包头市中考数学试题及答案

合集下载

包头中考数学试题及答案

包头中考数学试题及答案

包头中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 0.33333…(3无限循环)D. 1/3答案:B2. 如果一个角的补角是它的3倍,那么这个角的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:A3. 一个长方体的长、宽、高分别是a、b、c,那么这个长方体的体积是:A. abcB. a+b+cC. a*b*cD. ab+bc+ca答案:C4. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 4答案:A5. 以下哪个是二次根式?A. √3B. 3√2C. √(-1)D. √(3x)答案:D6. 如果一个二次方程ax²+bx+c=0的判别式Δ=b²-4ac小于0,那么这个方程:A. 有唯一解B. 有两个实数解C. 没有实数解D. 无法确定答案:C7. 一个圆的半径是r,那么这个圆的面积是:A. πrB. πr²C. 2πrD. 4πr²答案:B8. 一个三角形的内角和是:A. 90°B. 180°C. 270°D. 360°答案:B9. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A10. 如果一个数列是等差数列,那么这个数列的第n项可以表示为:A. a + (n-1)dB. a - (n-1)dC. a + ndD. a - nd答案:A二、填空题(本题共5小题,每小题4分,共20分)11. 如果一个数的绝对值是5,那么这个数可以是______。

答案:±512. 一个直角三角形的两条直角边分别是3和4,那么斜边的长度是______。

答案:513. 一个数的倒数是1/2,那么这个数是______。

答案:214. 如果一个三角形的周长是18,且三边长分别为a、b、c,那么a+b+c=______。

2024年内蒙古包头市中考数学试卷及答案

2024年内蒙古包头市中考数学试卷及答案

2024年内蒙古包头市中考数学试卷及答案一、选择题:本大题共有10小题,每小题3分,共30分。

每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑。

1.(3分)计算所得结果是()A.3B.C.3D.±3【分析】先计算,再化简二次根式.【解答】解:===,故答案为:C.【点评】本题考查了二次根式的计算,掌握计算法则是解题的关键.2.(3分)若m,n互为倒数,且满足m+mn=3,则n的值为()A.B.C.2D.4【答案】B.3.(3分)如图,正方形ABCD边长为2,以AB所在直线为轴,将正方形ABCD旋转一周,所得圆柱的主视图的面积为()A.8B.4C.8πD.4π【分析】判断出圆柱的主视图矩形的长和宽,再根据矩形的面积公式列式计算即可得解.【解答】解:由已知可得,主视图为长为4,宽为2的矩形,所以圆柱的主视图的面积为4×2=8.故选:A.【点评】此题主要考查了点、线、面、体以及简单几何体的三视图,关键是掌握主视图是从几何体的正面看所得到的图形.4.(3分)如图,直线AB∥CD,点E在直线AB上,射线EF交直线CD于点G,则图中与∠AEF互补的角有()A.1个B.2个C.3个D.4个【答案】C.5.(3分)为发展学生的阅读素养,某校开设了《西游记》《三国演义》《水浒传》和《红楼梦》4个整本书阅读项目,甲、乙两名同学都通过抽签的方式从这四个阅读项目中随机抽取1个,则他们恰好抽到同一个阅读项目的概率是()A.B.C.D.【分析】画树状图,共有16种等可能的结果,其中甲、乙两名同学恰好抽到同一个阅读项目的结果有4种,再由概率公式求解即可.【解答】解:记《西游记》、《三国演义》、《水浒传》、《红楼梦》分别为A、B、C、D,画树状图如下:共有16种等可能的结果,其中甲、乙两名同学恰好抽到同一个阅读项目的结果有4种,∴他们恰好抽到同一个阅读项目的概率是=,故选:D.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.(3分)将抛物线y=x2+2x向下平移2个单位后,所得新抛物线的顶点式为()A.y=(x+1)2﹣3B.y=(x+1)2﹣2C.y=(x﹣1)2﹣3D.y=(x﹣1)2﹣2【分析】根据配方法先化为顶点式,再根据上加下减的原则得出解析式即可.【解答】解:y=x2+2x=(x+1)2﹣1.将抛物线y=x2+2x向下平移2个单位后,所得新抛物线的顶点式为y=(x+1)2﹣3,故选:A.【点评】本题考查了二次函数的图象与几何变换,熟练掌握平移的规律:左加右减,上加下减是解题的关键.7.(3分)若2m﹣1,m,4﹣m这三个实数在数轴上所对应的点从左到右依次排列,则m的取值范围是()A.m<2B.m<1C.1<m<2D.1<m<【分析】根据题意列出不等式组进行计算求解即可.【解答】解:由题意可得2m﹣1<m<4﹣m,即,解得:m<1,故选:B.【点评】本题主要考查了解一元一次不等式组和数轴,掌握以上基础知识是解题的关键.8.(3分)如图,在扇形AOB中,∠AOB=80°,半径OA=3,C是上一点,连接OC,D是OC上一点,且OD=DC,连接BD.若BD⊥OC,则的长为()A.B.C.D.π【分析】连接BC,根据垂直平分线的性质得BC=OB,可得△OBC是等边三角形,求出∠AOC=20°,再根据弧长公式计算即可.【解答】解:如图,连接BC,∵OD=DC,BD⊥OC,∴BC=OB,∵OB=OC,∴△OBC是等边三角形,∴∠BOC=60°,∵∠AOB=80°,∴∠AOC=20°,∴的长为=.故选:B.【点评】本题考查了弧长的计算,关键是根据垂直平分线的性质和等边三角形的性质求出圆心角的度数.9.(3分)如图,在平面直角坐标系中,四边形OABC各顶点的坐标分别是O(0,0),A(1,2),B(3,3),C(5,0),则四边形OABC的面积为()A.14B.11C.10D.9【分析】过A点作AE⊥x轴于E,作BF⊥x轴于F,如图,利用三角形面积公式和梯形的面积公式,+S梯形ABFE+S△AOE进行计算.利用四边形OABC的面积=S△BCF【解答】解:过A点作AE⊥x轴于E,作BF⊥x轴于F,如图,∵O(0,0),A(1,2),B(3,3),C(5,0),∴OE=1,AE=2,BF=3,CF=2,EF=2,S△BCF+S梯形ABFE∴四边形OABC的面积=S△AOE+=×1×2+×3×2+=9,故选:D.【点评】本题主要考查了梯形的面积、三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S△=×底×高.也考查了坐标与图形性质.10.(3分)如图,在矩形ABCD中,E,F是边BC上两点,且BE=EF=FC,连接DE,AF,DE与AF 相交于点G,连接BG.若AB=4,BC=6,则sin∠GBF的值为()A.B.C.D.【分析】过G作GH⊥BC于H,根据矩形的性质得到AB=CD=4,AD∥BC,得到BE=EF=CF=2,求得BF=CE=4,推出△ABF和△DCE是等腰直角三角形,得到∠AFE=∠DEC=45°,求得△EGF 是等腰直角三角形,根据三角函数的定义即可得到结论.【解答】解:过G作GH⊥BC于H,∵四边形ABCD是矩形,∴AB=CD=4,AD∥BC,∵BC=6,BE=EF=FC,∴BE=EF=CF=2,∴BF=CE=4,∴AB=BF=CE=DC=4,∴△ABF和△DCE是等腰直角三角形,∴∠AFE=∠DEC=45°,∴△EGF是等腰直角三角形,∴GH=EH=,∴BH=3,∴BG==,∴sin∠GBF===,故选:A.【点评】本题考查了矩形的性质,等腰直角三角形的判定和性质,解直角三角形,熟练掌握矩形的性质是解题的关键.二、填空题:本大题共有6小题,每小题3分,共18分。

内蒙古包头市中考数学真题试题(含解析)

内蒙古包头市中考数学真题试题(含解析)

