汽轮机胀差大的原因
汽轮机运行中胀差的分析和控制

汽轮机运行中胀差的分析和控制当汽轮机在启动加热、停机冷却过程中,或在运行中工况变化时,汽缸和转子会产生热膨胀或冷却收缩,由于转子的受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大,因此,在相同的条件下,转子的温度变化比汽缸快,使得转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言的,把转子与汽缸之间热膨胀的差值称为相对膨胀差,简称胀差。
当转子轴向膨胀大于汽缸的轴向膨胀时,称为正膨胀;反之若转子轴向膨胀小于汽缸的轴向膨胀时,称为负膨胀。
一.汽轮机胀差的产生汽缸和转子之间出现胀差的主要原因是它们的结构和工作条件不同。
由于转子与汽缸之间存在温差,各自受热状况不一样,转子质量小但接触蒸汽的面积大,温升和热膨胀较快,而汽缸质量大,温升和热膨胀就比较慢,因此在转子和汽缸热膨胀还没有达到稳定前,他们之间就有较大的胀差。
同理,由于转子比汽缸体积小,转子的冷却收缩也比汽缸的冷却收缩快,这时它们之间也会产生较大胀差。
汽轮机启动加热,从冷态变为热态,汽缸受热发生热膨胀,汽缸向高压侧或低压侧伸长。
同样转子也因受热发生热膨胀。
转子膨胀大于汽缸,其相对膨胀差被称为正胀差。
汽轮机带负荷后,转子和汽缸受热面逐渐于稳定,热膨胀逐渐区于饱和,它们之间的相对膨胀差也逐渐减小,最后达到某一稳定。
二.胀差过大的危害胀差的大小意味着汽轮机动静轴向间隙相对于静止时的变化,正胀差表示自喷嘴至动叶间隙增大;反之,负胀差表示该轴向间隙减小。
汽轮机轴封和动静叶片之间的轴向间隙都很小,若汽轮机启停或运行中胀差变化过大,超过了轴封以及动静叶片间正常的轴向间隙时,就会使轴向间隙消失,导致动静部件之间发生摩擦,引起机组振动,以至造成机组损坏事故。
因此,汽轮机都规定有胀差允许的极限值,它是根据动静叶片或轴封轴向最小间隙来确定的。
当转子与汽缸间隙相对膨胀差值达到极限值时,动静叶片或轴封轴向最小间隙仍留有一定的合理间隙。
不同容量的汽轮机组胀差允许极限值不同。
汽轮发电机低压缸胀差大原因分析及处理

汽轮发电机低压缸胀差大原因分析及处理汽轮发电机是一种利用汽轮机转动发电机发电的装置。
汽轮发电机的低压缸胀差是指在使用过程中,低压缸前后缸衬之间的胀差变大,导致压力泄漏增加,功率减弱,工作效率下降的问题。
下面将对汽轮发电机低压缸胀差大的原因进行分析,并提供相应的解决方法。
1.低压缸衬材质问题:低压缸衬材质选择不合适,导致其抗热胀性能不足,容易在工作温度下产生较大胀差。
解决方法是更换高性能的衬套材料,如高温合金。
2.温度控制问题:在汽轮发电机运行中,由于管路、冷却系统等问题,导致低压缸温度控制不良,超过了设计要求,造成衬套过度膨胀,胀差增大。
解决方法是优化冷却系统,确保低压缸温度在可控范围内。
3.衬套密封不良:低压缸衬套与缸体之间的密封不良导致压力泄漏,增加了压力差,使得衬套产生较大胀差。
解决方法是检查并修复衬套密封问题,确保衬套与缸体之间的紧密连接。
4.衬材磨损问题:低压缸衬套长时间使用后,由于磨损、疲劳等原因,失去了原有的密封性能,导致胀差增大。
解决方法是定期检查衬套磨损情况,及时更换磨损严重的衬套,延长发电机使用寿命。
5.运行过程中的振动问题:汽轮发电机在运行过程中受到振动的影响,振动过大会导致低压缸衬套松动,增加了胀差。
解决方法是加强对汽轮发电机的振动监测和控制,有效减小振动对衬套的影响。
