虚拟现实技术与计算机图形学
计算机科学中的图形学和虚拟现实技术

计算机科学中的图形学和虚拟现实技术图形学和虚拟现实技术是现代计算机科学中非常重要的学科,它们的发展使得计算机技术的应用范围不断扩大,为了更好的展示这两个学科的发展历程和应用场景,本文将分为四个部分讨论。
一、图形学的发展历程图形学是研究计算机图形处理技术的学科,其发展历程可以分为三个阶段。
1. 1960年代至1980年代早期,主要是关注于二维图形的处理和显示,如线性代数、几何学、扫描转换、裁剪等。
2. 1980年代至1990年代,主要是关注于三维图形的处理和显示,如照明模型、渲染技术、纹理映射和三维几何建模等。
3. 1990年代至今,主要是关注于实时图形处理技术,如游戏图形引擎、虚拟现实技术和视频处理技术等。
二、虚拟现实技术的应用场景虚拟现实技术是一种基于计算机图形学实现的技术,它可以构建虚拟的三维环境,让用户在其中进行交互,它的应用场景非常广泛。
1. 游戏娱乐:虚拟现实技术在游戏娱乐行业中的应用非常广泛,它可以为用户提供身临其境的游戏体验。
2. 医疗教育:虚拟现实技术可以用于医疗教育服务,如手术模拟、病例研究和医学学习等。
3. 建筑设计:虚拟现实技术可以用于建筑设计与模拟,可以在虚拟环境中构建建筑模型,进行设计和演示。
4. 汽车航空:虚拟现实技术可以用于汽车和航空领域,例如设计车身外形、模拟驾驶等。
三、图形学在计算机游戏中的应用计算机游戏是图形学应用最广泛的领域之一,图形学技术在游戏开发中扮演着极为重要的角色。
下面是图形学在计算机游戏中的具体应用。
1. 游戏引擎:游戏引擎是指游戏开发者使用的软件工具,旨在简化游戏开发流程。
游戏引擎中包含着大量的图形学代码,如渲染引擎、物理模拟引擎、动画引擎、碰撞检测引擎等。
2. 渲染技术:渲染可以将三维模型转换为二维图形,然后将图形显示在屏幕上。
计算机游戏中采用的渲染技术包括光栅化、光线追踪、镜面反射和阴影生成等。
3. 动画技术:动画技术可以让游戏中的角色、物品进行動態操作。
计算机图形学与虚拟现实技术

计算机图形学与虚拟现实技术一、引言计算机图形学和虚拟现实技术是现代计算机科学领域中具有重要意义的两个分支。
通过计算机图形学,我们可以模拟并渲染出具有现实感的图像和动画。
而虚拟现实技术则是一种通过计算机仿真技术,模拟出一个虚拟的三维交互环境,让用户能够与虚拟环境互动并感受其中的真实性。
本文将从理论基础、应用领域和未来发展等方面分别介绍计算机图形学和虚拟现实技术。
二、计算机图形学计算机图形学是一门研究如何利用计算机生成图像的学科。
它涉及到图像的表示、处理、存储和显示等方面的理论和算法。
计算机图形学的核心内容包括几何建模、渲染技术、交互技术和图像处理等。
其中几何建模主要研究如何对物体进行数学建模和描述;渲染技术则负责将几何模型转换为真实感图像;交互技术则是为用户提供与计算机图形进行交互的方法;图像处理则是对图像进行编辑和处理。
三、虚拟现实技术虚拟现实技术是一种通过计算机仿真技术,模拟出一个虚拟的三维交互环境。
虚拟现实技术的核心包括虚拟环境建模、虚拟环境渲染、交互设备和人机界面。
虚拟环境建模主要研究如何对现实世界进行数学建模和描述;虚拟环境渲染则负责将虚拟环境模型转换为逼真的图像和声音;交互设备则是用户与虚拟环境进行交互的工具;人机界面则负责将用户的输入转换为虚拟环境能够理解的信号。
四、计算机图形学与虚拟现实技术的应用领域计算机图形学和虚拟现实技术在众多领域中都有广泛的应用。
在游戏开发领域,计算机图形学和虚拟现实技术被广泛应用于游戏画面的建模和渲染,以及虚拟现实游戏的开发和设计。
在电影和动画制作领域,计算机图形学和虚拟现实技术则能够帮助制作出令人惊叹的特效和动画片段。
在医学领域,计算机图形学和虚拟现实技术则能够辅助医生进行手术模拟和人体解剖教学。