2020年内蒙古包头市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.1.(3分)计算|﹣|+()﹣1的结果是()A.0 B.C.D.62.(3分)实数a,b在数轴上的对应点的位置如图所示.下列结论正确的是()A.a>b B.a>﹣b C.﹣a>b D.﹣a<b3.(3分)一组数据2,3,5,x,7,4,6,9的众数是4,则这组数据的中位数是()A.4 B.C.5 D.4.(3分)一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为()A.24 B.24πC.96 D.96π5.(3分)在函数y=﹣中,自变量x的取值范围是()A.x>﹣1 B.x≥﹣1 C.x>﹣1且x≠2 D.x≥﹣1且x≠2 6.(3分)下列说法正确的是()A.立方根等于它本身的数一定是1和0B.顺次连接菱形四边中点得到的四边形是矩形C.在函数y=kx+b(k≠0)中,y的值随着x值的增大而增大D.如果两个圆周角相等,那么它们所对的弧长一定相等7.(3分)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1 B.C.2 D.8.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径作半圆,交AB 于点D,则阴影部分的面积是()A.π﹣1 B.4﹣πC.D.29.(3分)下列命题:①若x2+kx+是完全平方式,则k=1;②若A(2,6),B(0,4),P(1,m)三点在同一直线上,则m=5;③等腰三角形一边上的中线所在的直线是它的对称轴;④一个多边形的内角和是它的外角和的2倍,则这个多边形是六边形.其中真命题个数是()A.1 B.2 C.3 D.410.(3分)已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,则m的值是()A.34 B.30 C.30或34 D.30或36 11.(3分)如图,在正方形ABCD中,AB=1,点E,F分别在边BC和CD上,AE=AF,∠EAF =60°,则CF的长是()A.B.C.﹣1 D.12.(3分)如图,在平面直角坐标系中,已知A(﹣3,﹣2),B(0,﹣2),C(﹣3,0),M 是线段AB上的一个动点,连接CM,过点M作MN⊥MC交y轴于点N,若点M、N在直线y =kx+b上,则b的最大值是()A.﹣B.﹣C.﹣1 D.0二、填空题:本大题有6小题,每小题3分,共24分.13.(3分)2018年我国国内生产总值(GDP)是900309亿元,首次突破90万亿大关,90万亿用科学记数法表示为.14.(3分)已知不等式组的解集为x>﹣1,则k的取值范围是.15.(3分)化简:1﹣÷=.16.(3分)甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:某同学分析上表后得到如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数少于甲班优秀的人数(竞赛得分≥85分为优秀);③甲班成绩的波动性比乙班小.上述结论中正确的是.(填写所有正确结论的序号)17.(3分)如图,在△ABC中,∠CAB=55°,∠ABC=25°,在同一平面内,将△ABC绕A 点逆时针旋转70°得到△ADE,连接EC,则tan∠DEC的值是.18.(3分)如图,BD是⊙O的直径,A是⊙O外一点,点C在⊙O上,AC与⊙O相切于点C,∠CAB=90°,若BD=6,AB=4,∠ABC=∠CBD,则弦BC的长为.19.(3分)如图,在平面直角坐标系中,已知A(﹣1,0),B(0,2),将△ABO沿直线AB 翻折后得到△ABC,若反比例函数y=(x<0)的图象经过点C,则k=.20.(3分)如图,在Rt△ABC中,∠ABC=90°,BC=3,D为斜边AC的中点,连接BD,点F是BC边上的动点(不与点B、C重合),过点B作BE⊥BD交DF延长线交于点E,连接CE,下列结论:①若BF=CF,则CE2+AD2=DE2;②若∠BDE=∠BAC,AB=4,则CE=;③△ABD和△CBE一定相似;④若∠A=30°,∠BCE=90°,则DE=.其中正确的是.(填写所有正确结论的序号)三、解答题:本大题共有6小题,共60分.21.(8分)某校为了解九年级学生的体育达标情况,随机抽取50名九年级学生进行体育达标项目测试,测试成绩如下表,请根据表中的信息,解答下列问题:(1)该校九年级有450名学生,估计体育测试成绩为25分的学生人数;(2)该校体育老师要对本次抽测成绩为23分的甲、乙、丙、丁4名学生进行分组强化训练,要求两人一组,求甲和乙恰好分在同一组的概率.(用列表或树状图方法解答)22.(8分)如图,在四边形ABCD中,AD∥BC,AB=BC,∠BAD=90°,AC交BD于点E,∠ABD=30°,AD=,求线段AC和BE的长.(注:==)23.(10分)某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨.据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为1500元;旺季所有的货车每天能全部租出,日租金总收入为4000元.(1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?24.(10分)如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2,弦BM平分∠ABC交AC于点D,连接MA,MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.25.(12分)如图,在正方形ABCD中,AB=6,M是对角线BD上的一个动点(0<DM<BD),连接AM,过点M作MN⊥AM交BC于点N.(1)如图①,求证:MA=MN;(2)如图②,连接AN,O为AN的中点,MO的延长线交边AB于点P,当时,求AN和PM的长;(3)如图③,过点N作NH⊥BD于H,当AM=2时,求△HMN的面积.26.(12分)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A (﹣1,0),B(3,0)两点,与y轴交于点C,连接BC.(1)求该抛物线的解析式,并写出它的对称轴;(2)点D为抛物线对称轴上一点,连接CD、BD,若∠DCB=∠CBD,求点D的坐标;(3)已知F(1,1),若E(x,y)是抛物线上一个动点(其中1<x<2),连接CE、CF、EF,求△CEF面积的最大值及此时点E的坐标.(4)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.2020年内蒙古包头市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.1.【解答】解:原式=3+3=6.故选:D.2.【解答】解:∵﹣3<a<﹣2,1<b<2,∴答案A错误;∵a<0<b,且|a|>|b|,∴a+b<0,∴a<﹣b,∴答案B错误;∴﹣a>b,故选项C正确,选项D错误.故选:C.3.【解答】解:∵这组数据的众数4,∴x=4,将数据从小到大排列为:2,3,4,4,5,6,7,9则中位数为:4.5.故选:B.4.【解答】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr2h=22×6•π=24π,故选:B.5.【解答】解:根据题意得,,解得,x≥﹣1,且x≠2.故选:D.6.【解答】解:A、立方根等于它本身的数一定是±1和0,故错误;B、顺次连接菱形四边中点得到的四边形是矩形,故正确;C、在函数y=kx+b(k≠0)中,当k>0时,y的值随着x值的增大而增大,故错误;D、在同圆或等圆中,如果两个圆周角相等,那么它们所对的弧长一定相等,故错误.故选:B.7.【解答】解:由作法得AG平分∠BAC,∴G点到AC的距离等于BG的长,即G点到AC的距离为1,所以△ACG的面积=×4×1=2.故选:C.8.【解答】解:连接CD,∵BC是半圆的直径,∴CD⊥AB,∵在Rt△ABC中,∠ACB=90°,AC=BC=2,∴△ACB是等腰直角三角形,∴CD=BD,∴阴影部分的面积=×22=2,故选:D.9.【解答】解:若x2+kx+是完全平方式,则k=±1,所以①错误;若A(2,6),B(0,4),P(1,m)三点在同一直线上,而直线AB的解析式为y=x+4,则x=1时,m=5,所以②正确;等腰三角形底边上的中线所在的直线是它的对称轴,所以③错误;一个多边形的内角和是它的外角和的2倍,则这个多边形是六边形,所以④正确.故选:B.10.【解答】解:当a=4时,b<8,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8不符合;当b=4时,a<8,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,∴a=8不符合;当a=b时,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=2a=2b,∴a=b=6,∴m+2=36,∴m=34;故选:A.11.【解答】解:∵四边形ABCD是正方形,∴∠B=∠D=∠BAD=90°,AB=BC=CD=AD=1,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF,∵∠EAF=60°,∴∠BAE+∠DAF=30°,∴∠DAF=15°,在AD上取一点G,使∠GFA=∠DAF=15°,如图所示:∴AG=FG,∠DGF=30°,∴DF=FG=AG,DG=DF,设DF=x,则DG=x,AG=FG=2x,∵AG+DG=AD,∴2x+x=1,解得:x=2﹣,∴DF=2﹣,∴CF=CD﹣DF=1﹣(2﹣)=﹣1;故选:C.12.【解答】解:连接AC,则四边形ABOC是矩形,∴∠A=∠ABO=90°,又∵MN⊥MC,∴∠CMN=90°,∴∠AMC=∠MNB,∴△AMC∽△NBM,∴,设BN=y,AM=x.则MB=3﹣x,ON=2﹣y,∴,即:y=x2+x∴当x=﹣=﹣时,y最大=×()2+=,∵直线y=kx+b与y轴交于N(0,b)当BN最大,此时ON最小,点N(0,b)越往上,b的值最大,∴ON=OB﹣BN=2﹣=,此时,N(0,)b的最大值为.故选:A.二、填空题:本大题有6小题,每小题3分,共24分.13.【解答】解:90万亿用科学记数法表示成:9.0×1013,故答案为:9.0×1013.14.【解答】解:由①得x>﹣1;由②得x>k+1.∵不等式组的解集为x>﹣1,∴k+1≤﹣1,解得k≤﹣2.故答案为k≤﹣2.15.【解答】解:1﹣÷=1﹣•=1﹣=﹣,故答案为:﹣.16.【解答】解:由表格可知,甲、乙两班学生的成绩平均成绩相同;根据中位数可以确定,乙班优秀的人数少于甲班优秀的人数;根据方差可知,甲班成绩的波动性比乙班小.故①②③正确,故答案为:①②③.17.【解答】解:由旋转的性质可知:AE=AC,∠CAE=70°,∴∠ACE=∠AEC=55°,又∵∠AED=∠ACB,∠CAB=55°,∠ABC=25°,∴∠ACB=∠AED=100°,∴∠DEC=100°﹣55°=45°,∴tan∠DEC=tan45°=1,故答案为:118.【解答】解:连接CD、OC,如图:∵AC与⊙O相切于点C,∴AC⊥OC,∵∠CAB=90°,∴AC⊥AB,∴OC∥AB,∴∠ABC=∠OCB,∵OB=OC,∴∠ABC=∠CBO,∵BD是⊙O的直径,∴∠BCD=90°=∠CAB,∴△ABC∽△CBD,∴=,∴BC2=AB×BD=4×6=24,∴BC==2;故答案为:2.19.【解答】解:过点C作CD⊥x轴,过点B作BE⊥y轴,与DC的延长线相交于点E,由折叠得:OA=AC=1,OB=BC=2,易证,△ACD∽△BCE,∴,设CD=m,则BE=2m,CE=2﹣m,AD=2m﹣1在Rt△ACD中,由勾股定理得:AD2+CD2=AC2,即:m2+(2m﹣1)2=12,解得:m1=,m2=0(舍去);∴CD=,BE=OA=,∴C(,)代入y=得,k==,故答案为:20.【解答】解:①∵∠ABC=90°,D为斜边AC的中点,∵AF=CF,∴BF=CF,∴DE⊥BC,∴BE=CE,∵∵BE⊥BD,∴BD2+BE2=DE2,∴CE2+AD2=DE2,故①正确;②∵AB=4,BC=3,∴AC=,∴,∵∠A=∠BDE,∠ABC=∠DBE=90°,∴△ABC∽△DBE,∴,即.∴BE=,∵AD=BD,∴∠A=∠ABD,∵∠A=∠BDE,∠BDC=∠A+∠ABD,∴∠A=∠CDE,∴DE∥AB,∴DE⊥BC,∵BD=CD,∴DE垂直平分BC,∴BE=CE,∴CE=,故②正确;③∵∠ABC=∠DBE=90°,∴∠ABD=∠CBE,∵,但随着F点运动,BE的长度会改变,而BC=3,∴或不一定等于,∴△ABD和△CBE不一定相似,故③错误;④∵∠A=30°,BC=3,∴∠A=∠ABD=∠CBE=30°,AC=2BC=6,∴BD=,∵BC=3,∠BCE=90°,∴BE=,∵∴,故④正确;故答案为:①②④.三、解答题:本大题共有6小题,共60分.21.【解答】解:(1)450×=162(人),答:该校九年级有450名学生,估计体育测试成绩为25分的学生人数为162人;(2)画树状图如图:共有12个等可能的结果,甲和乙恰好分在同一组的结果有2个,∴甲和乙恰好分在同一组的概率为=.22.【解答】解:在Rt△ABD中∵∠BAD=90°,∠ABD=30°,AD=,∴tan∠ABD=,∴=,∴AB=3,∵AD∥BC,∴∠BAD+∠ABC=180°,∴∠ABC=90°,在Rt△ABC中,∵AB=BC=3,∴AC==3,∵AD∥BC,∴△ADE∽△CBE,∴=,∴=,设DE=x,则BE=3x,∴BD=DE+BE=(+3)x,∴=,∵在Rt△ABD中,∠ABD=30°,∴BD=2AD=2,∴DE=2×,∴DE=3﹣,∴BE=(3﹣)=3﹣3.23.【解答】解:(1)该出租公司这批对外出租的货车共有x辆,根据题意得,,解得:x=20,经检验:x=20是分式方程的根,∴1500÷(20﹣10)=150(元),答:该出租公司这批对外出租的货车共有20辆,淡季每辆货车的日租金150元;(2)设每辆货车的日租金上涨a元时,该出租公司的日租金总收入为W元,根据题意得,W=[a+150×(1+)]×(20﹣),∴W=﹣a2+10a+4000=﹣(a﹣100)2+4500,∵﹣<0,∴当a=100时,W有最大值,答:每辆货车的日租金上涨100元时,该出租公司的日租金总收入最高.24.【解答】解:(1)连接OA、OC,过O作OH⊥AC于点H,如图1,∵∠ABC=120°,∴∠AMC=180°﹣∠ABC=60°,∴∠AOC=2∠AMC=120°,∴∠AOH=∠AOC=60°,∵AH=AC=,∴OA=,故⊙O的半径为2.(2)证明:在BM上截取BE=BC,连接CE,如图2,∵∠MBC=60°,BE=BC,∴△EBC是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠BCD+∠DCE=60°,∵∠∠ACM=60°,∴∠ECM+∠DCE=60°,∴∠ECM=∠BCD,∵∠ABC=120°,BM平分∠ABC,∴∠ABM=∠CBM=60°,∴∠CAM=∠CBM=60°,∠ACM=∠ABM=60°,∴△ACM是等边三角形,∴AC=CM,∴△ACB≌△MCE,∴AB=ME,∵ME+EB=BM,∴AB+BC=BM.25.【解答】(1)证明:过点M作MF⊥AB于F,作MG⊥BC于G,如图①所示:∴∠AFM=∠MFB=∠BGM=∠NGM=90°,∵四边形ABCD是正方形,∴∠ABC=∠DAB=90°,AD=AB,∠ABD=∠DBC=45°,∵MF⊥AB,MG⊥BC,∴MF=MG,∵∠ABC=90°,∴四边形FBGM是正方形,∴∠FMG=90°,∴∠FMN+∠NMG=90°,∵MN⊥AM,∴∠AMF+∠FMN=90°,∴∠AMF=∠NMG,在△AMF和△NMG中,,∴△AMF≌△NMG(ASA),∴MA=MN;(2)解:在Rt△AMN中,由(1)知:MA=MN,∴∠MAN=45°,∵∠DBC=45°,∴∠MAN=∠DBC,∴Rt△AMN∽Rt△BCD,∴=()2,在Rt△ABD中,AB=AD=6,∴BD=6,∵,∴=,解得:AN=2,∴在Rt△ABN中,BN===4,∵在Rt△AMN中,MA=MN,O是AN的中点,∴OM=OA=ON=AN=,OM⊥AN,∴∠AOP=90°,∴∠AOP=∠ABN,∵∠PAO=∠NAB,∴△PAO∽△NAB,∴=,即:=,解得:OP=,∴PM=OM+OP=+=;(3)解:过点A作AF⊥BD于F,如图③所示:∴∠AFM=90°,∴∠FAM+∠AMF=90°,∵MN⊥AM,∴∠AMN=90°,∴∠AMF+∠HMN=90°,∴∠FAM=∠HMN,∵NH⊥BD,∴∠AFM=∠MHN=90°,在△AFM和△MHN中,,∴△AFM≌△MHN(AAS),∴AF=MH,在等腰直角△ABD中,∵AF⊥BD,∴AF=BD=×6=3,∴MH=3,∵AM=2,∴MN=2,∴HN===,∴S△HMN=MH•HN=×3×=3,∴△HMN的面积为3.26.【解答】解:(1)将点A(﹣1,0),B(3,0)代入y=ax2+bx+2,可得a=﹣,b=,∴y=﹣x2+x+2;∴对称轴x=1;(2)如图1:过点D作DG⊥y轴于G,作DH⊥x轴于H,设点D(1,y),∵C(0,2),B(3,0),∴在Rt△CGD中,CD2=CG2+GD2=(2﹣y)2+1,∴在Rt△BHD中,BD2=BH2+HD2=4+y2,在△BCD中,∵∠DCB=∠CBD,∴CD=BD,∴CD2=BD2,∴(2﹣y)2+1=4+y2,∴y=,∴D(1,);(3)如图2:过点E作EQ⊥y轴于点Q,过点F作直线FR⊥y轴于R,过点E作FP⊥FR 于P,∴∠EQR=∠QRP=∠RPE=90°,∴四边形QRPE是矩形,∵S△CEF=S矩形QRPE﹣S△CRF﹣S△EFP,∵E(x,y),C(0,2),F(1,1),∴S△CEF=EQ•QR﹣×EQ•QC﹣CR•RF﹣FP•EP,∴S△CEF=x(y﹣1)﹣x(y﹣2)﹣×1×1﹣(x﹣1)(y﹣1),∵y=﹣x2+x+2,∴S△CEF=﹣x2+x,∴当x=时,面积有最大值是,此时E(,);(4)存在点M使得以B,C,M,N为顶点的四边形是平行四边形,设N(1,n),M(x,y),①四边形CMNB是平行四边形时,=,∴x=﹣2,∴M(﹣2,﹣);②四边形CNBM时平行四边形时,=,∴x=2,∴M(2,2);③四边形CNNB时平行四边形时,=,∴x=4,∴M(4,﹣);综上所述:M(2,2)或M(4,﹣)或M(﹣2,﹣);。

