成都中考数学复习专题——应用题

合集下载

中考数学专题实际应用题(解析版)

中考数学专题实际应用题(解析版)
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
【答案】(1)去年餐饮收入11万元,住宿收入5万元;(2)今年土特产销售至少有6.4万元的收入
【解析】
【分析】
(1)设去年餐饮收入为x万元,住宿为收入y万元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设今年土特产的收入为m万元,根据题意列出不等式,求出不等式的解集即可得到结果.
【详解】解:(1)设去年餐饮收入x万元,住宿收入y万元,
依题意得: ,
解得: ,
答:去年餐饮收入11万元,住宿收入5万元;
【答案】(1) ;(2)①60,②20,1500;(3)当 时,捐赠后 每天的剩余利润不低于1025元
【解析】
【分析】
(1)从表格中取点代入一次函数解析式即可求解;(2)①由表格信息规律直接填写答案,或利用(1)中的函数解析式,求当 时的函数值.②建立W与 的函数关系式,利用二次函数性质求最大值即可.(3)先求捐赠后的利润为1025元时的销售单价,再利用二次函数的性质直接下结论即可;
2.(2019年重庆市中考数学模拟试卷5月份试题)今年五一期间,重庆洪崖洞民俗风情街景区受热棒,在全国最热门景点中排名第二.许多游客慕名来渝到网红景点打卡,用手机拍摄夜景,记录现实中的“千与千寻”,手机充电宝因此热销.某手机配件店有A型(5000毫安)和B型(10000毫安)两种品牌的充电宝出售
(1)已知A型充电宝进价40元,售价60元,B型充电宝进价60元,要使B型充电宝的利润率不低于A型充电宝的利润率,则B型充电宝的售价至少是多少元(利润率= ×100%)

中考数学专题复习--应用题行程问题

中考数学专题复习--应用题行程问题

行程问题应用题
1.一列队伍长120米,在队伍行进时,通讯员从队尾赶到队首又立即返回队尾,若这段时间内队伍向前进了288米,队伍及通讯员速度始终不变,那么这段时间通讯员行走路程是多少?
2.某铁路桥长1000米,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间共40S,求火车的速度和长度。