在建筑设计领域,计算机图形学和虚拟现实技术则能够帮助建筑师进行建筑模型的设计和可视化展示。
五、计算机图形学与虚拟现实技术的未来发展随着计算机技术的不断发展和进步,计算机图形学和虚拟现实技术也将继续迎来新的发展。
计算机图形学的应用与发展趋势

计算机图形学的应用与发展趋势计算机图形学是研究计算机对图像和图形的处理、生成和显示的学科领域。
它涉及了计算机图像的创建、呈现和处理技术,以及与图形有关的算法、软件和硬件的研究。
随着计算机技术的快速发展,计算机图形学已经在各个领域得到广泛应用,并且呈现出一些明显的发展趋势。
一、虚拟现实技术的兴起虚拟现实技术是计算机图形学的一个重要应用领域。
它通过对虚拟环境的模拟,使用户能够感受到身临其境的沉浸式体验。
虚拟现实技术已经在娱乐、教育、医疗等领域得到广泛应用。
随着硬件设备的不断改进,如头盔显示器和手部控制器等,虚拟现实技术将进一步提升用户体验,拓展应用领域。
二、增强现实技术的发展增强现实技术是在现实场景中叠加虚拟图像的技术。
它通过识别和跟踪真实环境中的物体,将虚拟图像与之结合,使用户能够感知到增强的现实。
增强现实技术已经广泛应用于游戏、广告、设计等领域。
未来,随着计算机视觉和感知技术的进一步发展,增强现实技术有望在人机交互、智能制造等领域实现更广泛的应用。
三、计算机图形渲染技术的提升计算机图形渲染技术是指将三维模型转化为二维图像的过程。
它在游戏、电影、动画等领域扮演着至关重要的角色。
随着计算机硬件的发展和算法的改进,图形渲染技术越来越接近真实感,物理光照模型、阴影算法和纹理映射等方面得到了长足的进步。
未来,图形渲染技术将更好地满足对真实感和表现力的要求。
四、人工智能与计算机图形学的结合人工智能在计算机图形学中的应用也是一个重要的发展趋势。
机器学习和深度学习等人工智能技术为计算机图形学提供了新的思路和方法。
例如,通过深度学习可以实现图像的内容生成,利用生成对抗网络可以生成逼真的虚拟图像。
人工智能和计算机图形学的结合将进一步推动图形技术的发展,并拓展更多应用领域。
综上所述,计算机图形学在虚拟现实技术、增强现实技术、图形渲染技术和人工智能等方面都有着广泛的应用和发展。
随着技术的不断进步和创新,计算机图形学将在各个领域发挥更加重要的作用,为人们带来更多的惊喜和便利。
计算机图形学的新技术及其应用研究

计算机图形学的新技术及其应用研究近年来,随着计算机技术的不断发展,图形学技术也日益成熟,为我们的生活和工作提供了许多便利和乐趣。
计算机图形学是一门研究计算机生成、处理和显示图形的学科,是计算机图形学、计算机视觉和计算机图像处理三者的交叉学科。
本文将围绕计算机图形学的新技术及其应用研究展开阐述。
一、计算机图形学的新技术1.虚拟现实技术虚拟现实技术(Virtual Reality, VR)是一种能够将用户沉浸在虚拟世界中的技术。
通过头戴式显示器(Head-Mounted Display, HMD)等设备,用户可以感受到身临其境的虚拟环境,从而更加直观地理解事物、进行操作等。
虚拟现实技术已经广泛应用于游戏、教育、医疗、建筑等领域。
2.增强现实技术增强现实技术(Augmented Reality, AR)是一种可以将现实世界与虚拟信息叠加的技术。
通过摄像机捕捉到的实时图像和相关算法,将虚拟信息放置于现实场景中,使用户可以直观地感受到虚拟信息和现实环境的结合。
增强现实技术已经广泛应用于智能家居、游戏、广告等领域。
3.光线追踪技术光线追踪技术(Ray Tracing)是一种高级的图形学计算方法,基于物理学原理,模拟了光线在场景中的传播和反射,生成高质量的图像。
与传统的光栅化渲染技术不同,光线追踪技术可以实现真实的光线效果,例如自然光、阴影、反射、折射等。