最新版内蒙古包头市2022届中考数学试卷(含解析)和答案解析详解完整版

最新版内蒙古包头市2022届中考数学试卷(含解析)和答案解析详解完整版

内蒙古包头市2022届中考数学试卷一、单选题1.若42222m ⨯=,则m 的值为( ) A.8B.6C.5D.22.若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( ) A.-8B.-5C.-1D.163.若m n >,则下列不等式中正确的是( ) A.22m n -<-B.1122m n ->-C.0n m ->D.1212m n -<-4.几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为( )A.3B.4C.6D.95.2022年2月20日北京冬奥会大幕落下,中国队在冰上、雪上项目中,共斩获9金4银2铜,创造中国队冬奥会历史最好成绩.某校为普及冬奥知识,开展了校内冬奥知识竞赛活动,并评出一等奖3人.现欲从小明等3名一等奖获得者中任选2名参加全市冬奥知识竞赛,则小明被选到的概率为( ) A.16B.13C.12D.236.若1x ,2x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( )A.3或-9B.-3或9C.3或-6D.-3或67.如图,AB ,CD 是O 的两条直径,E 是劣弧BC 的中点,连接BC ,DE .若22ABC ∠=︒,则CDE ∠的度数为( )A.22°B.32°C.34°D.44°8.在一次函数5(0)y ax b a =-+≠中,y 的值随x 值的增大而增大,且0ab >,则点(,)A a b 在( ) A.第四象限B.第三象限C.第二象限D.第一象限9.如图,在边长为1的小正方形组成的网格中,A ,B ,C ,D 四个点均在格点上,AC 与BD 相交于点E ,连接AB ,CD ,则ABE △与CDE △的周长比为( )A.1:4B.4:1C.1:2D.2:110.已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( ) A.5B.4C.3D.211.如图,在Rt ABC △中,90ACB ∠=︒,30A ∠=︒,2BC =,将ABC △绕点C 顺时针旋转得到A B C ''△,其中点A '与点A 是对应点,点B '与点B 是对应点.若点B '恰好落在AB 边上,则点A 到直线A C '的距离等于( )A. B. C.3D.212.如图,在矩形ABCD 中,AD AB >,点E ,F 分别在AD ,BC 边上,//EF AB ,AE AB =,AF 与BE 相交于点O ,连接OC .若2BF CF =,则OC 与EF 之间的数量关系正确的是( )A.2OC = 2EF =C.2OC =D.OC EF =二、解答题13.2022年3月28日是第27个全国中小学生安全教育日.某校为调查本校学生对安全知识的了解情况,从全校学生中随机抽取若干名学生进行测试,测试后发现所有测试的学生成绩均不低于50分.将全部测试成绩x (单位:分)进行整理后分为五组(5060x ≤<,6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤),并绘制成如下的频数直方图(如图).请根据所给信息,解答下列问题:(1)在这次调查中,一共抽取了_______名学生;(2)若测试成绩达到80分及以上为优秀,请你估计全校960名学生对安全知识的了解情况为优秀的学生人数;(3)为了进一步做好学生安全教育工作,根据调查结果,请你为学校提一条合理化建议.14.如图,AB是底部B不可到达的一座建筑物,A为建筑物的最高点,测角仪器的高1.5DH CG==米.某数学兴趣小组为测量建筑物AB的高度,先在H处用测角仪器测得建筑物顶端A处的仰角ADE∠为α,再向前走5米到达G处,又测得建筑物顶端A处的仰角ACE∠为45°,已知7tan9α=,AB BH⊥,H,G,B三点在同一水平线上,求建筑物AB的高度.15.由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x取整数)时,日销售量y(单位:千克)与x之间的函数关系式为12,010,20320,1016,x xyx x≤≤⎧=⎨-+<≤⎩草莓价格m(单位:元/千克)与x之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当412x≤≤时,草莓价格m与x之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?16.如图,AB为O的切线,C为切点,D是O上一点,过点D作DF AB⊥,垂足为F,DF交O于点E,连接EO并延长交O于点G,连接CG,OC,OD,已知2DOE CGE∠=∠.(1)若O的半径为5,求CG的长;(2)试探究DE与EF之间的数量关系,写出并证明你的结论.(请用两种证法解答)17.如图,在ABCD中,AC是一条对角线,且5AB AC==,6BC=,E,F是AD边上两点,点F在点E的右侧,AE DF=,连接CE,CE的延长线与BA的延长线相交于点G.(1)如图1,M是BC边上一点,连接AM,MF,MF与CE相交于点N.①若32AE=,求AG的长;②在满足①的条件下,若EN NC=,求证:AM BC⊥;(2)如图2,连接GF ,H 是GF 上一点,连接EH .若EHG EFG CEF ∠=∠+∠,且2HF GH =,求EF 的长.18.如图,在平面直角坐标系中,抛物线2(0)y ax c a =+≠与x 轴交于A ,B 两点,点B 的坐标是(2,0),顶点C 的坐标是(0,4),M 是抛物线上一动点,且位于第一象限,直线AM 与y 轴交于点G .(1)求该抛物线的解析式;(2)如图1,N 是抛物线上一点,且位于第二象限,连接OM ,记AOG △,MOG △的面积分别为1S ,2S .当122S S =,且直线//CN AM 时,求证:点N 与点M 关于y 轴对称; (3)如图2,直线BM 与y 轴交于点H ,是否存在点M ,使得27OH OG -=.若存在,求出点M 的坐标;若不存在,请说明理由. 三、填空题19.1x在实数范围内有意义,则x 的取值范围是__________. 20.计算:222a b aba b a b-+=--_________.21.某校欲招聘一名教师,对甲、乙两名候选人进行了三项素质测试,各项测试成绩满分均为100分,根据最终成绩择优录用,他们的各项测试成绩如下表所示:根据实际需要,学校将通识知识、专业知识和实践能力三项测试得分按2:5:3的比例确定每人的最终成绩,此时被录用的是_________.(填“甲”或“乙”)22.如图,已知O 的半径为2,AB 是O 的弦.若AB =AB 的长为_________.23.若一个多项式加上2328xy y +-,结果得2235xy y +-,则这个多项式为___________. 24.如图,在Rt ABC △中,90ACB ∠=︒,3AC BC ==,D 为AB 边上一点,且BD BC =,连接CD ,以点D 为圆心,DC 的长为半径作弧,交BC 于点E (异于点C ),连接DE ,则BE 的长为_________.25.如图,反比例函数(0)ky k x=>在第一象限的图象上有(1,6)A ,(3,)B b 两点,直线AB 与x轴相交于点C ,D 是线段OA 上一点.若AD BC AB DO ⋅=⋅,连接CD ,记ADC △,DOC △的面积分别为1S ,2S ,则12S S -的值为_________.参考答案1.答案:B解析:4242622222m +⨯===,6m ∴=. 2.答案:C 解析:a a ,b 互为相反数,0a b ∴+=,a c 的倒数是4,14c ∴=,13343()430414a b c a b c ∴+-=+-=⨯-⨯=-,故选:C. 3.答案:D解析:解:A.m n >,22m n ∴->-,故本选项不合题意; B.m n >,1122m n ∴-<-,故本选项不合题意;C.m n >,0m n ∴->,故本选项不合题意;D.m n >,1212m n ∴-<-,故本选项符合题意; 故选:D. 4.答案:B解析:由俯视图以及该位置小正方体的个数,左视图共有两列,第一列两个小正方体,第二列两个小正方体,可以画出左视图如图,所以这个几何体的左视面的面积为4. 故选:B. 5.答案:D解析:记小明为A ,其他2名一等奖为B 、C , 列树状图如下:故有6种等可能性结果,其中小明被选中得有4种,故小明被选到的概率为4263P ==.故选:D. 6.答案:A解析:解:2230x x --=,12331x x -∴==-⋅,(1)(3)0x x +-=,则两根为:3或-1,当23x =时,212122239x x x x x x ⋅=⋅⋅=-=-,当21x =-时,212122233x x x x x x ⋅=⋅⋅=-=.故选:A. 7.答案:C 解析: 8.答案:B解析:在一次函数5(0)y ax b a =-+≠中,y 的值随x 值的增大而增大,50a ∴->,即0a <,又0ab >,0b ∴<,∴点(,)A a b 在第三象限,故选:B. 9.答案:D 解析: 10.答案:A 解析:解:1b a -=,1b a ∴=+,2267a b a ∴+-+22(1)67a a a =++-+249a a =-+2(2)5a =-+,2(2)0a -≥,∴当2a =时,代数式2267ab a +-+有最小值,最小值为5,故选:A. 11.答案:C解析:解:如图,过A 作AQ A C '⊥于Q ,由90ACB ∠=︒,30A ∠=︒,2BC =,4AB ∴=,AC ==,结合旋转,60B A B C ''∴∠=∠=︒,BC B C '=,90A CB ''∠=︒,BB C '∴△为等边三角形,60BCB '∴∠=︒,30ACB '∠=︒,60A CA '∴∠=︒,sin 603AQ AC ∴=⋅︒==.A ∴到A C '的距离为3.故选C.12.答案:A解析:过点O 作OM BC ⊥于点M ,90OMC ∴∠=︒,四边形ABCD 是矩形, 90ABC BAD ∴∠=∠=︒, //EF AB ,AE AB =,90ABC BAD AEF ∴∠=∠=︒=∠,∴四边形ABFE 是正方形,45AFB ∴∠=︒,OB OF =, 12MF BF OM ∴==, 2BF CF =, MF CF OM ∴==,由勾股定理得2222(2)5OC OM CM CF CF CF =+=+=, 25OC EF ∴=,故选:A.13.答案:(1)40 (2)480人 (3)见解析解析:解:(2)128960100%48040+⨯⨯=(人), ∴优秀的学生人数约为480人.(3)加强安全知识教育,普及安全知识;通过多种形式(课外活动、知识竞赛等),提高安全意识;结合校内、校外具体活动(应急演练、参观体验、紧急救援等),提高避险能力. 14.答案:建筑物AB 的高度为19米解析:解:如图.根据题意,90AED ∠=︒,ADE α∠=,45ACE ∠=︒,5DC HG ==, 1.5EB CG DH ===.设AE x =米.在Rt AEC △中,90AEC ∠=︒,45ACE ∠=︒,CE AE x ∴==.