on this article. The main components in the drivetrain system on the role of wind power generation units were introduced, and the selection of its form and structure of a detailed analysed.Wind generators’ operating environment is very bad,, the various components of its main drivetrain system were introduced in the selection of materials. To ensure that wind generators in their normal life, the intensity analysis of the main axle is conducted. For the gear boxes in wind generators have special role for the transmission gear box form types, characteristics and applications were introduced, and its reasonable selection. According to gear boxes growth, a reasonable choice of gear wheel axle and gear box at all levels of the parameters is conducted. Wind generators’ generat or is one of the important part, it will wind round the mechanical energy into electrical energy. The selection of generators is particularly important, therefore, to the choice of this double-fed asynchronous generator work and the role of theory was introduced. Because of the drivetrain system installation requirements, the modeling of the cabin chassis, and strength and rigidity to meet the premise of its material and shape a reasonable choice was introduced.Finally, All the parts and components designed on the SolidWorks platform drivetrain are assembled, and the transmission simulation display is also conducted, allowing a more intuitive understanding of the wind generator drivetrain system and the composition of the work.Key words: Wind generators;The drivetrain system;Modeling;SimulationIII目录摘要 (I)ABSTRACT (III)第1章引言 (1)1.1课题的背景及意义 (1)1.2目前国内外风力机组发展现状 (1)1.2.1 国外发展现状 (1)1.2.2 国内发展现状 (2)1.3课题所要解决的问题 (2)第2章风机主传动系统的总体设计 (3)2.1风力发电机主传动系统的组成 (3)2.2风力发电机主传动系统的工作原理 (3)2.3风力发电机主传动系统的布置形式 (3)第3章风机主传动系统中主要部件设计 (5)3.1轮毂的形式与选用 (5)3.1.1 轮毂的作用及结构 (5)3.1.2 轮毂的形式 (5)3.2主轴的设计 (6)3.2.1主轴的作用及结构 (6)3.2.2 主轴强度校核 (6)3.2.3 主轴材料 (8)3.3齿轮箱的构造及选用 (8)3.3.1 齿轮箱的构造 (8)3.3.2 齿轮箱的箱体设计 (11)3.3.3 齿轮箱的齿轮设计 (11)3.3.4 齿轮箱轴的设计 (13)IV3.3.5 齿轮箱的轴承设计 (13)3.4电机的选用 (14)3.4.1 电机选用 (14)3.4.2 双馈异步电机的工作原理 (14)3.5机舱底盘作用及选用 (15)3.5.1 机舱底盘的分类及选用 (15)3.5.2 机舱底盘设计要求 (16)3.5.3 机舱底盘的材料 (16)3.6塔架的介绍 (16)3.6.1 塔架的作用 (16)3.6.2 塔架的主要形式及选用 (17)3.6.3 塔架的材料 (18)第4章基于SOLIDWORKS的风机主传动系统三维建模方法 (19)4.1轮毂的建模方法 (19)4.2增速箱的建模方法 (20)4.2.1 上箱体的三维建模方法 (20)4.2.2 行星架的三维建模方法 (22)4.2.3 高速轴的三维建模方法 (23)结论 (26)参考文献 (27)致谢 (28)V第1章引言1.1 课题的背景及意义随着人类社会的发展、科技的进步以及日益严重的资源和环境问题的挑战,世界能源结构开始经历第三次大的变革,即从煤炭、石油、天然气为主的能源系统,开始转向以可再生能源为基础的可持续发展的能源系统。
solidworks课程设计电风扇

solidworks课程设计电风扇一、教学目标本课程旨在通过SolidWorks软件的学习,使学生掌握电风扇的设计原理和方法,培养学生的创新意识和动手能力。
具体目标如下:1.知识目标:使学生了解电风扇的基本结构和工作原理,熟悉SolidWorks软件的操作界面和功能。
2.技能目标:培养学生使用SolidWorks软件进行电风扇设计的能力,包括建模、装配、渲染等环节。
3.情感态度价值观目标:培养学生对工程设计的兴趣,增强其团队合作意识和解决问题的能力。
二、教学内容本课程的教学内容主要包括以下几个部分:1.电风扇概述:介绍电风扇的起源、发展及其在日常生活和工作中的应用。