随着计算机硬件的不断升级,光线追踪技术已经成为主流的图像生成技术之一。
二、计算机图形学的应用研究1.游戏领域在游戏领域中,计算机图形学技术的应用可以使游戏的效果更加逼真、炫酷。
例如,通过虚拟现实技术,玩家可以沉浸在3D虚拟世界中,感受到更加真实的游戏体验;通过光线追踪技术,游戏场景的光影效果可以更加真实自然,为玩家提供更好的游戏体验。
2.工业制造领域在工业制造领域中,计算机图形学技术的应用可以辅助设计师和工程师进行产品设计和检测。
例如,通过增强现实技术,工程师可以在真实的环境中模拟和测试产品,避免因设计不合理而导致生产成本增加;通过光线追踪技术,工程师可以更好地预测产品的光线效果和反射效果,为生产提供更加精细的工艺。
计算机图形学在虚拟现实中的应用

计算机图形学在虚拟现实中的应用随着虚拟现实技术(Virtual Reality, VR)的不断发展,计算机图形学扮演了越来越重要的角色。
计算机图形学是一门研究计算机图形处理技术的学科,在计算机图形学中,通过计算机图形生成方法、图形存储方法、图形显示方法等途径,实现对图像、图形的处理与图形呈现的过程。
而在虚拟现实中,计算机图形学则可以用于创造逼真的人工环境和人物角色,完美地模拟真实世界,使用户感受到身临其境的感觉。
计算机图形学主要包括三个方面:图形生成、图形存储和图形显示。
其中,虚拟现实技术中的图形生成指的是利用计算机技术,通过一系列操作和计算生成虚拟世界中的物体形态、颜色等信息的过程。
图形存储则是将生成的图像或模型进行存储,以便后续显示或操作使用。
最后,图形显示技术则是将存储的图像或模型进行显示,让用户直接看到虚拟世界中的物体和色彩。
在虚拟现实中,计算机图形学的三个方面都是不可或缺的。
首先,计算机图形学可以用于虚拟现实技术中的图形生成。
虚拟现实技术中,图形生成主要包括三个部分:几何建模、材质贴图和光源模拟。
几何建模是指将虚拟现实环境中的所有对象转换为数字模型,如将真实环境中的建筑、人物等物体转化为三维模型;材质贴图则是通过计算机图像处理技术,将实际物质的纹理和颜色贴在三维模型上,使得虚拟现实环境中的物体变得逼真;而光源模拟则是使用计算机图形学技术,模拟真实世界中的光影效果,让虚拟现实中的影像更接近真实世界。
其次,计算机图形学可以用于虚拟现实技术中的图形存储。
在虚拟现实中,模型数据量往往非常巨大,因此存储技术的效率和可靠性都非常关键。
而计算机图形学中的图形数据结构、压缩和存储技术等都可以用于优化虚拟现实技术存储的效率和可靠性。
例如,计算机图形学中的多边形网格模型(Polygon Mesh)可以用于几何建模和虚拟现实中的场景渲染,同时其数据结构也可以用于高效的模型压缩和存储;而计算机图形学中的贴图技术也可以用于虚拟现实中的材质映射和细节纹理的存储和处理等方面。
计算机图形学和虚拟现实技术的应用

计算机图形学和虚拟现实技术的应用一、计算机图形学的应用计算机图形学是利用计算机生成和显示图像的学科,在现代工业、文化娱乐和科学研究中发挥着至关重要的作用。
以下是计算机图形学的主要应用。
1.游戏开发游戏开发是计算机图形学的一大应用领域。
现代游戏的成功与否往往取决于其视觉质量和互动性。
因此,游戏设计师需要利用计算机图形学技术创造出令人惊叹的视觉效果,并确保游戏中的角色和场景可以与玩家互动。
游戏公司为此投入了大量资金和人力,以开发引人入胜的游戏。
2.医学成像计算机图形学在医学成像方面也显示出了其重要性。
医学成像使医生能够诊断和治疗疾病,因此医疗机构花费大量资金开发和使用这些技术。
例如,计算机断层扫描(CT)和磁共振成像(MRI)都是基于计算机图形学技术的。
3.制造业在制造业中,计算机图形学也被广泛应用。
对于机械设计师和工程师来说,计算机图形学是进行产品设计、模拟和测试的重要工具。