在Rt AED △中,5DC =,5DE x ∴=+. tan AE ADE DE ∠=,7tan 9α=,759x x ∴=+, 9735x x ∴=+,17.5x ∴=,即17.5AE =.1.5EB =,17.5 1.519AB AE EB ∴=+=+=(米).答:建筑物AB 的高度为19米.15.答案:(1)第14天小颖家草莓的日销售量是40千克 (2)28m x =-+(3)第10天的销售金额多解析:解:(1)当1016x <≤时,20320y x =-+,∴当14x =时,201432040y =-⨯+=(千克). ∴第14天小颖家草莓的日销售量是40千克.(2)当412x ≤≤时,设草莓价格m 与x 之间的函数关系式为m kx b =+, 点(4,24),(12,16)在m kx b =+的图象上, 424,1216.k b k b +=⎧∴⎨+=⎩解得1,28.k b =-⎧⎨=⎩ ∴函数关系式为28m x =-+.(3)当010x ≤≤时,12y x =,∴当8x =时,12896y =⨯=, 当10x =时,1210120y =⨯=.当412x ≤≤时,28m x =-+,∴当8x =时,82820m =-+=,当10x =时,102818m =-+=. ∴第8天的销售金额为:96201920⨯=(元),第10天的销售金额为:120182160⨯=(元). 21601920>,∴第10天的销售金额多.16.答案:(1)(2)2DE EF =,证明见解析解析:解:(1)如图.连接CE .CE CE =,2COE CGE ∴∠=∠.2DOE CGE ∠=∠,COE DOE ∴∠=∠. AB 为O 的切线,C 为切点,OC AB ∴⊥,90OCB ∴∠=︒.DF AB ⊥,垂足为F ,90DFB ∴∠=︒,90OCB DFB ∴∠=∠=︒,//OC DF ∴,COE OED ∴∠=∠,DOE OED ∴∠=∠,OD DE ∴=.OD OE =,ODE ∴△是等边三角形,60DOE ∴∠=︒,30CGE ∴∠=︒. O 的半径为5,10GE ∴=.GE 是O 的直径,90GCE ∴∠=︒,∴在Rt GCE △中,cos 10cos3053GC GE CGE =⋅∠=⨯︒=.(2)2DE EF =.证法一:如图.60COE DOE ∠=∠=︒,CE DE ∴=,CE DE ∴=.OC OE =,OCE ∴△为等边三角形,60OCE ∴∠=︒.90OCB ∠=︒,30ECF ∴∠=︒.∴在Rt CEF △中,12EF CE =,12EF DE ∴=,即2DE EF =. 证法二:如图.连接CE ,过点O 作OH DF ⊥,垂足为H .90OHF ∴∠=︒.90OCB DFC ∠=∠=︒,∴四边形OCFH 是矩形,CF OH ∴=.ODE △是等边三角形,DE OE ∴=.OH DF ⊥,DH EH ∴=.COE DOE ∠=∠,CE DE ∴=,CE DE ∴=,CE OE ∴=.CF OH =,Rt Rt CFE OHE ∴≅△△,EF EH ∴=,DH EH EF ∴==,2DE EF ∴=.17.答案:(1)①53AG = ②证明见解析(2)2EF =解析:解:(1)如图.①四边形ABCD 是平行四边形,//AB CD ∴,//AD BC ,5DC AB ==,6AD BC ==,GAE CDE ∴∠=∠,AGE DCE ∠=∠,~AGE DCE ∴△△,AG AE DC DE∴=, AG DE DC AE ∴⋅=⋅. 32AE =,39622DE AD AE ∴=-=-=, 93522AG ∴=⨯,53AG ∴=. ②证明://AD BC ,EFN CMN ∴∠=∠,ENF CNM ∠=∠,EN NC =,ENF CNM ∴≅△△,EF CM ∴=.32AE =,AE DF =,32DF ∴=,3EF AD AE DF ∴=--=. 3CM ∴=.6BC =,3BM BC CM ∴=-=,BM MC ∴=.AB AC =,AM BC ∴⊥.(2)如图.连接CF .AB AC =,AB DC =,AC DC ∴=,CAD CDA ∴∠=∠.AE DF =,AEC DFC ∴≅△△,CE CF ∴=,CFE CEF ∴∠=∠.EHG EFG CEF ∠=∠+∠,EHG EFG CFE CFG ∴∠=∠+∠=∠.//EH CF ∴,GH GE HF EC ∴=.2HF GH =, 12GE EC ∴=.//AB CD ,GAE CDE ∴∠=∠,AGE DCE ∠=∠,AGE DCE ∴△△,AE GE DE CE ∴=,12AE DE ∴=, 2DE AE ∴=.设AE x =,则2DE x =.6AD =,26x x ∴+=,2x ∴=,即2AE =,2DF ∴=,2EF AD AE DF ∴=--=.18.答案:(1)24y x =-+(2)证明见解析(3)存在点115,24M ⎛⎫ ⎪⎝⎭,使得27OH OG -= 解析:解:(1)抛物线2y ax c =+与x 轴交于点(2,0)B ,顶点为(0,4)C ,40,4.a c c +=⎧∴⎨=⎩解得1,4.a c =-⎧⎨=⎩∴该抛物线的解析式为24y x =-+.(2)证明:如图.过点M 作MD y ⊥轴,垂足为D .当AOG △与MOG △都以OG 为底时,122S S =,2OA MD ∴=.当0y =时,则240x -+=,解得12x =-,22x =.(2,0)B ,(2,0)A ∴-,2OA ∴=,1MD =.设点M 的坐标为()2,4m m -+, 点M 在第一象限,1m ∴=,243m ∴-+=,(1,3)M ∴.设直线AM 的解析式为11y k x b =+,111120,3.k b k b -+=⎧∴⎨+=⎩解得111,2.k b =⎧⎨=⎩ ∴直线AM 的解析式为2y x =+.设直线CN 的解析式为22y k x b =+,直线//CN AM ,211k k ∴==,2y x b ∴=+,(0,4)C ,24b ∴=.∴直线CN 的解析式为4y x =+,将其代入24y x =-+中,得244x x +=-+,20x x ∴+=,解得30x =,41x =-.点N 在第二象限,∴点N 的横坐标为-1,3y ∴=,(1,3)N ∴-.(1,3)M ,∴点N 与点M 关于y 轴对称.(3)如图.存在点M ,使得27OH OG -=.过点M 作ME x ⊥轴,垂足为E .()2,4M m m -+,OE m ∴=,24ME m =-+.(2,0)B ,2OB ∴=,2BE m ∴=-.在Rt BEM △和Rt BOH △中,tan tan MBE HBO ∠=∠,EM OH BE BO∴=, ()2242(2)242m EM BO OH m m BE m-+⋅∴===+=+-. 2OA =,2AE m ∴=+,在Rt AOG △和Rt AEM △中,tan tan GAO MAE ∠=∠,OG EM AO AE∴=,()2242(2)422m EM AO OG m m AE m -+⋅∴===-=-+. 27OH OG -=,2(24)(42)7m m ∴+--=,12m ∴=. 当12m =时,21544m -+=,115,24M ⎛⎫∴ ⎪⎝⎭. ∴存在点115,24M ⎛⎫ ⎪⎝⎭,使得27OH OG -=. 19.答案:1x ≥-且0x ≠解析:解:由题意得:10x +≥,且0x ≠,解得:1x ≥-且0x ≠.20.答案:a b - 解析:原式2222()a b ab a b a b a b a b+--===---. 21.答案:甲解析:甲的成绩为25380908586.5101010⨯+⨯+⨯=(分), 乙的成绩为25380859085.5101010⨯+⨯+⨯=(分), 86.585.5>,∴被录用的是甲,故答案为:甲.22.答案:π解析:解:由题知AB =2OA OB ==,222AB OA OB ∴=+,90AOB ∴∠=︒,∴劣弧902180AB π⨯==π. 23.答案:23y xy -+解析:设这个多项式为A ,由题意得:()22328235A xy y xy y ++-=+-,()()222222353282353283A xy y xy y xy y xy y y xy ∴=+--+-=+---+=-+.24.答案:3-解析:解:过点D 作DF BC ⊥于点F ,如图所示:根据作图可知,DC DE =,DF BC ⊥,CF EF ∴=,90ACB ∠=︒,3AC BC ==,AB ∴==3BD BC ==,3AD ∴=,设CF x =,则3BF x =-,90ACB ∠=︒,AC BC ∴⊥,DF BC ⊥,//DF AC ∴,BF BD CF AD∴=, 即3x x -,解得:x =62262CE x -∴==⨯=-,3363BE CE ∴=-=-+=.故答案为:3.25.答案:4解析:解:如图,连结BD , AD BC AB DO ⋅=⋅, AD AB DO BC ∴=, AD AB AO AC∴=,而DAB OAC ∠=∠, ~DAB OAC ∴△△,(1,6)A 在反比例函数图象k y x =上, 6k ∴=,即反比例函数为6y x=, (3,)B b 在反比例函数图象6y x =上, 2b ∴=,即(3,2)B .设直线AB 为:y mx n =+,632m n m n +=⎧∴⎨+=⎩,解得:28m n =-⎧⎨=⎩, ∴直线AB 为:28y x =-+, ∴当0y =时,4x =, (4,0)C ∴,146122AOC S ∴=⨯⨯=△, ~DAB OAC △△,249AOB A B AOC A S y y S y ⎛⎫-∴= ⎪⎝⎭=△△,23AB AD AC AO ==, 121283S ∴=⨯=,211243S =⨯=, 124S S ∴-=. 故答案为:4.。

包头市中考数学试卷含答案解析

包头市中考数学试卷含答案解析

包头市中考数学试卷含答案解析包头市中考数学试卷含答案解析一、选择题1. 下面哪一个数是0.5的倍数?A. 0.25B. 0.3C. 0.75D. 0.6答案:C解析:0.5的倍数是0.5的整数倍,所以选项C是0.5的倍数。

2. AB=BC,若AC的长度是8cm,AB的长度是4cm,BC的长度为多少?A. 8cmB. 6cmC. 10cmD. 12cm答案:B解析:题目中已知 AB=BC,所以AB和BC的长度相等。

而AC的长度是8cm,所以AB和BC的长度都是4cm。

3. 若两数的和为10,差为4,这两数分别是多少?A. 6和4B. 5和5C. 7和3D. 8和2答案:D解析:设两数为x和y,根据题意,可以列方程得到 x+y=10 和 x-y=4 。

解方程可以得到x=6,y=4。

所以答案为6和4。

4. 下面哪一个数是素数?A. 20B. 30C. 17D. 24答案:C解析:素数是除了1和它本身外没有其他约数的数,而17只能被1和17整除,所以是素数。

5. 下面哪个数是1的倒数?A. 1B. 2C. 0.5D. -1答案:A解析:1的倒数是1除以1,得到1,所以答案是A。

二、解答题1. 计算:12+(34-16)÷2×3答案:12+(34-16)÷2×3 = 12+18÷2×3 = 12+9×3 = 12+27 = 39解析:根据运算法则,先计算括号里面的运算,即34-16=18。

然后计算18÷2=9。

最后计算12+9×3=12+27=39。

2. 某树木被分为长4cm、宽2cm的正方形木块,如果需要80个木块才能拼成一个整树,则整个树木的长度和宽度各是多少?答案:设整个树木的长度为x cm,宽度为y cm。