综上所述,汽轮发电机低压缸胀差大的原因可能是多方面的,包括材料、温度控制、密封、磨损和振动等问题。
针对这些原因,需要进行相应的处理方法,如更换衬套材料、优化温度控制系统、修复密封问题、定期更换磨损的衬套以及加强振动监测和控制。
通过这些措施,可以有效降低低压缸胀差,提高汽轮发电机的运行效率和使用寿命。
汽轮机轴向位移与胀差增大原因及处理

汽轮机轴向位移与胀差汽轮机轴向位移与胀差 (1)一、汽轮机轴向位移增大的原因 (1)二、汽轮机轴向位移增大的处理 (1)三、汽机轴向位移测量失灵的运行对策 (1)汽轮机的热膨胀和胀差 (2)相關提問: (2)1、轴向位移和胀差的概念 (3)2、轴向位移和胀差产生的原因(影响机组胀差的因素) (3)使胀差向正值增大的主要因素简述如下: (3)使胀差向负值增大的主要原因: (4)正胀差 - 影响因素主要有: (4)3、轴向位移和胀差的危害 (6)4、机组启动时胀差变化的分析与控制 (6)1、汽封供汽抽真空阶段。
(7)2、暖机升速阶段。
(7)3、定速和并列带负荷阶段。
(7)5、汽轮机推力瓦温度的防控热转贴 (9)1 润滑油系统异常 (9)2 轴向位移增大 (9)3 汽轮机单缸进汽 (10)4 推力轴承损坏 (10)5 任意调速汽门门头脱落 (10)6 旁路系统误动作 (10)7 结束语 (10)汽轮机轴向位移与胀差轴向位移增大原因及处理一、汽轮机轴向位移增大的原因1)负荷或蒸汽流量突变;2)叶片严重结垢;3)叶片断裂;4)主、再热蒸汽温度和压力急剧下降;5)轴封磨损严重,漏汽量增加;6)发电机转子串动;7)系统周波变化幅度大;8)凝汽器真空下降;9)汽轮机发生水冲击;10)推力轴承磨损或断油。
二、汽轮机轴向位移增大的处理1)当轴向位移增大时,应严密监视推力轴承的进、出口油温、推力瓦金属温度、胀差及机组振动情况;2)当轴向位移增大至报警值时,应报告值长、运行经理,要求降低机组负荷;3)若主、再热蒸汽参数异常,应恢复正常;4)若系统周波变化大、发电机转子串动,应与PLN调度联系,以便尽快恢复正常;5)当轴向位移达-1.0mm或+1.2mm时保护动作机组自动停机。
否则手动打闸紧急停机;6)轴向位移增大虽未达跳机值,但机组有明显的摩擦声及振动增加或轴承回油温度明显升高应紧急停机;7)若轴向位移增大而停机后,必须立即检查推力轴承金属温度及轴承进、回油温度,并手动盘车检查无卡涩,方可投入连续盘车,否则进行定期盘车。
汽轮机差胀过大的原因分析及改进措施

汽轮机差胀过大的原因分析及改进措施摘要: 从相对膨胀产生的理论出发, 针对焦作韩电发电有限公司1 号机的实际情况, 分启动和运行 2 个过程, 对汽轮机相对膨胀值大的原因进行了分析, 并介绍了所采取的相应控制措施或注意事项, 以及在实际生产中起到的作用作出了举例证明。
关键词: 相对膨胀; 滑销; 温升率1前言我公司1 号汽轮机型号是C C50-8.83/4。
22/1。
57, 系哈尔宾汽轮机厂生产的双缸、单轴、双抽汽凝汽式汽轮机, 进汽温度535℃, 额定进汽量为224t, 中压额定抽汽量为30吨, 最大抽汽量为60吨。
低压抽汽量为50吨,最大抽汽量为50吨。
该机组投运后, 相对膨胀值及机组转动产生的噪声明显偏大, 特别是在启动过程中, 相对膨胀值超过规定值, 影响开机升速和升负荷时间, 是制约顺利开机的主要因素。
投运初期, 开机时间在10h以上, 开机时间明显偏长。
2控制相对膨胀的重要性金属物件在受热后, 向各个方向膨胀, 高温高压汽轮机从冷态启动到带额定负荷运行, 金属温度的变化很大400~500℃。
