稠油热采工艺技术应用及效果分析
白音查干凹陷水平井稠油热采工艺技术及效果分析

白音查干凹陷水平井稠油热采工艺技术及效果分析刘永宏,张麦云,宋居濮,徐川国(中原油田井下特种作业处,河南濮阳 457164) 摘 要:蒸汽吞吐热采试油是提高稠油产量的一种有效方法。
从现场稠油热采工艺设计着手,阐述了查干凹陷水平井稠油热采工艺技术的应用,总结了3个热采区块的稠油热采效果—产油强度均有不同程度的增加,原油物性变好,回采水率较低,热采技术应用效果好。
关键词:稠油;热采;应用效果 中图分类号:T E345 文献标识码:A 文章编号:1006—7981(2012)12—0129—02 白音查干凹陷浅层稠油油藏构造复杂,储层岩性、物性变化大,地温较低,具有“薄、稠、砂、低”的特点,主要表现为河流相储层平面变化快,有效厚度薄,平面上油水关系复杂;二是原油为稠油、特稠油特性,稠油突出的特点是胶质与沥青质含量高,轻质馏份少,而且随着胶质与沥青质含量的增加,稠油的相对密度及粘度也增大,高粘度及高密度是稠油的最主要的特点,这也是区别于常规原油的主要指标。
热采区块达9块、毛8块、锡14块试采井原油粘度大、密度高、含硫量低、胶质和沥青质含量高、含蜡量低,流动性极差,产出量极少,地面脱气原油(温度50℃)粘度达89.0121×104mPa.s,原油(温度20℃)密度0.9542g /cm 3,凝固点为50~68℃,含蜡量8.01-12.4%,沥清含量0.03-0.51%,胶质含量30.67-49.25%,地层水矿化度110089ppm 。
水型Na 2SO 4;三是油藏埋藏较浅,胶结疏松,储层出砂严重;四是含油饱和度低50-66%,油井投产后初期含水较高,达50-61%。
对于稠油、特超稠油油藏,常规开采难度大。
针对地质、物性及流体特性,现场推广应用了蒸汽吞吐热采试油技术。
1 热采工艺设计按照热采地质设计,对目的层段进行射孔。
泡沫洗井:用密度0.6-0.8g/cm 3的氮气泡沫液(80℃热水配制)以500L /min 排量反洗井,至进出口液性一致。
稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油热采技术是一种针对油砂、重油等高粘度油藏开采的方法,通过供热使原油降低粘度,提高流动性,从而实现油藏的高效开发。
稠油热采技术包括蒸汽吞吐、蒸汽辗转、蒸汽驱等多种方法,下面将对其现状及发展趋势进行详细分析。
稠油热采技术的现状:1. 蒸汽吞吐技术:蒸汽吞吐是目前广泛应用的一种稠油热采技术,通过注入高温高压蒸汽使原油粘度降低,从而提高采收率。
蒸汽吞吐技术具有简单、成本较低的特点,适用于高温高压区块。
由于蒸汽吞吐技术存在注汽周期长、水汽云难以控制等问题,使得其效果受到限制。
2. 蒸汽辗转技术:蒸汽辗转技术是近年来发展起来的一种稠油热采技术,通过在油藏中形成蒸汽辗转的气体流动,使原油流动起来。
蒸汽辗转技术相比蒸汽吞吐技术具有注汽周期短、大面积覆盖等优势,适用于较大底水厚度的高粘度油藏。
目前,蒸汽辗转技术已在国内外一些油田中得到应用,取得了一定的效果。
3. 蒸汽驱技术:蒸汽驱技术以蒸汽为驱动剂,通过驱替作用将原油推向井口,实现油田的高效开发。
蒸汽驱技术具有可控性强、适应性好的特点,适用于不同地质条件的油藏。
目前,蒸汽驱技术广泛应用于国内外的重油油田中,取得了良好的开发效果。