则 x/4 × y/2= 80 。

解方程可以得到 x=40,y=16。

所以整个树木的长度是40cm,宽度是16cm。

2023年包头市中考数学考试卷及答案解析

2023年包头市中考数学考试卷及答案解析

2023年包头市中考数学考试卷及答案解析一、选择题:本大题共有10小题,每小题3分,共30分.每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑.1.下列各式计算结果为5a 的是()A.()23a B.102a a ÷ C.4a a⋅ D.15(1)a --【答案】C 【解析】【分析】根据同底数幂的乘除法及幂的乘方运算法则即可判断.【详解】解:A 、()236a a =,不符合题意;B 、1028a a a ÷=,不符合题意;C 、45a a a ⋅=,符合题意;D 、515(1)a a --=-,不符合题意;故选:C .【点睛】题目主要考查同底数幂的乘除法及幂的乘方运算法则,熟练掌握运算法则是解题关键.2.关于x 的一元一次不等式1x m -≤的解集在数轴上的表示如图所示,则m 的值为()A.3B.2C.1D.0【答案】B 【解析】【分析】先求出不等式的解集,然后对比数轴求解即可.【详解】解:1x m -≤解得1x m ≤+,由数轴得:13m +=,解得:2m =,故选:B .【点睛】题目主要考查求不等式的解集及参数,熟练掌握求不等式解集的方法是解题关键.3.定义新运算“⊗”,规定:2||a b a b ⊗=-,则(2)(1)-⊗-的运算结果为()A.5-B.3- C.5 D.3【答案】D 【解析】【分析】根据新定义的运算求解即可.【详解】解:∵2||a b a b ⊗=-,∴2(2)(1)(2)1413-⊗-=---=-=,故选:D .【点睛】题目主要考查新定义的运算,理解题意中的运算法则是解题关键.4.如图,直线a b ,直线l 与直线,a b 分别相交于点,A B ,点C 在直线b 上,且CA CB =.若132∠=︒,则2∠的度数为()A.32︒B.58︒C.74︒D.75︒【答案】C 【解析】【分析】由CA CB =,132∠=︒,可得1801742CBA CAB ︒-∠∠=∠==︒,由a b ,可得2CBA ∠=∠,进而可得2∠的度数.【详解】解:∵CA CB =,132∠=︒,∴1801742CBA CAB ︒-∠∠=∠==︒,∵a b ,∴274CBA ∠=∠=︒,故选:C .【点睛】本题考查了等边对等角,三角形的内角和定理,平行线的性质.解题的关键在于明确角度之间的数量关系.5.几个大小相同的小正方体搭成几何体的俯视图如图所示,图中小正方形中数字表示对应位置小正方体的个数,该几何体的主视图是()A.B. C. D.【答案】D 【解析】【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【详解】解:根据俯视图可知,这个几何体中:主视图有三列:左边一列1个,中间一列2个,右边一列2个,所以该几何体的主视图是故选:D .【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,熟练掌握三视图的判断方法是解题关键.6.从1,2,3这三个数中随机抽取两个不同的数,分别记作m 和n .若点A 的坐标记作(),m n ,则点A 在双曲线6y x=上的概率是()A.13B.12C.23D.56【答案】A 【解析】【分析】先求出点A 的坐标的所有情况的个数,然后求出其中在双曲线6y x=上的坐标的个数,根据随机事件概率的计算方法,即可得到答案.【详解】解:从1,2,3这三个数中随机抽取两个不同的数,点A 的坐标共有6种情况:()1,2,()2,1,()1,3,()3,1,()2,3,()3,2,并且它们出现的可能性相等.点A 坐标在双曲线6y x=上有2种情况:()2,3,()3,2.所以,这个事件的概率为2163P ==.故选:A .【点睛】本题主要考查随机事件的概率,关键是掌握随机事件概率的计算方法:如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率()m P A n=.7.如图是源于我国汉代数学家赵爽的弦图,它是由四个全等直角三角形与一个小正方形拼成的一个大正方形.若小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为α,则cos α的值为()A.34B.43C.35D.45【答案】D【解析】【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a ,则较长的直角边为1a +,再接着利用勾股定理得到关于a 的方程,据此进一步求出直角三角形各个直角边的边长,最后求出cos α的值即可.【详解】∵小正方形的面积为1,大正方形的面积为25,∴小正方形的边长为1,大正方形的边长为5,设直角三角形短的直角边为a ,则较长的直角边为1a +,其中0a >,∴()22215a a ++=,其中0a >,解得:3a =,14a +=,∴4cos 5α=,故选:D.【点睛】本题主要考查了勾股定理与一元二次方程及三角函数的综合运用,熟练掌握相关概念是解题关键.8.在平面直角坐标系中,将正比例函数2y x =-的图象向右平移3个单位长度得到一次函数(0)y kx b k =+≠的图象,则该一次函数的解析式为()A.23y x =-+B.26y x =-+ C.23y x =-- D.26y x =--【答案】B 【解析】【分析】根据一次函数的平移规律求解即可.【详解】解:正比例函数2y x =-的图象向右平移3个单位长度得:2(3)26y x x =--=-+,故选:B .【点睛】题目主要考查一次函数的平移,熟练掌握平移规律是解题关键.9.如图,O 是锐角三角形ABC 的外接圆,,,OD AB OE BC OF AC ⊥⊥⊥,垂足分别为,,D E F ,连接,,DE EF FD .若 6.5,DE DF ABC +=△的周长为21,则EF 的长为()A.8B.4C.3.5D.3【答案】B 【解析】【分析】根据三角形外接圆的性质得出点D 、E 、F 分别是AB BC AC 、、的中点,再由中位线的性质及三角形的周长求解即可.【详解】解:∵O 是锐角三角形ABC 的外接圆,,,OD AB OE BC OF AC ⊥⊥⊥,∴点D 、E 、F 分别是AB BC AC 、、的中点,∴111,,222DF BC DE AC EF AB ===,∵ 6.5,DE DF ABC +=△的周长为21,∴21CB CA AB ++=即22221DF DE EF ++=,∴4EF =,故选:B .【点睛】题目主要考查三角形外接圆的性质及中位线的性质,理解题意,熟练掌握三角形外接圆的性质是解题关键.10.如图,在平面直角坐标系中,OAB 三个顶点的坐标分别为(0,0),O A B OA B '△与OAB 关于直线OB 对称,反比例函数(0,0)ky k x x=>>的图象与A B '交于点C .若A C BC '=,则k 的值为()A.23B.332C.3D.32【答案】A 【解析】【分析】过点B 作BD x ⊥轴,根据题意得出1,3BD OD ==,再由特殊角的三角函数及等腰三角形的判定和性质得出2OB AB ==,30BOA BAO ∠∠==︒,利用各角之间的关系180OBA OBD '∠+∠=︒,确定A ',B ,D 三点共线,结合图形确定)3,2C,然后代入反比例函数解析式即可.【详解】解:如图所示,过点B 作BD x ⊥轴,∵(0,0),(23,0),(3,1)O A B ,∴1,3BD OD ==∴3AD OD ==,3tan 3BD BOA OD ∠==,∴222OB AB OD BD ==+=,30BOA BAO ∠∠==︒,∴60OBD ABD ∠∠==︒,120OBA ∠=︒,∵OA B ' 与OAB 关于直线OB 对称,∴120OBA '∠=︒,∴180OBA OBD '∠+∠=︒,∴A ',B ,D 三点共线,∴2A B AB '==,∵A C BC '=,∴1BC =,∴2CD =,∴)2C,将其代入(0,0)ky k x x=>>得:k =,故选:A .【点睛】题目主要考查等腰三角形的判定和性质,特殊角的三角函数及反比例函数的确定,理解题意,综合运用这些知识点是解题关键.二、填空题:本大题共有6小题,每小题3分,共18分.请将答案填在答题卡上对应的横线上.11.若,a b 为两个连续整数,且a b <<,则a b +=________.【答案】3【解析】【分析】根据夹逼法求解即可.【详解】解:∵2132<<,即22212<<,∴12<<,∴1,2a b ==,∴3a b +=.故答案为:3.【点睛】题目主要考查无理数的估算,熟练掌握估算方法是解题关键.12.若12,x x 是一元二次方程228=0x x --的两个实数根,则1212x x x x +=________.【答案】14-##0.25-【解析】【分析】由一元二次方程的根与系数的关系得,122x x +=,128x x =-,然后代入求解即可.【详解】解:由一元二次方程的根与系数的关系得,122x x +=,128x x =-,∴121214x x x x +=-,故答案为:14-.【点睛】本题考查了一元二次方程的根与系数的关系,代数式求值.解题的关键在于熟练掌握:一元二次方程20ax bx c ++=的两个实数根1x ,2x 满足12b x x a+=-,12c x x a =.13.如图,正方形ABCD 的边长为2,对角线,AC BD 相交于点O ,以点B 为圆心,对角线BD 的长为半径画弧,交BC 的延长线于点E ,则图中阴影部分的面积为________.【答案】π【解析】【分析】根据正方形的性质得出阴影部分的面积为扇形BED的面积,然后由勾股定理得出BD =,再由扇形的面积公式求解即可.【详解】解:正方形ABCD ,∴,,AO CO BO DO AD CD ===,45DBE ∠=︒,∴(SSS)AOD COB ≌ ,∵正方形ABCD 的边长为2,∴BD ==∴阴影部分的面积为扇形BED 的面积,即(245360ππ⨯⨯=,故答案为:π.【点睛】题目主要考查正方形的性质及扇形的面积公式,理解题意,将阴影部分面积进行转化是解题关键.14.已知二次函数223(0)y ax ax a =-++>,若点(,3)P m 在该函数的图象上,且0m ≠,则m 的值为________.【答案】2【解析】【分析】将点(,3)P m 代入函数解析式求解即可.【详解】解:点(,3)P m 在223y ax ax =-++上,∴2323am am =-++,(2)0am m --=,解得:2,0m m ==(舍去)故答案为:2.【点睛】题目主要考查二次函数图象上的点的特点,理解题意正确求解是解题关键.15.如图,在Rt ABC △中,90,3,1ACB AC BC ∠=︒==,将ABC 绕点A 逆时针方向旋转90︒,得到AB C ''△.连接BB ',交AC 于点D ,则ADDC的值为________.【答案】5【解析】【分析】过点D 作DF AB ⊥于点F ,利用勾股定理求得AB =,根据旋转的性质可证ABB ' 、DFB △是等腰直角三角形,可得DF BF =,再由1122ADB S BC AD DF AB =⨯⨯=⨯⨯ ,得=AD ,证明AFD ACB,可得DF AF BC AC =,即3AF DF =,再由=AF DF -,求得10=4DF ,从而求得52AD =,12CD =,即可求解.【详解】解:过点D 作DF AB ⊥于点F ,∵90ACB ∠=︒,3AC =,1BC =,∴AB ==∵将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△,∴==AB AB ',90BAB '∠=︒,∴ABB ' 是等腰直角三角形,∴45ABB '∠=︒,又∵DF AB ⊥,∴45FDB ∠=︒,∴DFB △是等腰直角三角形,∴DF BF =,∵1122ADB S BC AD DF AB =⨯⨯=⨯⨯ ,即=AD ,∵90C AFD ∠=∠=︒,CAB FAD ∠=∠,∴AFD ACB ,∴DF AFBC AC =,即3AF DF =,又∵=AF DF -,∴10=4DF ,∴105==42AD ,51=3=22CD -,∴52==512AD CD ,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.16.如图,,,AC AD CE 是正五边形ABCDE 的对角线,AD 与CE 相交于点F .下列结论:①CF 平分ACD ∠;②2AF DF =;③四边形ABCF 是菱形;④2AB AD EF =⋅其中正确的结论是________.(填写所有正确结论的序号)【答案】①③④【解析】【分析】根据正五边形的性质得出各角及各边之间的关系,然后由各角之间的关系及相似三角形的判定和性质,菱形的判定依次证明即可.【详解】解:①∵正五边形ABCDE ,∴()180531085ABC BCD CDE DEA ∠∠∠∠︒⨯-=====︒,AB BC CD DE AE ====,∴180108362BAC BCA DAE ADE DCE CED ∠∠∠∠∠∠︒-︒=======︒,∴10836ACE BCA DCE DCE ∠∠∠∠=︒--=︒=,∴CF 平分ACD ∠;正确;②∵36ACE DEC ∠∠==︒,DFE AFC ∠=∠,∴DEF ACF ∽,∴DF DE AF AC=,∵2DE AB AB AC =>,,∴12DF AF ≠,即2AF DF ≠,故②错误;③∵BAC ACE =∠∠,1083636180ABC BAD ∠∠+=︒+︒+︒=︒,∴BC AD ∥,AB CE ∥,∴四边形ABCF 是平行四边形,∵AB BC =,∴四边形ABCF 是菱形;正确;④∵36CED DAE ∠∠==︒,EDF ADE ∠=∠,∴DEF DAE ∽△△,∴DE EF AD AE=,∴ED AE AD EF ⋅=⋅,即2AB AD EF =⋅,正确;故答案为:①③④.【点睛】题目主要考查正多边形的性质及相似三角形、菱形的判定和性质,熟练掌握运用这些知识点是解题关键.三、解答题:本大题共有7小题,共72分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17.(1)先化简,再求值:2(2)(2)(2)a b a b a b +++-,其中11,4a b =-=.(2)解方程:33511x x x=+--.【答案】(1)224a ab +,1;(2)4x =【解析】【分析】(1)首先利用完全平方公式和平方差公式计算,然后合并同类项,最后代入求解即可;(2)根据解分式方程的一般步骤进行求解即可.【详解】解:(1)原式2222444a ab b a b =+++-224a ab =+.当11,4a b =-=时,原式212(1)4(1)14=⨯-+⨯-⨯=.(2)33511x x x =+--方程两边乘(1)x -,得35(1)3x x =--.解得4x =.