3.甲乙二人分别从AB两地同时出发,相向而行,他们第一次相遇时距离A地60千米,然后两人继续前行,分别到达BA后调头继续前行。

当他们第二次相遇时距离B地30千米。

问AB两地的距离是多少?
4.在复线铁路上,快车和慢车分别从两个车站开出,相向而行。

快车车身长是180米,速度为每秒钟9米;慢车车身长210米,车速为每秒钟6米。

从两车头相遇到两车的尾部离开,需要几秒钟?
5.甲、乙二人分别从A、B两地同时相向而行,甲每小时行5千米,乙每小时行4千米。

二人第一次相遇后,都继续前进,分别到达B、A两地后又立即按原速度返回。

从开始走到第二次相遇,共用了6小时。

A、B两地相距多少千米?
6.一排解放军从驻地出发去执行任务,每小时行5千米。

离开驻地3千米时,排长命令通讯员骑自行车回驻地取地图。

通讯员以每小时10千米的速度回到驻地,取了地图立即返回。

通讯员从驻地出发,几小时可以追上队伍?。

2024成都中考数学一次函数应用题预测精选及答案解析

2024成都中考数学一次函数应用题预测精选及答案解析

2024成都中考数学一次函数应用题预测精选一.解答题(共14小题)1.(2024•苏州一模)3月12日植树节,某中学需要采购一批树苗开展种植活动.据了解,市场上每捆A 种树苗的价格是树苗基地的倍,用300元在市场上购买的A种树苗比在树苗基地购买的少2捆.(1)求树苗基地每捆A种树苗的价格.(2)树苗基地每捆B种树苗的价格是40元.学校决定在树苗基地购买A,B两种树苗共100捆,且A 种树苗的捆数不超过B种树苗的捆数.树苗基地为支持该校活动,对A、B两种树苗均提供八折优惠.求本次购买最少花费多少钱.2.(2022•福建)在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.3.(2022•盐城)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)4.(2024•新吴区一模)天气渐热,某商家购进一种冰镇饮料,每瓶进价是4元,并规定每瓶售价不得少于6元,日销售量不低于40瓶.根据以往销售经验发现,当每瓶售价定为6元时,日销售量为60瓶,每瓶售价每提高1元,日销售量减少5瓶.设每瓶售价为x元,日销售量为p瓶.(1)当x=8时,p=;(2)当每瓶售价定为多少元时,日销售利润w(元)最大?最大利润是多少?(3)判断命题:“日销售额最大时,日销售利润不是最大”是命题(填“真”或“假”),并说明理由.5.(2024•梁溪区一模)为迎接即将到来的“五一劳动节”,某日用品超市推出了两种优惠促销方式供顾客选择,并规定顾客只能选择其中一种促销方式进行结算付款.促销方式一:按所购商品原价打85折;促销方式二:按所购商品原价每满300减60.(如:所购商品原价为340元,则减60元,需付款280元;所购商品原价为630元,则减120元,需付款510元)(1)若某商品原价为500元,该选择哪种促销方式更优惠?请说明理由;(2)当商品原价为多少时,两种促销方式一样优惠;(3)若某商品原价为m元(0<m<900),请问当m满足什么条件时,促销方式二比促销方式一更优惠,请说明理由.6.(2024•梁溪区校级一模)某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~50千克之间(含20千克和50千克)时,每千克批发价是5元;若超过50千克时,批发的这种蔬菜全部打八折.(1)此种蔬菜的日销售量y(千克)受零售价x(元/千克)的影响较大,为此该经销商试销一周获得如下数据(y是x的一次函数):零售价x(元/千克)5 5.56 6.57日销售量y(千克)9075604530根据以上数据求出y与x之间的函数关系式;(2)若每天批发的蔬菜能够全部销售完,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?7.(2024•惠山区一模)随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售.据了解,2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,问:购进A型、B 型各几辆,才能获得最大利润?最大利润是多少?8.(2024•泗洪县三模)某商店以30元/件的进价购进了某种商品,这种商品在60天内的日销售价(单位:元/件)与时间x(单位:天)之间的关系如表格所示:第x天(x为整数)1≤x≤4041≤x≤60日销售价(元/件)60﹣0.5x40日销售量y(单位:件)与时间x(单位:天)之间的函数表达式为y=,其中x为整数.(1)求第30天的销售利润;(2)该商品在第几天的日销售利润最大?最大日销售利润是多少?日销售利润=(日销售价﹣进价)×日销售量9.(2024•玄武区一模)小美驾驶电动汽车从家出发到某景点游玩,行驶一段时间,停车充电,电量充满后继续行驶,到达景点时汽车剩余电量与出发时恰好相同.在景点游玩一段时间后,按原路返回到家.