稠油热采技术的发展趋势:1. 温度控制技术的发展:随着稠油热采技术的发展,越来越多的油田需要用到高温蒸汽进行开采,因此温度控制技术变得尤为重要。
发展更加精确、高效的温度控制技术,可以更好地实现稠油热采过程中的热能利用。
2. 系统集成技术的应用:稠油热采技术需要配套的供热、注汽、电力等设备,将来的发展方向是更加注重系统集成,在设计上更加合理地组合各个设备,实现能量的互通与优化利用。
3. 非常规能源的应用:随着能源的紧缺以及环保意识的增强,非常规能源作为替代能源的一种,未来在稠油热采技术中的应用将越来越广泛,比如生物质能源、太阳能、地热能等。
4. 人工智能技术的应用:人工智能技术能够模拟复杂的油藏开发过程并进行优化,可以实现稠油热采过程的自动化、智能化。
稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析
稠油热采工艺技术是一种采用高温热媒注入井底,使稠油升温稀释,从而提高油井产
能的一种采油方法。
稠油热采工艺技术在国内外得到广泛应用,并取得了显著的效果。
稠油热采工艺技术的应用主要体现在以下几个方面:
1. 热媒选择:稠油热采中,热媒的选择至关重要。
常用的热媒有油品混合气、蒸汽
和燃烧气。
不同的热媒具有不同的特点,其选择应根据实际情况进行。
蒸汽可通过高温高
压水蒸气进行注入,使稠油升温稀释,提高流动性,并通过密封能力强、渗透性好的特点,迅速到达油层,提高稠油的采收率。
2. 注入方式:稠油热采中,注入方式包括水平井、斜井和垂直井等。
水平井注入方
式可以增加井底温度和井筒壁面积,提高热媒与稠油之间的接触面积,从而有效提高稠油
的采收率。
斜井注入方式利用重力效应,提高泵入油井的采油效果。
垂直井注入方式则通
过井底的孔隙和裂缝来实现热媒与稠油的接触,稠油热采效果比较稳定。
3. 采油效果分析:稠油热采工艺技术经过多年的应用和实践,已经取得了显著的效果。
热采后原油凝固度降低,粘度减小,流动性增加,提高了原油的采收率。
稠油热采还
可以减少管内结垢、梯度阻力和物质阻塞等问题,延长井眼的寿命,降低了采油的成本。
稠油热采工艺技术的应用对于提高稠油的采收率、降低采油成本具有重要意义。
在具
体的应用中还需要根据实际情况综合考虑各种因素,确定最佳的工艺参数。
稠油热采工艺
技术在应用过程中还需要注意环保和安全等问题,确保工艺的可持续发展。
稠油热采开发技术

开采现状(03年底) 油井:1059口 开井:857口 日产液:11878 t, 日产油:2823 t 综合含水:76.2% 累产水:3721.5×104 t 单井平均吞吐:9.2轮次 累产油:1695.8×104 t 累注汽:2979.6×104 t 采油速度:1.81% 采出程度:29.76% 采出可采储量:84.87% 回采水率:127.1% 累计油汽比:0.57 年度油汽比:0.39 目前地层压力:3.1 MPa
油
注入 蒸汽
焖井
开井 回采
每米油层注入70-120吨水当量蒸汽,注10-20d, 井底蒸汽干度要求达到50%以上,注入压力(温度)及 速度不超过油层破裂压力。
关井焖井几天,蒸汽与孔隙介质中的原油进行热交换, 使蒸汽完全凝结为热水,避免开井回采时热能利用率降低。 焖井太长会增加向顶底层的热损失。
开井采油。第一周期,油层处于原始压力水平,开井回采时 能够自喷生产一段时间,峰值产量较高。当不能自喷时,立即下 泵转抽。随着回采时间延长,油层逐渐降温,流向井底地带及井 底的原油粘度逐渐升高,原油产量逐渐下降,当降到经济极限产 量时,结束该周期生产,进行下一周期蒸汽吞吐。