检验:将4x =代入14130x -=-=≠,∴4x =是原方程的根.【点睛】此题考查了整式的乘法混合运算以及化简求值,以及解分式方程,熟练掌握运算法则是解本题的关键.18.在推进碳达峰、碳中和进程中,我国新能源汽车产销两旺,连续8年保持全球第一.图为我国某自主品牌车企2022年下半年新能源汽车的月销量统计图.请根据所给信息,解答下列问题:(1)通过计算判断该车企2022年下半年的月均销量是否超过20万辆;(2)通过分析数据说明该车企2022年下半年月销量的特点(写出一条即可),并提出一条增加月销量的合理化建议.【答案】(1)该车企2022年下半年的月均销量超过20万辆(2)2022年下半年月销量的特点:月销量呈递增趋势;12月的销量最大;有三个月的销量超过了20万辆;中位数为20.5万辆;月均销量超过20万辆等建议:充分了解客户需求,及时处理客户反馈,提供优质的售后服务【解析】【分析】(1)根据平均数的定义求解即可;(2)利用条形统计图中的数据进行阐述即可.【小问1详解】解:15.916.919.221.823.023.520.056x+++++==(万辆),20.0520>,∴该车企2022年下半年的月均销量超过20万辆.【小问2详解】2022年下半年月销量的特点:月销量呈递增趋势;12月的销量最大;有三个月的销量超过了20万辆;中位数为20.5万辆;月均销量超过20万辆等.建议:充分了解客户需求,及时处理客户反馈,提供优质的售后服务.【点睛】本题考查平均数及中位数等统计知识,解答本题的关键是明确题意,利用数形结合的思想解答.19.为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,A点为出发点,途中设置两个检查点,分别为B点和C点,行进路线为A B C A→→→.B点在A点的南偏东25︒方向处,C点在A点的北偏东80︒方向,行进路线AB和BC所在直线的夹角ABC∠为45︒.(1)求行进路线BC 和CA 所在直线的夹角BCA ∠的度数;(2)求检查点B 和C 之间的距离(结果保留根号).【答案】(1)行进路线BC 和CA 所在直线的夹角为60︒(2)检查点B 和C 之间的距离为(33)km+【解析】【分析】(1)根据题意得,80,25NAC SAB ∠=︒∠=︒,45,32ABC AB ∠=︒=解即可;(2)过点A 作AD BC ⊥,垂足为D ,由等角对等边得出AD BD =,再由正弦函数及正切函数求解即可.【小问1详解】解:如图,根据题意得,80,25NAC SAB ∠=︒∠=︒,45,32ABC AB ∠=︒=180NAS ∠=︒ ,180180802575CAB NAC SAB ∴∠=︒-∠-∠=︒-︒-︒=︒.在ABC 中,180CAB ABC BCA ∠+∠+∠=︒,180754560BCA ∴∠=︒-︒-︒=︒.答:行进路线BC 和CA 所在直线的夹角为60︒.【小问2详解】过点A 作AD BC ⊥,垂足为D .90ADB ADC ∴∠=∠=︒,45ABD ∠=︒ ,45BAD ABD ∴∠=∠=︒.AD BD ∴=,在Rt △ABD 中,sin AD ABD AB ∠=,2323(km)2AD ∴==.3(km)BD AD ∴==,在Rt ACD △中,tan AD BCA CD∠= ,3(km)3CD ∴==,(33)km BC BD CD ∴=+=.答:检查点B 和C 之间的距离为(33)km +.【点睛】题目主要考查解三角形的应用,理解题意,作出相应辅助线求解是解题关键.20.随着科技的发展,扫地机器人已广泛应用于生活中,某公司推出一款新型扫地机器人,经统计该产品2022年每个月的销售情况发现,每台的销售价格随销售月份的变化而变化、设该产品2022年第x (x 为整数)个月每台的销售价格为y (单位:元),y 与x 的函数关系如图所示(图中ABC 为一折线).(1)当110x ≤≤时,求每台的销售价格y 与x 之间的函数关系式;(2)设该产品2022年第x 个月的销售数量为m (单位:万台),m 与x 的关系可以用1110m x =+来描述,求哪个月的销售收入最多,最多为多少万元?(销售收入=每台的销售价格⨯销售数量)【答案】(1)1503000y x =-+(2)第5个月的销售收入最多,最多为3375万元【解析】【分析】(1)利用待定系数法即可求解;(2)根据销售收入=每台的销售价格⨯销售数量求得销售收入为w 万元与销售月份x 之间的函数关系,再利用函数的性质即可求解.【小问1详解】解:当110x ≤≤时,设每台的销售价格y 与x 之间的函数关系式为(0)y kx b k =+≠.∵图象过(1,2850),(10,1500)A B 两点,2850,101500.k b k b +=⎧∴⎨+=⎩,解得150,3000.k b =-⎧⎨=⎩∴当110x ≤≤时,每台的销售价格y 与x 之间的函数关系式为1503000y x =-+.【小问2详解】设销售收入为w 万元,①当110x ≤≤时,21(1503000)115(5)337510w x x x ⎛⎫=-++=--+ ⎪⎝⎭,150-< ,当5x =时,3375w =最大(万元).②当1012x <≤时,115001150150010w x x ⎛⎫=+=+ ⎪⎝⎭,1500> ,∴w 随x 的增大而增大,∴当12x =时,3300w =最大(万元).33753300>∵,∴第5个月的销售收入最多,最多为3375万元.【点睛】本题考查了待定系数法求一次函数的解析式、二次函数在销售问题中的应用,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.21.如图,AB 是O 的直径,AC 是弦,D 是 AC 上一点,P 是AB 延长线上一点,连接,,AD DC CP .(1)求证:90ADC BAC ∠-∠=︒;(请用两种证法解答)(2)若ACP ADC ∠=∠,O 的半径为3,4CP =,求AP 的长.【答案】(1)证明见解析(2)8【解析】【分析】(1)证法一:连接BD ,得到90ADB ∠=︒,因为BAC BDC ∠=∠,所以90ADC BAC ∠-∠=︒;证法二:连接BC ,可得180ADC ABC ∠+∠=︒,则180ABC ADC ∠=︒-∠,根据90ACB ∠=︒,可得90BAC ABC ∠+∠=︒,即可得到结果;(2)连接OC ,根据角度间的关系可以证得OCP △为直角三角形,根据勾股定理可得边OP 的长,进而求得结果.【小问1详解】证法一:如图,连接BD ,∵ BC BC =,∴BDC BAC ∠=∠,∵AB 是O 的直径,∴90ADB ∠=︒,∴ADC ADB BDC∠=∠+∠∵BAC BDC ∠=∠,∴90ADC BAC ∠=︒+∠,∴90ADC BAC ∠-∠=︒,证法二:如图,连接BC ,∵四边形ABCD 是O 的内接四边形,∴180ADC ABC ∠+∠=︒,∴180ABC ADC ∠=︒-∠,∵AB 是O 的直径,∴90ACB ∠=︒,∴90BAC ABC ∠+∠=︒,∴18090BAC ADC ∠+︒-∠=︒,∴90ADC BAC ∠-∠=︒,【小问2详解】解:如图,连接OC ,∵ACP ADC ∠=∠,90ADC BAC ∠-∠=︒,∴90ACP BAC ∠-∠=︒,∵OA OC =,∴BAC ACO ∠=∠,∴90ACP ACO ∠-∠=︒,∴90OCP ∠=︒.∵O 的半径为3,∴3AO OC ==,在Rt OCP 中,222OP OC CP =+,∵4CP =,∴2223425OP =+=,∴5OP =,∴8AP AO OP =+=,【点睛】本题考查了圆周角定理,直径所对的圆周角为直角,勾股定理,找到角度之间的关系是解题的关键.22.如图,在菱形ABCD 中,对角线,AC BD 相交于点O ,点,P Q 分别是边BC ,线段OD 上的点,连接,,AP QP AP 与OB 相交于点E .(1)如图1,连接QA .当QA QP =时,试判断点Q 是否在线段PC 的垂直平分线上,并说明理由;(2)如图2,若90APB ∠=︒,且BAP ADB ∠=∠,①求证:2AE EP =;②当OQ OE =时,设EP a =,求PQ 的长(用含a 的代数式表示).【答案】(1)点Q 在线段PC 的垂直平分线上(2)①证明见解析,②7=PQ a 【解析】【分析】(1)根据菱形的性质及垂直平分线的判定证明即可;(2)①根据菱形的性质得出AB BC CD DA ===,再由各角之间的关系得出30BAP ABD CBD ∠=∠=∠=︒,由含30度角的直角三角形的性质求解即可;③连接QC .利用等边三角形的判定和性质得出2,3AE a AP a ==,再由正切函数及全等三角形的判定和性质及勾股定理求解即可.【小问1详解】解:如图,点Q在线段PC的垂直平分线上.理由如下:连接QC.AC BD相交于点O,∵四边形ABCD是菱形,对角线,∴⊥=BD AC OA OC,∴=.QA QC,QA QP=∴=,QC QP∴点Q在线段PC的垂直平分线上.【小问2详解】①证明:如图,∵四边形ABCD是菱形,∴===,AB BC CD DA∴∠=∠,CBD CDBABD ADB∠=∠,⊥,BD AC∴∠=∠,ADO CDO∴∠=∠=∠.ABD CBD ADO∠=∠,BAP ADB∴∠=∠=∠.BAP ABD CBD∴=,AE BE,∠=︒90APB∴∠+∠=︒,90BAP ABP30BAP ABD CBD ∴∠=∠=∠=︒.在Rt BPE △中,90,30EPB PBE ∠=︒∠=︒ ,12EP BE ∴=.AE BE = .12EP AE ∴=,2AE EP ∴=;②如图,连接QC .,60AB BC ABC =∠=︒ ,∴ABC 是等边三角形.∵90APB ∠=︒,∴BP CP EP a ==,,2,3AE a AP a∴==在Rt APB 中,90APB ∠=︒,3tan 3APABP BP ∠== ,BP ∴=.CP BP ∴==AO CO = ,,AOE COQ OE OQ ∠=∠=,AOE COQ ∴△≌△,2,AE CQ a EAO QCO ∴==∠=∠.AE CQ ∴∥,90APB ∠=︒ ,90QCP ∴∠=︒.在Rt PCQ △中,90QCP ∠=︒,由勾股定理得222PQ PC CQ =+,2222)(2)7PQ a a ∴=+=PQ ∴=.【点睛】题目主要考查菱形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质及解直角三角形,理解题意,综合运用这些知识点是解题关键.23.如图,在平面直角坐标系中,抛物线231y x x =-++交y 轴于点A ,直线123y x =-+交抛物线于,B C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点,,D E C 的坐标;(2)F 是线段OE 上一点()OF EF <,连接,,AF DF CF ,且2221AF EF +=.①求证:DFC △是直角三角形;②DFC ∠的平分线FK 交线段DC 于点,K P 是直线BC 上方抛物线上一动点,当3tan 1PFK ∠=时,求点P 的坐标.【答案】(1)(3,1)C ,(0,2)D ,(6,0)E(2)①证明见解析,②点P 的坐标为(1,3)或6)-【解析】【分析】(1)根据一次函数与坐标轴的交点及一次函数与二次函数的交点求解即可;(2)①设(,0),F m 然后利用勾股定理求解,2m =,过点C 作CG x ⊥轴,垂足为G .再由等腰三角形及各角之间的关系即可证明;②根据题意得出1tan 3PFK ∠=,设点P 的坐标为()2,31t t t -++,根据题意得133t <<.分两种情况分析:(i )当点P 在直线KF 的左侧抛物线上时,111tan ,233PFK t ∠=<<.(ii )当点P 在直线KF 的右侧抛物线上时,21tan ,233P FK t ∠=<<.求解即可.【小问1详解】解:∵直线123y x =-+交y 轴于点D ,交x 轴于点E ,当0x =时,2,y =()0,2D ∴,当0y =时,6,x =()6,0E ∴.∵直线123y x =-+交抛物线于,B C 两点,213123x x x ∴-++=-+,231030x x ∴-+=,解得121,33x x ==.∵点B 在点C 的左侧,∴点C 的横坐标为3,当3x =时,1y =.【小问2详解】如图,①抛物线231y x x =-++交y 轴于点A ,当0x =时,1,y =.(0,1),A ∴1OA ∴=,在Rt AOF 中,90AOF ∠=︒,由勾股定理得222AF OA OF +=,设(,0),F m ,OF m ∴=221AF m ∴=+,(6,0),E .6,OE ∴=6EF OE OF m ∴=-=-,2221,AF EF += 221(6)21,m m ∴++-=122,4m m ∴==,2,m ∴=2OF ∴=,(2,0)F ∴.(0,2),D 2OD ∴=,OD OF ∴=.DOF ∴ 是等腰直角三角形,45OFD ∴∠=︒.过点C 作CG x ⊥轴,垂足为G .(3,1),C 1,3CG OG ∴==,1,GF OG OF =-= ,CG GF ∴=CGF ∴ 是等腰直角三角形,45,GFC ∴∠︒=90,DFC ∴∠=︒DFC ∴ 是直角三角形.②FK 平分,90,DFC DFC ∠∠=︒45DFK CFK ∴∠=∠=︒90,OFK OFD DFK ∴∠=∠+∠=︒FK y ∴∥轴.3tan 1PFK ∠= ,1tan 3PFK ∴∠=.设点P 的坐标为()2,31t t t -++,根据题意得133t <<.(i )当点P 在直线KF 的左侧抛物线上时,111tan ,233PFK t ∠=<<.过点1P 作1PH x ⊥轴,垂足为H .111,PH KF HPF PFK ∴∠=∠∥,11tan 3HPF ∴∠=.,HF OF OH =- 2HF t ∴=-,在1Rt PHF △中,111tan ,3HF HPF PH ∠==13PH HF ∴=,2131PH t t =-++ ,2313(2),t t t ∴-++=-2650,t t ∴-+=121,5t t ∴==(舍去).当1t =时,2313,t t -++=1(1,3)P ∴(ii )当点P 在直线KF 的右侧抛物线上时,21tan ,233P FK t ∠=<<.过点2P 作2P M x ⊥轴,垂足为M .2,P M KF ∴∥22MP F P FK ∴∠=∠,21tan ,3MP F ∴∠=,MF OM OF =- 2MF t ∴=-在2Rt P MF △中,221tan ,3MF MP F P M ∠== 23P M MF ∴=,2231P M t t =-++ ,2313(2),t t t ∴-++=-27,t ∴=34t t ∴==.当t =时,2316,t t -++=-26)P ∴-∴点P 的坐标为(1,3)或6)-.【点睛】题目主要考查一次函数与二次函数综合问题,特殊三角形问题及解三角形,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.。