利用计算机图形学技术,这些专业人士可以创建视觉化的产品模型,并进行更好的设计和测试。
4.建筑设计建筑师也需要利用计算机图形学技术完成复杂的设计和建模工作。
通过计算机图形学软件,建筑师可以创建令人印象深刻的建筑设计,提高他们的创造力和设计效率。
二、虚拟现实技术的应用虚拟现实技术是一种模拟真实环境的技术,它通过计算机生成的图像为用户营造出一种沉浸式体验。
以下是虚拟现实技术的主要应用。
1.游戏和娱乐虚拟现实技术已经成为游戏和娱乐行业的重要组成部分。
利用虚拟现实技术,游戏开发者可以创建真实且令人难忘的游戏体验。
沉浸式游戏为用户带来更高的娱乐和互动体验,使游戏更加生动。
2.教育和培训虚拟现实技术在教育和培训领域也有广泛的应用。
通过虚拟现实技术,学生可以沉浸在令人生动的学习环境中,大大提高他们的学习效率。
此外,虚拟现实技术还可以为培训带来更实际的体验。
3.医疗和健康虚拟现实技术在医疗和健康方面也有广泛的应用。
这些技术被用于提高患者的生活质量,例如,当患者无法访问某些地点时,虚拟现实技术可以为他们提供数字化的旅行体验。
虚拟现实技术应用主要课程

虚拟现实技术应用主要课程
1. 计算机图形学,这门课程主要涉及计算机生成的图像、图形处理、渲染技术等内容,对于虚拟现实技术的图像生成和呈现至关重要。
2. 人机交互,这门课程主要研究人与计算机之间的交互方式和技术,包括虚拟现实设备的用户界面设计、交互技术等内容。
3. 三维建模与动画,这门课程主要教授三维模型的创建、动画制作等技术,是虚拟现实技术开发中必不可少的一部分。
4. 虚拟现实技术原理与应用,这门课程通常涵盖虚拟现实技术的基本原理、发展历史、应用案例等内容,是学习虚拟现实技术的基础课程之一。
5. 传感器技术,虚拟现实技术通常需要借助传感器来获取用户的动作、位置等信息,因此传感器技术的课程对于虚拟现实技术的学习和应用至关重要。
6. 虚拟现实技术开发与编程,这门课程通常包括虚拟现实技术
的开发工具、编程语言、开发环境等内容,是学习如何实际开发虚拟现实应用的重要课程。
除了上述主要课程外,还有许多相关的选修课程和研究课题,如增强现实技术、虚拟现实技术在医疗、教育、游戏等领域的应用等。
总的来说,虚拟现实技术的学习涉及多个学科领域,需要学习者具备扎实的计算机科学、图形学、感知心理学等方面的知识和技能。
希望以上回答能够全面地解答你的问题。
计算机图形学与虚拟现实技术

计算机图形学与虚拟现实技术在当今数字化的时代,计算机图形学和虚拟现实技术正发挥着日益重要的作用。
它们不仅改变着我们生活的方方面面,同时也深刻地影响着人们的思维方式和未来的发展方向。
本文将探讨计算机图形学和虚拟现实技术在各个领域的应用,并分析它们对社会的积极影响。
首先,计算机图形学的应用范围非常广泛。
它不仅可以创建逼真的三维模型和动画,还可用于渲染、游戏开发、电影特效等方面。
比如在电影制作过程中,计算机图形学可以模拟出逼真的爆炸、火焰、水流等效果,使电影场景更加精彩纷呈。
此外,计算机图形学在教育领域也具有广泛的应用。
通过使用计算机图形学技术,教师可以创造出生动直观的视觉效果,帮助学生更好地理解抽象的概念,提高学习效果。
其次,虚拟现实技术被广泛应用于游戏、娱乐和培训等领域。
虚拟现实技术通过模拟创造出一个虚拟的环境,使用户可以身临其境地体验和互动。
在游戏中,虚拟现实技术可以有效提升游戏的沉浸感和娱乐性。
同时,在医学领域,虚拟现实技术可以被用于进行手术模拟和康复训练。
虚拟现实技术能够创建出与实际场景高度相似的虚拟环境,使医学专业人员能够进行实时操作和培训,提高手术的安全性和成功率。
此外,计算机图形学和虚拟现实技术也被广泛用于建筑设计和城市规划。
在建筑设计中,计算机图形学可以帮助建筑师更好地表达自己的想法,同时可以进行结构仿真和可视化展示。