因此, 汽缸及汽轮机各部件的轴向、垂直、水平各个方向的尺寸都会因受热明显增大。
汽轮机各部件膨胀量不同, 使得各部件的相对位置发生变化, 其变化量超过汽轮机动静部分的允许间隙后, 动静部件将会发生磨擦, 导致汽轮机损坏, 甚至报废等严重后果。
为了控制汽轮机的动静部分不摩擦, 汽缸的轴向膨胀和汽缸与转子的相对膨胀就成为开机过程中重要的控制指标。
汽轮机在启动暖机过程, 转子以推力轴承机头,1号瓦处为死点向后膨胀, 汽缸以后轴承座中点2 号瓦处为死点向前膨胀, 二者的膨胀差值即为相对膨胀习惯称为胀差。
当转子膨胀值大于汽缸膨胀值时, 相对膨胀为正值, 该值过大时可造成动叶片出口处与下级喷嘴摩擦。
当转子膨胀值小于汽缸膨胀值时, 相对膨胀为负值, 该值过大时可造成动叶片进口处与喷嘴摩擦。
因此, 汽轮机的相对膨胀值的控制相当重要。
汽轮机启动时胀差大的原因

汽轮机启动时胀差大的原因胀差是指在汽轮机启动过程中,由于热胀冷缩的不均匀性导致的零部件间的间隙变化。
在汽轮机启动初期,由于机组处于冷态,各个零部件的温度不均匀,热胀冷缩不一致,从而引起胀差现象。
汽轮机启动时胀差大会对机组运行安全和可靠性产生不利影响。
本文将从几个方面探讨汽轮机启动时胀差大的原因。
汽轮机启动时胀差大的原因之一是机组处于冷态,各个零部件的温度差异较大。
在长时间停机后重新启动汽轮机时,由于机组内部温度下降,各个零部件的温度差异较大,导致热胀冷缩不均匀。
例如,汽轮机的叶片、轴承等零部件冷却后会收缩,而轴、壳体等零部件由于处于低温下,胀缩程度较小。
这样就会导致零部件之间的配合间隙变大,出现胀差现象。
汽轮机启动时胀差大的原因还与机组内部的温度分布不均匀有关。
在汽轮机启动初期,由于各个零部件的热容量和传导能力不同,热量分布不均匀。
例如,汽轮机的叶片、轴承等零部件会因为受到高温蒸汽的冲击而迅速升温,而壳体等零部件由于热容量大、传导能力差,升温较慢。
这样就会导致零部件之间的温差较大,引起胀差现象。
汽轮机启动时胀差大的原因还与机组内的热应力有关。
在汽轮机启动过程中,由于温度变化较大,零部件会产生相应的热应力。
例如,汽轮机的叶片由于受到高温蒸汽的冲击,会产生较大的热应力。
而壳体等零部件由于热容量大、传导能力差,温度变化较小,热应力较小。
这样就会导致不同零部件之间的热应力差异较大,引起胀差现象。
汽轮机启动时胀差大的原因还与机组内的材料性质有关。
不同材料的热胀冷缩系数不同,热胀系数大的材料在温度变化时胀缩程度较大,而热胀系数小的材料胀缩程度较小。
在汽轮机启动初期,由于机组内部的温度变化较大,不同材料之间的胀缩程度差异较大,从而引起胀差现象。
汽轮机启动时胀差大的原因主要包括机组处于冷态、机组内部温度分布不均匀、机组内的热应力以及材料性质等因素。
为了减少汽轮机启动时的胀差现象,可以采取一些措施。
例如,在汽轮机启动前可以进行预热,提高机组的温度,减少温度差异;在设计和制造过程中,可以优化零部件的配合间隙,减少胀差现象的发生;在运行过程中,可以合理控制汽轮机的启动速度,减少温度变化的幅度。
汽轮机组启停过程中胀差的分析和控制

参 数过 高 ; ( )汽 缸 保温 层 的保温 效 果 不佳 或 者 有保 温 层 6 脱 落 现象 。在 严 寒季 节 里 ,汽 机 房 室温 太 低或 有 穿
堂 冷风 ;
8