包头初三数学试题及答案

包头初三数学试题及答案

包头初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 圆的周长公式为 \( C = 2\pi r \)B. 圆的面积公式为 \( A = \pi r^2 \)C. 圆的周长公式为 \( C = \pi d \)D. 圆的面积公式为 \( A = 2\pi r \)答案:A2. 已知一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个答案:C4. 下列哪个函数是一次函数?A. \( y = x^2 \)B. \( y = 2x + 3 \)C. \( y = \frac{1}{x} \)D. \( y = x^3 \)答案:B5. 一个数的立方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个答案:D6. 一个数的倒数是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个答案:C7. 一个数的绝对值是它本身的数是?A. 正数和0B. 负数和0C. 正数和负数D. 只有0答案:A8. 下列哪个选项是正确的?A. \( \sqrt{4} = 2 \)B. \( \sqrt{9} = 3 \)C. \( \sqrt{16} = 4 \)D. \( \sqrt{25} = 5 \)答案:C9. 已知一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是多少?A. 16B. 21C. 26D. 31答案:B10. 一个数的相反数是它本身的数是?A. 正数B. 负数C. 0D. 任何数答案:C二、填空题(每题4分,共20分)11. 一个数的平方是25,这个数是________。

答案:±512. 一个数的立方是-8,这个数是________。

答案:-213. 一个数的绝对值是5,这个数可能是________或________。

2023年包头市中考数学试卷及答案

2023年包头市中考数学试卷及答案

2023年内蒙古包头市中考数学真题试卷注意事项:1.本试卷共6页,满分120分.考试时间为120分钟.2.答题前,考生务必先将自己的考生号、姓名、座位号等信息填写在试卷和答题卡的指定位置.请认真核对条形码上的相关信息后,将条形码粘贴在答题卡的指定位置.3.答题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共有10小题,每小题3分,共30分.每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑.1. 下列各式计算结果为5a 的是( )A. ()23aB. 102a a ÷C. 4a a ⋅D. 15(1)a -- 2. 关于x 的一元一次不等式1x m -≤的解集在数轴上的表示如图所示,则m 的值为( )A. 3B. 2C. 1D. 03. 定义新运算“⊗”,规定:2||a b a b ⊗=-,则(2)(1)-⊗-的运算结果为( )A. 5-B. 3-C. 5D. 3 4. 如图,直线a b ,直线l 与直线,a b 分别相交于点,A B ,点C 在直线b 上,且CA CB =.若132∠=︒,则2∠的度数为( )A. 32︒B. 58︒C. 74︒D. 75︒5. 几个大小相同的小正方体搭成几何体的俯视图如图所示,图中小正方形中数字表示对应位置小正方体的个数,该几何体的主视图是( )A. B. C. D. 6. 从1,2,3这三个数中随机抽取两个不同的数,分别记作m 和n .若点A 的坐标记作(),m n ,则点A 在双曲线6y x=上的概率是( ) A. 13 B. 12 C. 23 D. 567. 如图是源于我国汉代数学家赵爽的弦图,它是由四个全等直角三角形与一个小正方形拼成的一个大正方形.若小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为α,则cos α的值为( )A. 34B. 43C. 35D. 458. 在平面直角坐标系中,将正比例函数2y x =-的图象向右平移3个单位长度得到一次函数(0)y kx b k =+≠的图象,则该一次函数的解析式为( )A. 23y x =-+B. 26y x =-+C. 23y x =--D. 26y x =-- 9. 如图,O 是锐角三角形ABC 的外接圆,,,OD AB OE BC OF AC ⊥⊥⊥,垂足分别为,,D E F ,连接,,DE EF FD .若 6.5,DE DF ABC +=△的周长为21,则EF 的长为( )A. 8B. 4C. 3.5D. 310. 如图,在平面直角坐标系中,OAB 三个顶点的坐标分别为(0,0),O A B OA B '△与OAB 关于直线OB 对称,反比例函数(0,0)k y k x x=>>的图象与A B '交于点C .若A C BC '=,则k 的值为( )A.B.C.D. 二、填空题:本大题共有6小题,每小题3分,共18分.请将答案填在答题卡上对应的横线上. 11. 若,a b 为两个连续整数,且a b <<,则a b +=________.12. 若12,x x 是一元二次方程228=0x x --的两个实数根,则1212x x x x +=________. 13. 如图,正方形ABCD 的边长为2,对角线,AC BD 相交于点O ,以点B 为圆心,对角线BD 的长为半径画弧,交BC 的延长线于点E ,则图中阴影部分的面积为________.14. 已知二次函数223(0)y ax ax a =-++>,若点(,3)P m 在该函数的图象上,且0m ≠,则m 的值为________.15. 如图,在Rt ABC △中,90,3,1ACB AC BC ∠=︒==,将ABC 绕点A 逆时针方向旋转90︒,得到AB C ''△.连接BB ',交AC 于点D ,则AD DC的值为________.16. 如图,,,AC AD CE 是正五边形ABCDE 的对角线,AD 与CE 相交于点F .下列结论:①CF 平分ACD ∠; ①2AF DF =; ①四边形ABCF 是菱形; ①2AB AD EF =⋅其中正确的结论是________.(填写所有正确结论的序号)三、解答题:本大题共有7小题,共72分.请将必要的文字说明、计算过程或推理过程写在答题卡的对应位置.17. (1)先化简,再求值:2(2)(2)(2)a b a b a b +++-,其中11,4a b =-=. (2)解方程:33511x x x=+--. 18. 在推进碳达峰、碳中和进程中,我国新能源汽车产销两旺,连续8年保持全球第一.图为我国某自主品牌车企2022年下半年新能源汽车的月销量统计图.请根据所给信息,解答下列问题:(1)通过计算判断该车企2022年下半年的月均销量是否超过20万辆;(2)通过分析数据说明该车企2022年下半年月销量的特点(写出一条即可),并提出一条增加月销量的合理化建议.19. 为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,A 点为出发点,途中设置两个检查点,分别为B 点和C 点,行进路线为A B C A →→→.B 点在A 点的南偏东25︒方向处,C 点在A 点的北偏东80︒方向,行进路线AB 和BC 所在直线的夹角ABC ∠为45︒.(1)求行进路线BC 和CA 所在直线的夹角BCA ∠的度数;(2)求检查点B 和C 之间的距离(结果保留根号).20. 随着科技的发展,扫地机器人已广泛应用于生活中,某公司推出一款新型扫地机器人,经统计该产品2022年每个月的销售情况发现,每台的销售价格随销售月份的变化而变化、设该产品2022年第x (x 为整数)个月每台的销售价格为y (单位:元),y 与x 的函数关系如图所示(图中ABC 为一折线).(1)当110x ≤≤时,求每台的销售价格y 与x 之间的函数关系式;(2)设该产品2022年第x 个月的销售数量为m (单位:万台),m 与x 的关系可以用1110m x =+来描述,求哪个月的销售收入最多,最多为多少万元?(销售收入=每台的销售价格⨯销售数量)21. 如图,AB 是O 的直径,AC 是弦,D 是AC 上一点,P 是AB 延长线上一点,连接,,AD DC CP .(1)求证:90ADC BAC ∠-∠=︒;(请用两种证法解答)(2)若ACP ADC ∠=∠,O 的半径为3,4CP =,求AP 的长.22. 如图,在菱形ABCD 中,对角线,AC BD 相交于点O ,点,P Q 分别是边BC ,线段OD 上的点,连接,,AP QP AP 与OB 相交于点E .(1)如图1,连接QA .当QA QP =时,试判断点Q 是否在线段PC 的垂直平分线上,并说明理由; (2)如图2,若90APB ∠=︒,且BAP ADB ∠=∠,①求证:2AE EP =;①当OQ OE =时,设EP a ,求PQ 的长(用含a 的代数式表示).23. 如图,在平面直角坐标系中,抛物线231y x x =-++交y 轴于点A ,直线123y x =-+交抛物线于,B C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点,,D E C 的坐标;(2)F 是线段OE 上一点()OF EF <,连接,,AF DF CF ,且2221AF EF +=.①求证:DFC △是直角三角形;①DFC ∠的平分线FK 交线段DC 于点,K P 是直线BC 上方抛物线上一动点,当3tan 1PFK ∠=时,求点P 的坐标.2023年内蒙古包头市中考数学真题试卷答案一、选择题.1. C2. B3. D4. C5. D6. A7. D8. B9. B解:①O 是锐角三角形ABC 的外接圆,,,OD AB OE BC OF AC ⊥⊥⊥.①点D ,E ,F 分别是AB BC AC 、、的中点. ①111,,222DF BC DE AC EF AB ===. ① 6.5,DE DF ABC +=△的周长为21.①21CB CA AB ++=即22221DF DE EF ++=.①4EF =.故选:B .10. A解:如图所示,过点B 作BD x ⊥轴.①(0,0),O A B .①1,BD OD ==①AD OD ==,tan 3BD BOA OD ∠==①2OB AB ===,30BOA BAO ∠∠==︒.①60OBD ABD ∠∠==︒,120OBA ∠=︒.①OA B '与OAB 关于直线OB 对称.①120OBA '∠=︒.①180OBA OBD '∠+∠=︒.①A ',B ,D 三点共线.