注蒸汽
30 第一周期
10
第二周期
第三周期
3
6
9 12 15 18 21 24 27 30 33 35
月
蒸汽吞吐周期生产动态示意图
4、热采(蒸汽吞吐)机理(续)
稠油油藏进行蒸汽吞吐开采的增产效果非常显著,其主要机理如下:
1) 加热降粘作用 稠油的突出特性是对温度非常敏感。当向油层注入250-350oC 高温
稠油热采技术探析或者浅谈稠油热采技术

稠油热采技术探析或者浅谈稠油热采技术摘要:依据稠油油田的特点,采取加热的方式,降低稠油的粘度,提高油流的温度,满足稠油油藏开发的条件。
热力采油技术措施是针对稠油油藏的最佳开采技术措施,经过油田生产的实践研究,采取注蒸汽开采,蒸汽吞吐采油等方式,提高稠油油藏的采收率。
关键词:稠油热采;工艺技术;探讨前言稠油热采工艺技术的应用,解决稠油油藏开发的技术难题,达到稠油开采的技术要求。
稠油热采可以将热的流体注入到地层中,提高稠油的温度,降低了稠油的粘度,达到开采的条件。
也可以在油层内燃烧,形成一个燃烧带,而提高油层的温度,实现对稠油的开发。
为了满足油田生产节能降耗的技术要求,因此,稠油开采过程中,优先采取注入热流体的方式,达到预期的开采效率。
1稠油热采概述稠油具有高粘度和高凝固点,给油田开发带来一定的难度。
采取化学降粘开采技术措施,应用化学药剂的作用,降低了油流的粘度,同时也会导致油流的化学变化,影响到原油的品质,因此,在优选稠油开采技术措施时,选择最佳热采技术措施,进行蒸汽驱、蒸汽吞吐等采油方式,并不断研究热力采油配套技术措施,节约稠油开发的成本,才能达到预期的开采效率。
2稠油的基本特点2.1稠油中胶质与沥青含量比较高,轻质馏分含量少稠油含有比例极高的胶质组分及沥青,轻质馏分比较少,稠油的黏度和密度在其中胶质组分及沥青质的成分增长的同时也会随之增加。
由此可见,黏度高并且密度高是稠油比较突出的特征,稠油的密度越大,其黏度越高。
2.2稠油对温度非常敏感稠油的黏度随着温度的增长反而降低。
在ASTM黏度-温度坐标图上做出的黏度-温度曲线,大部分稠油油田的降黏曲线均显现出斜直线状,这也验证了稠油对温度敏感性的一致性。
2.3稠油中含蜡量低。
2.4同一油藏原油性质差异较大。
3稠油热采技术的现状针对稠油对温度极其敏感这一特征,热力采油成为当前稠油开采的主要开采体系。
热力采油能够提升油层的温度,稠油的黏度和流动阻力得到了降低,增加稠油的流动性,实现降黏效果,从而使稠油的采收率变高。
稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析稠油热采工艺技术是一种有效的稠油开采方法,通过注入高温热媒使稠油流动性增加,从而提高生产效率。
本文将对稠油热采工艺技术的应用及效果进行分析。
稠油热采工艺技术的应用主要包括蒸汽驱动、蒸汽辅助重力排水、蒸汽辅助提高采程、电加热和微波加热等。
蒸汽驱动是最常用的稠油热采工艺技术,通过注入高温高压蒸汽,提高稠油温度和压力,使其流动性增加,从而实现稠油的开采。
蒸汽辅助重力排水是在低温下稠油开采后,再注入高温蒸汽,通过降低稠油粘度和温度,增加重力排水效果。
蒸汽辅助提高采程则是在已经开采过程中注入蒸汽,提高稠油温度和压力,进一步推进采程。
电加热和微波加热则是通过电能和微波辐射使稠油加热,从而提高其流动性。