借助虚拟现实技术,规划师可以在虚拟环境中进行城市设计和交通规划,以便更好地评估城市的可行性和环境影响。
除了以上应用领域,计算机图形学和虚拟现实技术还被应用于心理治疗和训练。
虚拟现实技术可以创造出各种场景,例如治疗恐惧症的高空恐惧和社交恐惧症等。
通过暴露疗法,患者可以在虚拟环境中逐渐面对他们所害怕的事物,从而减少或消除恐惧感。
此外,计算机图形学和虚拟现实技术也可以被用于驾驶模拟和飞行模拟训练,帮助新手提高驾驶和飞行技能。
总的来说,计算机图形学和虚拟现实技术在各个领域的应用为我们带来了巨大的便利和创新。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章引言翻开历史的篇章,不难发现人类社会的每一次巨大进步与发展总是离不开科学的发明与技术的进步。
科学技术的变革不断地将人们的幻想变为现实。
1.1 虚拟现实技术与计算机图形学39年前,Mort Heilig申请的一项专利预言了我们今天称之为虚拟现实(Virtual Reality——VR)技术的很多功能细节,而今天这一预言的技术已经用于飞行模拟、训练模拟、医学诊断等许多实践领域。
当然,目前的技术水平还不能使人们在操作VR设备时象生活在真实世界中那样自然、方便,但这并不能阻碍VR的发展与应用。
相反,正是VR技术的应用使人们能够仿真模拟各种复杂、危险、代价高的实验情况,从而节省了大量的财力、物力和人力,并保证了人的生命安全。
有科学家和企业家预测,VR技术将引起未来人类生活的变革[Watt98]。
虚拟现实是一项九十年代孕育发展起来的、极具潜力的核心技术。
它的应用能够带来对科学和工程领域中许多挑战性问题的深入认识和解决。
对VR一词虽然有很多的解释,但由于其应用的依赖性,故很难给它下一个确切的定义。
一般地,虚拟现实是这样一种技术,它利用计算机生成模拟的三维环境,并通过各种传感设备将人带到该环境中,最终实现人与虚拟环境间直接自然的交流。
就其特点来说,虚拟现实是一种计算机生成的,具有临场感(Immersive)、实时交互性(Real-time Interactive)及多感官(Multi-sensory)体验的合成技术(见图1.1)。
作为虚拟现实系统的组成,包括视觉显示设备、跟踪系统、输入设备、语音系统、触觉反馈装置、图形与计算硬件、软件环境与软件工具等。
因此虚拟现实的研究涉及到计算机科学、认知科学、工程学、神经生理学、心理学、声学以及力学等许多领域的关键技术。
本论文力图从VR对计算机图形学的要求和激励方面出发,在研究和探索新的场景建模和绘制机制方面作了一定的努力。
计算机图形学是实现虚拟现实最重要的技术保证。
为了让人在计算机所创造的虚拟世界里有一种身临其境的视觉感受,VR对传统的计算机图形学技术提出了挑战:高质量的、实时的图象生成。
VR应用要求绘制系统能根据用户视点和视线方向的变化及时地生成相应的视图(一般刷新率应在15Hz以上);“高质量”是指绘制场景的复杂度和真实感应满足特定应用的需要。
高分辨率的显示。
表现为一个宽视角的立体显示器,这是产生“沉浸感”的前提。
目前最流行的是头盔显示器HMD(Head-Mounted Display)。
这也相应地要求绘制系统能同时生成一对(左、右眼)立体视图。
自然的交互。
系统应确保用户在虚拟环境中的操作简单易学,并得到有效的响应。
比如HMD的头部跟踪器应能准确即时地反馈观察者所处的位置和视线方向。
图1.1 虚拟现实系统上述挑战中,计算机成像(Computer Imagery)技术是VR中最根本和关键的核心问题。
在传统的图形学里,图象的生成是利用透视投影原理将三维几何模型变换到二维屏幕空间的过程,这其中包括光照、消隐、纹理、阴影等一系列复杂的计算和处理。