汽 轮机 组 启停 过 程 中胀 差 的分 析和 控 制 ( )胀 差 指示 器 的零 点 不准 或 者 触 点 磨 损 , 引 7 ( )滑 参 数 启动 或 停 机 过程 中 ,根 据 缸 温 选 择 2
比较 差 ,容 易发 生 卡涩现 象 ;
( )轴 封 供汽 温 度 过 高或 供汽 流 量 过 大 ,引 起 4
轴 颈过 份伸 长 ;
( )机 组 在 启动 时 ,进 汽 压 力 、温 度 、流 量 等 5
对 轴 向间 隙发 生 较 大变 化 。如 果两 者 间 的热增 长 差 值 超 过 汽轮 机 所 允 许 的 间 隙公 差 ,就 会 发 生 动静 部 分 碰 磨 ,可 能 引起机 组 振动 增 大 ,甚 至 发生 掉 叶片 、 大 轴 弯 曲等严 重 事 故 。为 了 防止 这类 故障 的发 生 ,
升 负荷太 快 ;
缩 的速度 要快 。在 开始 加 热 时 ,转 子 的膨 胀数 值 大
于 汽 缸 ,汽 缸 与 转 子之 间 发 生 的 热膨 胀 差 值称 为 汽 轮 机 相对 胀 差 。若 转 子轴 向膨 胀值 大 于 汽 缸 ,则 称
( )汽 缸 夹层 、法 兰加 热 装 置 的加 热蒸 汽 温 度 2
太 低或 者流 量较 低 ,引起 的加 热 作用 较弱 ; ( )汽 轮 机滑 销 系 统 或者 轴承 台板 的滑 动 性 能 3
为 正 胀 差 :反 之 称 为 负胀 差 。在稳 定 的工 况 下汽 缸
和 转 子 的温 度 趋 于 稳 定值 ,相 对胀 差 也 趋 于一 个 定 值 。机 组启 停 时 , 由于转 子 和汽 缸 温 度 变 化 的速 度 不 同 ,就会 产 生 较 大 的胀 差 ,即汽 轮 机 动 静 部分 相
汽轮机胀差、轴向位移的产生原因

当凝汽器真空升高时,排汽温度降低,可能导致负胀差增大 ;反之,真空降低时,胀差可能增大。
轴封供汽温度的影响
轴封供汽温度过高或过低会影响轴封的间隙大小,进而影 响汽轮机的热膨胀。
若轴封供汽温度与汽缸温度不匹配,可能导致胀差异常波 动。
02 汽轮机轴向位移的产生原因
CHAPTER
推力轴承故障
推力轴承损坏或磨损
机组负荷的快速变化
负荷突增或突减
汽轮机在运行过程中,如果机组负荷发生突增或突减,会导致汽缸和转子受到的蒸汽作用力发生变化,从而引起 轴向位移。
甩负荷
甩负荷是指汽轮机突然失去负荷的情况,如电网故障导致负荷突然消失。甩负荷过程中,汽轮机内部的蒸汽压力 和流量会发生剧烈波动,导致轴向位移的发生。
03 汽轮机胀差和轴向位移的关联性
快速响应蒸汽参数和机组负荷的变化
01
快速响应蒸汽参数和机组负荷的变化也是预防汽轮机胀差和轴向位移的重要措 施之一。蒸汽参数和机组负荷的快速变化可能导致转子热弯曲和动静摩擦等问 题。
02
应加强蒸汽参数和机组负荷的监测和控制,确保在出现异常情况时能够及时发 现并处理。同时,应优化控制系统的算法,提高其对蒸汽参数和机组负荷变化 的响应速度。
CHAPTER
胀差与轴向位移的关系
胀差是指汽轮机转子相对于汽缸发生的膨胀或收缩,而轴向位移是指转子轴心的位 置相对于汽缸的变化。
在汽轮机运行过程中,胀差和轴向位移的变化通常是相互关联的。当转子受热膨胀 时,轴向位移也会随之增大,反之亦然。
胀差和轴向位移的变化通常受到多种因素的影响,如蒸汽参数、机组负荷、润滑油 系统等。
推力轴承是汽轮机的重要部件,负责 承受转子的轴向推力。如果推力轴承 出现故障,如磨损或损坏,会导致轴 向位移的发生。
汽轮机胀差异常及处理

1.1 汽轮机胀差异常
1.1.1 现象:
1.胀差异常报警;