稠油热采工艺技术的应用可以显著提高稠油开采的效果。
稠油热采可以提高稠油的流动性,使其更易于开采。
通过注入高温高压蒸汽,可以降低稠油的粘度,使其更易于流动,提高开采效率。
稠油热采可以有效提高采收率。
通过注入蒸汽,可以推进稠油的采程,提高采收率。
稠油热采还可以减少地面的环境污染。
相比传统的大量使用溶剂、烃类等化学品的开采方式,热采过程中只需注入蒸汽,减少了化学品的使用,减少了环境污染。
然后,稠油热采工艺技术还存在一些问题。
热采需要大量的能源供应,特别是蒸汽驱动,耗能较大。
热采可能引发地质灾害,如地表沉陷、地裂缝等。
由于稠油开采后地下蒸汽作用,地下岩土可能会发生膨胀、溶蚀等变化,导致地表沉陷、地裂缝等地质灾害。
稠油热采还可能导致水资源的浪费与污染。
热采过程中,需大量蒸汽注入,蒸汽来自水的蒸发,可能导致水资源的浪费。
蒸汽中的有机物和重金属等有害物质也可能对水资源造成污染。
稠油热采工艺技术是一种有效的稠油开采方法,通过注入高温蒸汽提高稠油的流动性,提高采收率。
热采过程中存在能源消耗大、地质灾害及水资源浪费与污染等问题。
在使用稠油热采工艺技术时应注意节能减排,加强地质灾害防治,合理利用水资源,防止环境污染。
稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油是一种质地黏稠的石油,是一种具有高含硫量和高粘度的重质原油。
由于其黏稠度高,稠油的开采和提炼相对要困难和昂贵。
稠油在全球范围内占据着相当大的比例,其资源储量丰富,因此对于石油行业来说,稠油的开采和利用具有重要的意义。
为了更有效地开采稠油资源,研发了许多热采技术。
本文将对稠油热采技术的现状及发展趋势进行探讨。
一、稠油热采技术现状1. 蒸汽吞吐法:蒸汽吞吐法是一种将高温高压蒸汽注入稠油藏层,使稠油产生稠油-水混合物,降低了稠油的黏度,从而促进油藏产液。
这种方法具有对水源要求低、操作灵活等优点,被广泛应用于加拿大、委内瑞拉等稠油资源丰富的地区。
2. 蒸汽辅助重力排放法:蒸汽辅助重力排放法是将高温高压蒸汽注入稠油层,通过蒸汽的热能作用使稠油产生流动,从而提高了油藏产液速率。
这种方法适用于深层、高黏稠度稠油层,可以挖掘更多的稠油资源。
3. 燃烧加热法:燃烧加热法利用地下燃烧或地面燃烧的方式,通过高温热能将稠油层加热,降低了稠油的粘度,从而促进了油藏的排放。
这种方法具有热效率高、可控性强等优点,是一种较为成熟的稠油热采技术。
1. 技术创新:随着石油工业的发展,热采技术也在不断创新。
未来,稠油热采技术将更加注重提高采收率、降低成本、减少环境影响等方面的技术创新,以提高稠油资源的开采效率和利用价值。
2. 能源替代:在稠油热采过程中,通常需要大量的燃料来产生热能,这不仅增加了生产成本,还会对环境产生负面影响。
未来稠油热采技术可能会向更加环保、节能的能源替代方向发展,例如采用太阳能、地热能等清洁能源进行热采。
3. 智能化应用:随着智能技术的不断发展,稠油热采技术也将向智能化方向发展。
未来,稠油热采可能会利用物联网、大数据、人工智能等技术,实现对油藏的实时监测、智能调控,从而提高生产效率和资源利用效率。
4. 油田整体化管理:随着油田规模的不断扩大,油田整体化管理成为未来热采技术发展的重要方向。
海上油田稠油热采技术探索及应用

海上油田稠油热采技术探索及应用海上油田稠油热采技术是一种当今油田开发的重要技术之一。