尽管经典的图形学发展已经能在很短的时间里产生具有相当复杂度的真实感图形,但其固有的矛盾却无法使它满足高级VR应用的要求,从而也在一定程度上限制了VR技术的应用推广。
九十年代中后期国际上跃然兴起了一股新的研究热潮——基于图象的建模与绘制技术(Image-Based Modeling and Rendering ——IBMR),它企图从根本上打破传统绘制模式的禁锢,这无疑将是图形学史上的一次飞跃。
本论文将主要涉及IBMR的讨论,在下一节里还将对这两种模式作详细的比较和分析。
其次,人眼是一个复杂的器官,它通过分析来自左右眼的视图的视差来感知物体的深度,产生三维立体感。
计算机视觉上称左右眼看到的这一对视图为一个立体对(Stereo Pair)[Ma98]。
HMD这类宽视场的立体显示器就是通过仿真人眼的视觉原理,将绘制系统生成的一个立体对分别投影到HMD的左右两个显示屏上。
当人的双眼同时看这两组图象时就会产生真实三维景物的立体感,因而也使VR系统具有了“沉浸感”。
可以说,VR将“立体视觉”概念带到了图形学中,从而促使图形学工作者对新的成像方法进行研究。
也既是说VR促成了计算机图形学与计算机视觉的结合。
在论文后面讨论的IBMR建模和绘制方法中都将用到计算机视觉中的理论和方法。
另外,VR的出现还引入了很多新的输入设备,如数据手套、空间球、各种传感器等,需要研究新的交互技术。
例如怎样有效地协调发挥各种图形资源(软件、硬件)的性能、即时地根据用户的动作刷新场景,等等。
论文将不涉及这方面的内容。
尽管今天的学科发展尚不能使人们全面地认识人类的视觉、听觉、触觉等感觉器官的功能原理及构造;机器智能技术也还远不能使机器代替人类。
但不可否认,虚拟现实是人们对计算机“人化”、“社会化”的一种展望。
同时它又是一种激励技术(enabling technique),导致许多新问题的研究和探讨、导致不同基础学科的交叉与渗透、也导致应用的深入和推广。
论文将从这里开始,先总结分析图形学中两种虚拟现实的实现模式,然后逐步引出我们要讨论的问题和解决的方法。
1.2 基于几何的VR与基于图象的VR目前虚拟现实应用方面存在的问题是:质量的可接受性。
即系统所生成的图象复杂度能否满足对真实世界进行模拟的要求?如果从建模和绘制角度来划分,VR 系统可以总的分为基于几何的VR和基于图象的VR。
本节将从VR的上述目的出发,详细讨论这两种方法的特点。
1.2.1 基于几何的实现方法80年代初开始,三维计算机图形发展的核心就是围绕真实感图形的生成。
过去一直认为是标准且被广泛接受的方法是:首先建立一精确的三维几何模型,设置视点位置,然后经过明暗(shading)、隐藏面消除(hidden surface removal)等处理生成一个屏幕投影。
这种方法导致的直接问题是:建模的开销(modeling cost)和绘制的开销(rendering cost)都非常大。
建模的复杂性:建模过程虽然可以离线(off-line)进行,但却要浪费大量的人力和时间,而且还需要相当的技巧。
因为在传统的图形学方法中,所有的场景几何都是用三维点采样的方法来定义的,如多边形网格表示。
这对于复杂的景物,如雄伟的故宫,它包括近万间房屋,其建筑外观的亭台楼阁、室内布置的独巨匠心,非但是计算机所难以模拟,就算可以几何再现,也是一项宏大的“工程”。
绘制的速度:主要指一幅图象合成所需要的时间。
图形工作站的出现和其性能的趋于稳定已经能够将用于隐藏面消除的Z-buffer算法固化在一个特殊硬件中,以提高多边形网格物体的绘制速度。
而且,各硬件厂商还将多边形的吞吐量作为相互追逐的目标之一。
但是,图象合成的时间仍然是困绕图形学界的问题。
“相片真实感”(photo-realism)的目标意味着:只要绘制方法的复杂性和环境的复杂性超过了主流硬件的发展,就会导致图象生成时间的增加。