2.严重时汽轮机内部有异音,机组振动增大。
1.1.2 原因:
1.汽机启动时,参数选择不当,主、再热蒸汽温度与汽缸温度不匹配;
2.上、下缸温差大,造成汽机胀差异常;
3.运行时主、再热汽急剧变化
4.汽轮机发生水冲击;
5.热工仪表指示失常;
6.汽轮机负荷变化范围大;
7.轴向位移增大引起胀差异常。
8.主汽压力、主汽温度以及真空变化较大。
9.加热器投、停。
10.滑销系统卡涩。
11.轴封汽源参数控制不当。
1.1.3 处理:
1.当发现汽机胀差指示异常时,应核对有关表记指示正确,确认胀差指示异常;
2.检查汽缸上、下温差,超过规定值时应停止汽机运行;
3.控制锅炉负荷不发生大的波动;
4.检查主、再热蒸汽温度不应有太大的波动,检查减温水调节门动作是否正常;
5.机组启动过程中,保持主、再热蒸汽温度与汽缸温度相匹配;
6.发现汽缸胀差异常时应对各种参数进行综合分析,及时发现问题;
7.汽缸胀差异常时,应尽量停止负荷的变化,使胀差不会发生太大的变化趋势;
8.低压差胀:正向增大时,可临时有限降低真空,提高排汽缸温度;负向增大时,投
入低压缸喷水,降低排汽缸温度。
9.当胀差有太大的变化时,应到就地听机组声音,发现有金属摩擦声音时应停止汽机
运行,破坏真空。
10.机组启动时,根据汽缸温度选择轴封汽源,使轴封温度与金属温度相匹配;在热态
启动时,防止负差胀增大,尽快升负荷至对应缸温下的负荷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮机胀差大的原因
汽轮机是一种利用燃烧热能转化为机械能的设备,在工业生产和发电领域广泛应用。
而汽轮机的胀差是指在运行过程中,由于不同部件受热膨胀程度不同而引起的尺寸变化差异。
胀差的存在会对汽轮机的正常运行和性能产生一定的影响,下面将从几个方面探讨造成汽轮机胀差大的原因。
温度变化是导致汽轮机胀差的主要原因之一。
在汽轮机运行过程中,各个部件会受到高温蒸汽的冲击和热辐射,从而导致局部温度升高。
由于不同部件的材料性质和结构特点不同,其热膨胀系数也会有所差异。
因此,在温度变化过程中,不同部件的尺寸会发生不同程度的变化,从而产生胀差现象。
材料的热膨胀性能是影响汽轮机胀差的关键因素。
不同材料具有不同的热膨胀特性,有些材料的热膨胀系数较大,而有些材料的热膨胀系数较小。
在汽轮机中,各个部件多采用不同的材料,如铁、钢、铜、铝等。
由于材料的热膨胀系数不同,当汽轮机在运行过程中受到热膨胀影响时,不同材料的部件会产生不同程度的胀差。
汽轮机的结构设计也会影响到胀差的大小。
在汽轮机的设计中,需要考虑到部件的热膨胀特性以及运行时受到的温度变化,合理安排各个部件的间距和连接方式,以减小胀差的影响。
如果结构设计不合理,部件之间的连接方式不牢固,容易受到温度变化的影响,从
而导致胀差增大。
汽轮机运行过程中的热应力也是导致胀差的重要因素。
由于汽轮机在运行过程中会受到高温蒸汽的冲击,各个部件会承受不同程度的热应力。
当热应力超过材料的承受范围时,就会导致部件的变形和破坏,进而增大胀差。
总结起来,汽轮机胀差大的原因主要包括温度变化、材料的热膨胀性能、结构设计和热应力等因素。
为了减小汽轮机胀差的影响,可以采取以下措施:合理选择材料,尽量使用热膨胀系数较小的材料;优化结构设计,合理安排部件间的间距和连接方式;加强温度控制,减小温度变化范围;加强材料性能测试和质量控制,确保部件的承受能力符合要求。
通过这些措施的实施,可以有效减小汽轮机胀差,提高其运行效率和可靠性。