2.电风扇结构与工作原理:详细解析电风扇的各个组成部分,如叶片、电机、支架等,并阐述其工作原理。
3.SolidWorks软件操作:讲解SolidWorks软件的基本操作,如绘图、建模、装配、渲染等。
4.电风扇设计实践:引导学生运用SolidWorks软件进行电风扇设计,包括建模、装配、渲染等环节。
5.设计评价与优化:对学生的设计作品进行评价,提出改进意见,引导学生进行优化设计。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式,包括:1.讲授法:讲解电风扇的基本原理、SolidWorks软件操作方法和设计技巧。
2.案例分析法:分析实际案例,使学生更好地理解电风扇设计和优化的过程。
3.实验法:引导学生动手实践,实际操作SolidWorks软件进行电风扇设计。
4.小组讨论法:学生进行小组讨论,培养学生的团队合作意识和沟通能力。
四、教学资源为了保证教学的顺利进行,我们将准备以下教学资源:1.教材:选用权威、实用的SolidWorks教材,为学生提供系统的学习资料。
2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作精美的PPT、教学视频等,提高学生的学习兴趣。
4.实验设备:准备计算机、SolidWorks软件许可证等,确保学生能够进行实际操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Software
· 53 ·
IM
图12
如图13所示,【排序和中断】允许我们对属性排序和分类,只要我们指定需要中断的属性和调整属性前后顺序,表单就自动分层级并独立所选属性表单。
如图13、14所示,先以制造商分类,再以设备所在位置分类。
三、结论
SOLIDWORKS Electrical 是既能进行2D 原理图设计,
也能进行3D 布线的一个机电一体化设计平台,2D 部分是专业电气模块,我们可以自定义各种模板,本文的清单模板就是其中一种。
IM
图11
图13
图14
面向未来的产品设计
——SOLIDWORK SElectrical 在风电上的运用
SOLIDWORKS Electrical 软件在风电1.5MW 直驱风机塔基柜和2.0MW 风机变桨轴控柜的机电一体化设计与常规的柜体3D 布局设计不同,该设计不仅完成柜体内元件的
撰文/东方电气自动控制工程有限公司 王君
3D 布局,完成了柜内几百根电线及电缆的连接,还可以输出电气原理图,线缆连接清单(含线长),元件清单,如图1所示。
· 54 ·
IM
cadcam@
IMCHINA@
投稿邮箱
软件世界
作,体验你所感兴趣的产品。
然而这些都依赖于对3D 数据的深度开发与应用,对于设计人员而言,就是要在产品设计过程中,创造出3D 的“数字样机”,而且是一个将产品的各类信息(材料、机械、电气以及电子等)与之相链接,形成“有声有色”的“数字样机”,而不是传统的“图是图、表是表、文档是文档”的产品信息“分离模式”。
不管是在2D 还是在3D 设计中都面临一个同样的问题,那就是如何减少重复性劳动,让设计者更专注于产品的创新和功能的优化,提升产品设计的效率和质量。
Boeing 777客舱共有8个舱门,虽然每个舱门的结构都不一样,但是其98%的机械零件都是通用的。
如果每个舱门都去从头设计一遍,显然是不合理,如果能将这些相同的功能部分模块化,将相同零件标准化,将相似部分参数化,将省去大量的重复性工作,从而提高设计的效率,同时利用成熟的模块还能提高产品质量的可靠性和生产成本。
如果我们的设计工具能够富有联想功能,就像现在的汉字拼音输入法一样,那么产品设计就不再是当前计算机辅助设计(CAD),而是辅助创新。
然而,这一切要依赖于智能化元件库的建设,让模块化、标准化和参数化的元件信息更加的丰富、全面和智能。
对于产品设计者来讲除了构造产品外,对产品性能的分析评估是必不可少的环节。
当前运用3D 数据进行力学仿真可以在设计时就在电脑屏幕上看见产品的运动形式、动力学响应特征、热或物质的输运模式以及未来的失效形式等。
如果能将这些分析数据转化为我们可以感知和体验数据形式,那么设计分析就不再是计算机辅助分析,而是辅助认知。
这样在仿真的过程中,你就不只是“看到”,而是能够“体验到”它的力度和温度,“见证到”它的变化。
这或许会让设计者对产品的功能进行更加合理的优化,操作更加人性化,让生产单位能够据此优化制造工艺方法和流程,提高生产效率和产品质量,让客户对产品有更加深刻的直观体验和认知,引导和触发其理性购买的愿望。
这样的设计将会让设计者,同产品的协作者以及客户的心贴的更近。
IM
经过前一段时间SOLIDWORKS Electrical 软件应用培训和工程实践,东方电气自动控制工程有限公司新能源部已成功完成了1.5MW 直驱风机塔基柜和2.0MW 风机变桨轴控柜的机电一体化设计。
经过对部分线缆的实际测试,软件布线计算的长度与实际布线长度保持较好的一致性。
该软件实现了机-电信息的互联互通,当你在柜体中任意选中一个元件,即可便捷的在原理图中查询出位置,元件的线缆连接信息、型号和主要电气参数,方便故障的分析处理。
在工程设计实践中,它可以使设计人员与生产实际联系的更加紧密。
在元件数据库的支持下,设计原理图时,连接的不再是两个简单的电气符号,而是通过选型将两个“实在的元件”用“导线”连接起来,然后在电气3D 环境下进行布局和布线,最终形成与真实产品一致性较高的“数字样机”。
通过对“数字样机”的数据提取和应用,可以方便生产单位尽早熟悉新产品,并提前进行相关准备;设计人员可以据此提前编制直观形象的产品技术文档,提高设计的效率和质量;也可以将其进一步处理成用户可以直观体检的展示数据。
相比于传统的2D 产品设计,3D 设计提供了更加丰富的数据信息,能够更加直观地传递设计者的意图。
传统设计中,设计人员先是运用投影法将想象的产品进行转化,并绘制成2D 工程图,然后“图纸用户”再通过视图关系在头脑里重构出产品的形状。
这对设计者和“图纸用户”都提出了较为专业的要求,然而基于3D 的设计则大大降低了对“图形用户”的要求。
看图时,不再需要工程师在头脑重构产品的3D 模型,降低识图难度,如果再运用虚拟现实技术,你或许还可以感受到产品温度。
随着移动智能终端运储能力的增强和普及,以及高速网络的应用,直观化和形象化的图形文本、动画有声文本的优势将更加明显,随时随地都可以在智能移动终端上互动操
图1 SOLIDWORKS Electrical
设计样柜
1.5MW 直驱风机塔基柜
2.0MW 风机变桨轴控柜。