2017年春季学期新版新人教版八年级数学下学期16.1、二次根式导学案27

合集下载

新人教版八年级数学下册《十六章 二次根式 16.1 二次根式 章前引言及二次根式》教案_27

新人教版八年级数学下册《十六章 二次根式  16.1 二次根式  章前引言及二次根式》教案_27

16.1.1二次根式教学内容二次根式的概念及其运用教学目标知识与技能目标:a ≥0)的意义解答具体题目. 过程与方法目标:提出问题,根据问题给出概念,应用概念解决实际问题.情感与价值目标:通过本节的学习培养学生:发展学生观察、分析、发现问题的能力. 教学重难点1.重点:理解二次根式的概念;2.难点:确定二次根式中字母的取值范围教法:讲练结合法: 在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

学法:1、类比的方法 通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

媒体设计:PPT 课件,展台。

学习过程一、展示学习目标:1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性二.设置问题情境,引入新课:1求下列各数的平方根和算术平方根(1)9(2)0.64(3)0总结:a (a ≥0)的平方根是a (a ≥02.解决问题(1) 面积为 S 的正方形边长为________。

(2).面积为 b -5 的正方形边长为________。

(3). 圆桌的面积为 S ,则半径为________(4).若圆桌的面积为 S +3,则半径为________(5)关系式 h = 5t 2 (t > 0)中,用含有 h 的式子表示 t ,则 t = ________。

总结以上式子有何特征二次根式的概念:a像这样一些正数的算术平方根的式子,我们就把它称二次根式。

因此,一般地,我们把形如(a≥0三.探究新课1.指出二次根式有意义的条件被开方数大于等于零。

提问:二次根式在什么情况下无意义学生讨论后得出:被开方数小于零2.指出下列哪些是二次根式?学生自主完成小练习:辨别下列式子,哪些是二次根式?三.练习四.小结1. 二次根式的概念2.二次根式有意义的条件3二次根式的双重非负性五.作业课本第5页第一题。

八年级数学下册 16.1 二次根式(二)导学案(新版)新人教版

八年级数学下册 16.1 二次根式(二)导学案(新版)新人教版

八年级数学下册 16.1 二次根式(二)导学案
(新版)新人教版
16、1 二次根式
(二)
【学习目标】
经历计算、对比、分析和研究过程,理解二次根式的基本性质:掌握,能利用上述性质对二次根式进行化简,感受数的变化特点。

第二标我的任务
【任务1】
1(1)二次根式有意义,则x 。

(2)在实数范围内因式分解:x2-6= x2____)(1)计算:
观察其结果与根号内幂底数的关系,归纳得到:当(2)计算:
当(3)计算:

第三标反馈目标(20分钟)
赋分学成情况:
;家长签名:1下列式子中二次根式的个数有()⑴;
⑵;⑶;⑷;⑸;⑹;⑺、
A、2个
B、3个
C、4个
D、5个
2、当有意义时,a的取值范围是()
A、a≥2
B、a>2
C、a≠2
D、a≠-
23、填空:-=_________、=
4、若则x的值为()
A、
B、
C、
D、 x为任意实数
5、式子与比较,则()
A、 a为任意实数都有
B、只有当a≥0时,
C、只有当a>0时,
D、当a为有理数时,
6、在实数范围内分解因式:
7、已知2<x<3,化简:。

人教版八年级下册数学16.1二次根式导学案

人教版八年级下册数学16.1二次根式导学案

【自助学习·我尝试自学】
1.平方根、算术平方根用符号怎么表示?
2.说出下列各式的意义,并计算:
,,,,,,.
得出新知:形如式子,,等叫做
讨论:式子只有在条件a 0时才叫二次根式,是二次根式吗?
归纳:二次根式有意义的条件是
【互助探究·我参与互研】
例1.当a为实数时,下列各式中哪些是二次根式?
例2.x 是怎样的实数时,式子
在实数范围有意义?
例3. 当 x 是怎样的实数时,2x 在实数范围内有意义?3x 呢?
【求助交流·我愿意分享】
1.判断下列各式是不是二次根式
2.a 是怎样的实数时,下列各式在实数范围内有意义?
【补助练兵·我能用新知】
1、当x 取________时,二次根式4x -有意义.
2、若则 .
3、使在实数范围内有意义的x 应满足的条件是 .
4、使1x -有意义的x 的取值范围是 .
5、当字母取何值时,下列各式为二次根式:
()2
2340a b c -+-+-=,=+-c b a 11
x -
(1)
(2) (3)
【共助反馈·我能够达标】已知:3x 22x y --+-=,求:4y x )
(+的值。