①2A B AB '==.①A C BC '=.①1BC =.①2CD =.①)2C .将其代入(0,0)k y k x x=>>得:k = 故选:A .二、填空题.11. 3 12. 14-13. π14. 215. 5解:过点D 作DF AB ⊥于点F .①90ACB ∠=︒,3AC =,1BC =.①AB ==①将ABC 绕点A 逆时针方向旋转90︒得到AB C ''△.①==AB AB '90BAB '∠=︒.①ABB '是等腰直角三角形.①45ABB '∠=︒.又①DF AB ⊥.①45FDB ∠=︒.①DFB △是等腰直角三角形.①DF BF =. ①1122ADB S BC AD DF AB =⨯⨯=⨯⨯,即=AD . ① 90C AFD ∠=∠=︒,CAB FAD ∠=∠.①AFD ACB . ①DF AF BC AC=,即3AF DF =. 又①=AF DF .①=DF①5==2AD ,51=3=22CD -. ①52==512AD CD . 故答案为:5.16. ①①①三、解答题.17. (1)224a ab +,1;(2)4x =18. (1)该车企2022年下半年的月均销量超过20万辆(2)2022年下半年月销量的特点:月销量呈递增趋势;12月的销量最大;有三个月的销量超过了20万辆;中位数为20.5万辆;月均销量超过20万辆等建议:充分了解客户需求,及时处理客户反馈,提供优质的售后服务19. (1)行进路线BC 和CA 所在直线的夹角为60︒(2)检查点B 和C之间的距离为(3+20. (1)1503000y x =-+(2)第5个月的销售收入最多,最多为3375万元 21.(1)证明见解析(2)8【小问1详解】证法一:如图,连接BD .①BC BC =.①BDC BAC ∠=∠.①AB 是O 的直径.①90ADB ∠=︒.①ADC ADB BDC ∠=∠+∠①BAC BDC ∠=∠.①90ADC BAC ∠=︒+∠.①90ADC BAC ∠-∠=︒.证法二:如图,连接BC .①四边形ABCD 是O 的内接四边形. ①180ADC ABC ∠+∠=︒.①180ABC ADC ∠=︒-∠.①AB 是O 的直径.①90ACB ∠=︒.①90BAC ABC ∠+∠=︒.①18090BAC ADC ∠+︒-∠=︒.①90ADC BAC ∠-∠=︒.【小问2详解】解:如图,连接OC .①ACP ADC ∠=∠,90ADC BAC ∠-∠=︒. ①90ACP BAC ∠-∠=︒.①OA OC =.①BAC ACO ∠=∠.①90ACP ACO ∠-∠=︒.①90OCP ∠=︒.①O 的半径为3.①3AO OC ==.在Rt OCP 中,222OP OC CP =+.①4CP =.①2223425OP =+=.①5OP =.①8AP AO OP =+=.22. (1)点Q 在线段PC 的垂直平分线上(2)①证明见解析,①=PQ【小问1详解】解:如图,点Q 在线段PC 的垂直平分线上.理由如下:连接QC .①四边形ABCD 是菱形,对角线,AC BD 相交于点O . ,BD AC OA OC ⊥=∴QA QC ∴=.QA QP =.QC QP ∴=.①点Q 在线段PC 的垂直平分线上.【小问2详解】①证明:如图,①四边形ABCD 是菱形. AB BC CD DA ∴===.ABD ADB ∴∠=∠,CBD CDB ∠=∠. BD AC ⊥.ADO CDO ∴∠=∠.ABD CBD ADO ∴∠=∠=∠.BAP ADB ∠=∠.BAP ABD CBD ∴∠=∠=∠.AE BE ∴=.90APB ∠=︒.90BAP ABP ∴∠+∠=︒.30BAP ABD CBD ∴∠=∠=∠=︒. 在Rt BPE △中,90,30EPB PBE ∠=︒∠=︒. 12EP BE ∴=. AE BE =.12EP AE ∴=.2AE EP ∴=;①如图,连接QC .,60AB BC ABC =∠=︒. ①ABC 是等边三角形. ①90APB ∠=︒.①BP CP EP a ==,.2,3AE a AP a ∴==在Rt APB 中,90APB ∠=︒.tan AP ABP BP ∠==.BP ∴=.CP BP ∴==AO CO =,,AOE COQ OE OQ ∠=∠=.AOE COQ ∴△≌△.2,AE CQ a EAO QCO ∴==∠=∠. AE CQ ∴∥.90APB ∠=︒.90QCP ∴∠=︒.在Rt PCQ △中,90QCP ∠=︒. 由勾股定理得222PQ PC CQ =+.2222)(2)7PQ a a ∴=+=PQ ∴=.23. (1)(3,1)C ,(0,2)D ,(6,0)E(2)①证明见解析,①点P 的坐标为(1,3)或6)【小问1详解】解:①直线123y x =-+交y 轴于点D ,交x 轴于点E . 当0x =时,2y =()0,2D ∴.当0y =时,6x =()6,0E ∴.①直线123y x =-+交抛物线于,B C 两点. 213123x x x ∴-++=-+. 231030x x ∴-+=,解得121,33x x ==. ①点B 在点C 的左侧.①点C 的横坐标为3.当3x =时,1y =.)1(3,C ∴;【小问2详解】如图.①抛物线231y x x =-++交y 轴于点A . 当0x =时,1y =.(0,1)A ∴1OA ∴=在Rt AOF 中,90AOF ∠=︒. 由勾股定理得222AF OA OF +=. 设(,0)F mOF m ∴=221AF m ∴=+.(6,0)E .6OE ∴=6EF OE OF m ∴=-=-. 2221AF EF +=221(6)21m m ∴++-= 122,4m m ∴==.OF EF <2m ∴=2OF ∴=(2,0)F ∴.(0,2)D2OD ∴=.OD OF ∴=.DOF ∴是等腰直角三角形. 45OFD ∴∠=︒.过点C 作CG x ⊥轴,垂足为G . (3,1)C1,3CG OG ∴==.1GF OG OF =-=CG GF ∴=CGF ∴是等腰直角三角形. 45GFC ∴∠=︒90DFC ∴∠=︒DFC ∴是直角三角形. ①FK 平分,90DFC DFC ∠∠=︒ 45DFK CFK ∴∠=∠=︒90OFK OFD DFK ∴∠=∠+∠=︒ FK y ∴∥轴.3tan 1PFK ∠=.1tan 3PFK ∴∠=. 设点P 的坐标为()2,31t t t -++,根据题意得133t <<. (i )当点P 在直线KF 的左侧抛物线上时,111tan ,233PFK t ∠=<<. 过点1P 作1PH x ⊥轴,垂足为H . 111,PH KF HPF PFK ∴∠=∠∥. 11tan 3HPF ∴∠=. HF OF OH =-2HF t ∴=-.在1Rt PHF △中.111tan 3HF HPF PH ∠== 13PH HF ∴=. 2131PH t t =-++. 2313(2)t t t ∴-++=- 2650t t ∴-+= 121,5t t ∴==(舍去). 当1t =时,2313t t -++= 1(1,3)P ∴(ii )当点P 在直线KF 的右侧抛物线上时,21tan ,233P FK t ∠=<<. 过点2P 作2P M x ⊥轴,垂足为M . 2P M KF ∴∥ 22MP F P FK ∴∠=∠. 21tan 3MP F ∴∠= MF OM OF =- 2MF t ∴=- 在2Rt P MF △中. 221tan 3MF MP F P M ∠== 23P M MF ∴=. 2231P M t t =-++. 2313(2)t t t ∴-++=- 27t ∴=34t t ∴==.当t=时,2316t t-++=26)P∴①点P的坐标为(1,3)或6).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

包头市中考数学试题及答案【包头市中考数学试题及答案】
一、选择题
1. 一个数的百分之几恰好是这个数除以100得到的数?
√ A. 0
B. 1
C. 10
D. 100
2. 若正整数x满足x ÷ 8 = 7,那么x的值是多少?
A. 7
√ B. 56
C. 8
D. 15
3. 已知图中AB与CF是两个相互平行的直线,AB = 6 cm,BC = 10 cm,那么CE长度应为多少?
A. 5 cm
B. 8 cm
C. 10 cm
√ D. 16 cm
4. 甲、乙两人同去参加国际数学竞赛,乙的成绩是甲的1.5倍。

如果乙得了108分,那么甲得了多少分?
A. 40分
B. 72分
C. 85分
√ D. 72分
5. 若一个正三角形的周长为15 cm,那么它的边长应为多少?
A. 5 cm
B. 10 cm
√ C. 15 cm
D. 30 cm
二、填空题
1. 2014 ÷ (√2 + 2) 的值约等于多少?
答案:√2 - 2
2. 一个矩形的长是5 cm,宽是3 cm,其面积为多少?
答案:15 cm²
3. 若x ≠ 1/4,且x满足方程x - 1/2 = -3/4,则x的值为多少?
答案:0.25
4. 若甲数比乙数多3/4,且甲数的2/5与乙数的7比较是小于或等于,那么甲数与乙数相差多少?
答案:2
5. ∠A和∠B互为补角,且∠A的度数是∠B度数的4倍,则∠A
度数为多少?
答案:72°
三、解答题
1. 解方程 5/(x-1) - 3/(x+2) = 4 的结果。

解:
将两项分数化为通分形式,得到(5(x+2) - 3(x-1))/((x-1)(x+2)) = 4。

化简得到2x + 17 = 4(x² + x - 2)。

移项并整理得到4x² + 2x - 25 = 0。

使用配方法或求根公式得到x = -2或x = 2.5。

因此,方程的解为x = -2或x = 2.5。

2. 若a:b = 2:3,并且a = 10,求b的值。

解:
根据等比例关系,我们可以设定a = 2x,b = 3x。

将a = 10代入,得到2x = 10,解得x = 5。

因此,b = 3x = 3 * 5 = 15。

所以,b的值为15。

3. 解下列不等式:2x - 4 < 10。

解:
将常数项移项,得到2x < 14。

除以2,得到x < 7。

所以,不等式的解集为x < 7。

4. 已知一根长为6 cm的细棍折成一个边长为x cm的正方形,并且
还剩下一段长为1 cm的细棍未折断。

求x的值。

解:
将正方形的四条边长度相加,再加上剩下的1 cm,得到6 = 4x + 1。

移项并整理方程,得到4x = 5,解得x = 1.25。

所以,正方形的边长为1.25 cm。

以上是包头市中考数学试题及答案,希望能对你有所帮助。

祝你顺
利通过考试!。

相关文档
最新文档