在过去的几十年里,随着陆上油田资源的逐渐枯竭,人们开始关注海上油田的开发。
由于海上环境的复杂性和不确定性,对于海上油田的开发一直是一个相对困难的任务。
稠油热采技术是一种将高温高压的热能施加到油层中的方法,以降低油层黏度,促进油的流动,从而提高采收率。
稠油热采技术分为燃烧法和非燃烧法两种。
燃烧法是指通过燃烧油田中的天然气或其他火源来产生热能,然后将热能通过注入井口的方式输送到油层中。
非燃烧法是指通过电加热、蒸汽注入等方式将热能直接传输到油层中。
稠油热采技术的探索和应用可以追溯到上个世纪70年代,当时加拿大的油砂油田开始进行热采试验。
凭借其稳定、高效的特点,热采技术迅速得到了全球范围内的关注和应用。
目前,稠油热采技术已经在加拿大、委内瑞拉、俄罗斯等国家广泛应用,并取得了显著的成效。
稠油热采技术的应用主要面临以下几个关键问题。
稠油热采技术需要大量的能源供应,因此能源的高效利用和节约是一个重要的问题。
稠油热采技术需要对岩石地层的物理性质、流体性质等进行深入研究,以求更好地掌握油藏的特点和规律。
稠油热采技术在实际应用中还需要考虑环境保护和安全的问题,避免对海洋生态环境的破坏和人员的伤害。
为了解决这些问题,科研人员不断进行技术创新和实验研究。
研究人员通过改进燃烧设备、优化热能传输方式、开发新的化学剂等手段,提高了稠油热采技术的效率和稳定性。
他们还开展了大量的实验和模拟计算,以期更好地理解油藏开发中的问题,并寻求解决方案。
监管机构和企业也加强了对稠油热采技术的监管和应用,以保证其安全性和环保性。
海上油田稠油热采技术的探索和应用是一个复杂而艰巨的任务。
需要在能源、环境、技术等多个方面进行综合考虑和平衡,以实现稠油热采技术的可持续发展。
随着技术的不断进步和经验的积累,相信稠油热采技术将为海上油田的开发提供更好的解决方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稠油热采工艺技术应用及效果分析
稠油热采工艺技术是一种通过加热稠油使其降低黏度,以方便开采的方法。
稠油热采
工艺技术主要包括蒸汽吞吐、电加热、电阻加热、焦耳加热、微生物采油等。
本文将对稠
油热采工艺技术的应用及效果进行分析。
蒸汽吞吐工艺是稠油热采中使用最广泛的一种工艺。
蒸汽吞吐工艺通过注入高温高压
蒸汽到井筒中,使稠油受热而降低黏度,从而使其能够被抽采。
蒸汽吞吐工艺具有成本低、采油效果好的特点,适用于具有一定温度的稠油油层。
经过实践证明,蒸汽吞吐工艺可以
使稠油的采收率提高20%以上。
电加热工艺是一种通过电流加热稠油的方法。
在电加热工艺中,通过在地下注入电极
并通电,产生高温从而加热稠油。
电加热工艺适用于具有低温稠油油层,其优点是可以局
部加热,提高采收率。
电加热工艺的成本较高,需要大量的电力供应,因此在实际应用中
受到一定的限制。
微生物采油是一种通过微生物的作用来改变稠油性质以方便开采的方法。
微生物采油
工艺主要通过注入特定的微生物群体,改变原油中的组分和性质,从而降低黏度,提高可
采性。
微生物采油工艺具有环境友好、低成本的特点,但目前仍处于实验室研究阶段。
稠油热采工艺技术应用广泛且效果显著,可以提高稠油开采的可行性和效率。
不同的
工艺技术适用于不同类型的油层,因此在实际应用中需要根据具体情况选择最合适的工艺
技术。
未来,随着技术的不断发展,稠油热采工艺技术将会进一步完善,为稠油资源的开
采提供更多的选择和可能。