人教版八年级下册数学第十六章二次根式导学案

人教版八年级下册数学第十六章二次根式导学案

教师评价___
(4)x2-2 7 x +7
0 )2=_______.
2
(3) 若-3≤x≤2 时,试化简│x-2│+ (x 3)2 + x2 10x 25 9、先化简再求值:当 a=9 时,求 a+ 1 2a a2 的值
10、若│1995-a│+ a 2000 =a,求 a-19952 的值.
25
三、小结:1、二次根式的乘法法则。2、乘法的运算步骤。3、二次根式化简方法。
四、检测 1、下列各等式成立的是( ).A.4 5 ×2 5 =8 5 B.5 3 ×4 2 =20
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

[最新]人教版八年级数学下册第十六章《二次根式(1)》导学案

[最新]人教版八年级数学下册第十六章《二次根式(1)》导学案

[最新]人教版八年级数学下册第十六章《二次根式(1)》
导学案
新人教版八年级数学下册第十六章《二次根式(1)》导学案
学习目标:
◇知识与能力:1、了解二次根式的概念,能判断一个式子是不是二
次根式。

2、掌握二次根式有意义的条件。

3、掌握二次根式的基本性质:a0(a0)和(a)2a(a0)
◇过程与方法:1、经历观察、比较、概括二次根式的定义。

2、通过
探究
一二a和
2a2所含运算、运算顺序、运算结果分析,归纳并掌握性质。

◇情感与价值:培养学生观察、猜想、探究、归纳的习惯和能力,体
验数学发现的乐趣。

【学习重点】:二次根式有意义的条件。

二次根式的
性质。

【学习难点】:综合运用性质a0(a0)和(a)2a(a0)。

2、4的算术平方根为2,用式子表示为=__________;正数a的算术
平方根为_______,0的算术平方根为_______;式子a0(a0)的意义是二1、定义:一般地我们把形如
a(a0)叫做二次根式,a叫做_____________。

2、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
3,16,34,5,a(a0),某21
根据算术平方根意义计算:(1)(4)2(2)((3)(0.5)2(4)(3)2 12)3。

人教版八年级数学下册导学案 第十六章 二次根式 16.1 二次根式(第一课时)

人教版八年级数学下册导学案 第十六章 二次根式 16.1 二次根式(第一课时)

人教版九年级数学下册导学案 第十六章 二次根式 16.1 二次根式(第一课时)【学习目标】1.了解二次根式的概念,能判断一个式子是不是二次根式。

2.掌握二次根式有意义的条件。

3.掌握二次根式的基本性质:)0(0≥≥a a 和)0()(2≥=a a a【课前预习】1.已知x ,y 为实数,y 2=,则y x 的值等于( ) A .6 B .5 C .9 D .82.下列式子中是二次根式的是( )AB C D3=x 可取的整数值有( ).A .1个B .2个C .3个D .4个 4.下列各式中,一定是二次根式的个数为( )1(0),232a a a ⎫+<⎪⎭ A .3个 B .4个 C .5个 D .6个5x 的取值范围是( )A .1≥xB .1x >C .1x ≤D .1x =6 ).A .1x ≤B .1x <C .1≥xD .1x ≠7.已知,2a 应满足什么条件 ( ) A .a >0 B .a≥0 C .a =0 D .a 任何实数8.已知y 3,则x y的值为( ). A .43 B .43- C .34 D .34-9.a 的个数是( )A .1B .2C .3D .410x 的取值范围是( )A .1≥xB .1x ≠C .1x >D .x 为一切实数【学习探究】自主学习阅读课本,完成下列问题(1)17的算术平方根是________;(2)一个长方形的围栏,长是宽的2倍,面积为130 m2,则它的宽为________m ;(3)面积为3的正方形的边长为________,面积为a 的正方形的边长为____________;(4)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h =5t2.如果用含有h 的式子表示t ,则t =________.自学2:1、 一般地,我们把形如________的式子叫做二次根式,“√”称为________。