根本原因就是图形学理论的发展还不能反映越来越复杂的光传播过程。
因此,VR应用只能在图象质量与绘制时间上进行折中,从而往往无法使用户感知到真正的“浸入”。
自然界中的事物是形态各异、千变万化的。
传统的绘制方法无论从理论上还是方法上都无法满足VR系统的要求,因此限制了VR的应用发展。
“除其惯性之外,没有更好的理由再停留在标准的绘制方法上”[Watt98]。
1.2.2 基于图象的建模和绘制另一种可能的选择就是用相片代替传统的几何输入来进行建模和图象合成。
在这种假设下,相片可以有两种用途:一是利用从相片中抽取出的三维信息,重构传统的几何模型。
这其中很多问题可以归结到计算机视觉领域。
另一种可能就是将照片作为系统的输入,消除了以往的建模和绘制过程,而代之以二维的、基于图象的视图重构方法。
这两种途径在IBMR方法中可能同时采用,也可能只选择后者。
本论文将更多地考虑后一种途径,但第五章将介绍一种几何与图象混合的表示和绘制模式。
图形学中利用照片/图象由来已久,典型的例子就是纹理映射技术(Texture mapping)。
为了获得传统绘制技术中难以做到的真实感和细节层次,将真实照片作为模板映射到由几何造型技术创建的模型上和结构上。
另一种广泛采用的技术就是环境映照(Environment map),是指将周围的环境映射到一个有光泽的物体上的过程。
最初使用环境映照是作为光线跟踪的一种廉价替代。
其思想是由于发光物体会反射出它周围的环境,因此可以将这种现象预先计算好存储起来,当绘制该物体时直接用纹理映射的方法来产生那种环境的映射效果,从而避免了光线跟踪的复杂过程。
环境映照中使用的典型环境形状有平面、立方体和球面。
环境映照技术在基于图象的绘制中也将发挥重要作用。
IBMR—基于图象的建模和绘制,顾名思义是指用预先获得的一组图象(合成的或真实的)来表示场景的形状和外观;而新图象的合成则是通过适当地组合原有的图象来实现。
与基于几何的建模和绘制模式相比,IBMR有以下突出的优点:建模容易:不需耗费大量的精力和技巧,因为拍摄照片是比较容易的。
另外,相机这类光捕获设备不仅能直接体现真实景物的外观和细节,而且从照片中还可以抽取出场景的几何特征、对象的运动特征、及物体的反射特征等。
把不同视线方向、不同位置拍摄的照片数据按某种形式组织起来以表示场景,如全景图象(panoramic image)和光场(light field),这就是IBMR 意义下的所谓建模。
绘制快:不需要复杂的计算,直接从已有的视图中合成新的视图,例如只要根据不同的视线方向映射全景图象相应的部分即可。
整个绘制过程都在二维空间进行,绘制时间不依赖于场景的复杂度,只跟显示分辨率有关。
真实感强:基于图象的方法能真实地反映景物的形状和丰富的明暗、材料及纹理细节,不需要经过额外的光照模拟。
交互性好:由于有绘制速度和真实感的保证,再加之先进的交互设备和反馈技术,使得基于图象的VR有更好的交互性。
另外,基于几何的方法需要建立场景完整的、精确的表达,绘制时也要对整个场景进行计算和存储。
相反,IBMR方法只需要离散的相片采样,绘制时也只要对与当前视点相邻的图象进行处理。
因此后者具有较小的计算开销。
但是,就已有的IBMR方法来看,也存在着很多问题和局限[Xu98]:表示模式:即数据的组织问题。
怎样找到一种简便有效且适合计算机存贮的表示模型,能精确完整地对场景进行编码。
这一点对于完全基于图象的方法是难以做到的。
捕获方法:是用手持相机还是用被精确定位与控制的数控摄像机,图象采样的数量多少、采样模式及样本均匀性等都会影响问题求解的难度和精度。
手持相机价格便宜、灵活,但难以控制采样;数控相机能准确采样,但装置复杂、昂贵,且只适合小的景物。