人教版八年级数学下册 16.1.1二次根式的定义 导学案

人教版八年级数学下册 16.1.1二次根式的定义  导学案

16.1.2二次根式的性质教学目标1、经历二次根式的性质的发现过程,体验归纳、猜想的思想方法。

2、了解二次根式的上述两个性质。

3、会运用上述两个性质进行有关计算。

教学重点是理解二次根式的上述两个性质;教学难点:是灵活运用上述两个性质进行有关计算。

教学过程一、 回顾与引入1、 平方根的概念:一个数的平方等a (a ≥0),则这个数叫做a 的平方根,记做a ±,则()a a =±22、()a a =23、大家抢答 填空()=22 ()=213 =⎪⎪⎭⎫ ⎝⎛271二、新课讲解从熟悉的知识出发先练习、再观察发现总结规律得出性质一 4、性质一:()()02≥=a a a5、能用几何图形作出直观解释吗?用正方形的面积启发诱导数形结合思想6、填空 课本6页7、比较 2a 和a 有何关系?当a ≥0时,2a = 和a ﹤0,2a = 先练习、再观察发现总结规律得出性质二8、性质二:9、课内练习(()(()(()(()()()(2222322211_____,2______,33_____,5141_____,54____,62____.3⎛⎫-=-= ⎪⎝⎭=---=梳理知识使条理清楚,及时练习巩固10、例1 计算(1)()()221317-- (2)()323332+•⎥⎦⎤⎢⎣⎡--规范书写,知道运算程序、强调性质运用的条件,二次根式运算顺序11、课本7页课内练习第2题(领悟方法,会正迁移)12、计算:217375212-+⎪⎭⎫ ⎝⎛- 要求比较先算括号里与直接利用二次根式性质的优劣;强调先判断2a 中a 的符号三、引申与提高例4 化简:(1)(2) (3) (a <0,b >0) (4)(a >1 ) 四、分享与体会你能说出这节课你的收获和体验与大家分享吗?五、作业1.课本作业题;2.预习下节课。

人教版八年级数学下册16.1二次根式的概念导学案

人教版八年级数学下册16.1二次根式的概念导学案
6、布置作业:
7、当堂检测:
一、选择题
1.下列式子中,是二次根式的是()
A.- B. C. D.x
2.下列式子中,不是二次根式的是()
A. B. C. D.
3.已知一个正方形的面积是5,那么它的边长是()
A.5 B. C. D.以上皆不对
二、填空题:4.当 在实数范围内有意义Байду номын сангаас,x的取值范围是;
5.若 + 有意义,则 =_______.
导学策略及学法指导(师生互动设计)








解:二次根式有: 、 (x>0)、 、 、 (x≥0,y≥0);不是二次根式的有: 、 、 .
例2.当x是多少时, 在实数范围内有意义?
分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义.
















三、巩固练习:教材练习
四、应用拓展:例3.当x是多少时, + 在实数范围内有意义?
分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.巩固练习:10分钟
例4已知y= + +5,求 的值.(变式 ,求 的值)
五、归纳小结:本节课要掌握:
1.形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.
4、请指出第一问所列式子的被开方数。
5、你知道在定义中为什么a≥0吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式
【学习目标】
1.掌握二次根式的三个基本性质:
(1)二次根式的双重非负性即:0≥a
)0(≥a (2)
2)(a =a (a ≥0). (3)a a =2
2.会利用二次根式的性质进行计算、化简。

3.在运用性质a a =2进行计算时体会分类的数学思想。

学习重点:二次根式的三个基本性质 学习难点:a a =2中a 值的分类讨论。

【自习自疑文】 阅读教材相关内容,完成以下练习。

1.填空:()=24 ; ()=29 ; ()=22 ; =⎪⎪⎭⎫ ⎝⎛231 ;()=20 。

由以上式子你发现什么一般规律?用式子表示出来。

2. 填空:=22 ; =20.1 ; =2)3
2
( ; =20 。

由以上式子你发现什么一般规律?用式子表示出来。

【自主探究文】
探究一:利用二次根式的性质进行计算。

253)1(⎪⎪⎭⎫ ⎝⎛ ()234)2( ()
252-)3(
探究二:利用二次根式的性质进行计算。

20.3)1(
2)71()2(- 2)81()3(- 2-10)4(
归纳:2a 这种类型的二次根式,其中的a 可以取正数,负数和0,在三种情况下它们各
自的结果分别是多少? c b c a --+2)(
探究三:利用二次根式的非负性化简求值。

已知的值。

,求,021y x y x x =-+++ 若(
)的值。

132的值互为相反数,求1与322-+--y x x y
【自结自测文】
本节课的学习,你有哪些收获?
1、二次根式2)3(-的值是( ) A.-3 B.3或-3 C.9 D.3
2.下列各式中。

正确的是( ) A.2)2(2-=- B. 222-=- C. 2)2(2-=- D. 222±=
3.计算:
=2)5)(1( =-2)0.2)(2( =2)0.6()3( =-2)3
2()3( 4.已知a 为实数,则式子
24164a a a -+--+。

相关文档
最新文档