小美往返均以80km/h的速度匀速行驶,汽车每小时的耗电量均相同,往返全程一共用时6.5小时,汽车剩余电量Q(kw•h)与时间t(h)的函数关系如图①所示.(1)该电动汽车每小时的充电量为kw•h;(2)求线段AB所表示的Q与t之间的函数表达式;(3)在图②中,画出小美离家的距离S(km)与t的函数图象.10.(2023•内蒙古)随着科技的发展,扫地机器人(图1)已广泛应用于生活中.某公司推出一款新型扫地机器人,经统计该产品2022年每个月的销售情况发现,每台的销售价格随销售月份的变化而变化.设该产品2022年第x(x为整数)个月每台的销售价格为y(单位:元),y与x的函数关系如图2所示(图中ABC为一折线).(1)当1≤x≤10时,求每台的销售价格y与x之间的函数关系式;(2)设该产品2022年第x个月的销售数量为m(单位:万台),m与x的关系可以用m=x+1来描述、求哪个月的销售收入最多,最多为多少万元?(销售收入=每台的销售价格×销售数量)11.(2023秋•江都区期末)为了救援地震灾区,某市A、B两厂共同承接了生产500吨救灾物资任务,A 厂生产量是B厂生产量的2倍少100吨,这批救灾物资将运往甲、乙两地,其中甲地需要物资240吨,乙地需要物资260吨,运费如表:(单位:元/吨)目的地甲乙生产厂家A2025B1524(1)A厂生产了吨救灾物资、B厂生产了吨救灾物资;(2)设这批物资从B厂运往甲地x吨,全部运往甲、乙两地的总运费为w元,求w与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费降低a元,(0<a≤15,且a为整数),若按照(2)中设计的调运方案运输,且总运费不超过5400元,求a的最小值.12.(2022•苏州)某水果店经销甲、乙两种水果,两次购进水果的情况如表所示:进货批次甲种水果质量(单位:千克)乙种水果质量(单位:千克)总费用(单位:元)第一次60401520第二次30501360(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大利润不低于800元,求正整数m的最大值.13.(2023秋•邢台期末)如图,某景区内的游览车路线是边长为1000米的正方形ABCD,现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为200米/分.设行驶时间为t分.(1)两车首次相遇时,求t的值.(2)当0≤t≤10时,求t为何值时两车相距的路程是400米?(3)一游客在DA上从D向出口A走去,当步行到DA上一点P时,刚好与2号车迎面相遇,设PD =S米(0<S<1000).若该游客从P点到出口A有以下两种方式:方式1:立即乘坐2号车;方式2:在P点等候乘坐1号车.请用含S的代数式分别表示这两种方式该游客从P点到出口A的时间;并据此判断哪一种方式用时少,少多少分钟?14.(2024•杭州模拟)如图①所示,在A、B两地之间有一车站C,甲车从A地出发经C站驶往B地,乙车从B地出发经C站驶往A地,两车同时出发,匀速行驶,图②是甲、乙两车行驶时离C站的路程,y(km)与行驶时间x(h)之间的函数图象.(1)填空:a的值为,m的值为,AB两地的距离为km.(2)求m小时后,乙车离C站的路程y(km)与行驶时间x(h)之间的函数关系式.(3)请直接写出乙车到达A地前,两车与车站C的路程之和不超过300km时行驶时间x的取值范围.参考答案与试题解析一.解答题(共14小题)1.【解答】解:(1)设树苗基地每捆A种树苗的价格是x元,则市场上每捆A种树苗的价格是x元,根据题意得:﹣=2,解得:x=30,经检验,x=30是所列方程的解,且符合题意,答:树苗基地每捆A种树苗的价格是30元;(2)设购买m捆A种树苗,则购买(100﹣m)捆B种树苗,根据题意得:m≤100﹣m,解得:m≤50.设本次购买共花费w元,则w=30×0.8m+40×0.8(100﹣m),即w=﹣8m+3200,∵﹣8<0,∴w随m的增大而减小,∴当m=50时,w取得最小值,最小值=﹣8×50+3200=2800(元).答:本次购买最少花费2800元钱.2.【解答】解:(1)设购买绿萝x盆,吊兰y盆,依题意得:,解得:.∵8×2=16,16<38,∴符合题意.答:购买绿萝38盆,吊兰8盆.(2)设购买绿萝m盆,则购买吊兰(46﹣m)盆,依题意得:m≥2(46﹣m),解得:m≥.设购买两种绿植的总费用为w元,则w=9m+6(46﹣m)=3m+276,∵3>0,∴w随m的增大而增大,又∵m≥,且m为整数,∴当m=31时,w取得最小值,最小值=3×31+276=369.答:购买两种绿植总费用的最小值为369元.3.【解答】解:(1)如图,过点A作AE⊥CB,垂足为E,在Rt△ABE中,AB=5m,∠ABE=37°,∵sin∠ABE=,cos∠ABE=,∴=0.60,=0.80,∴AE=3m,BE=4m,∴CE=6m,在Rt△ACE中,由勾股定理AC==3≈6.7m.(2)过点A作AF⊥CD,垂足为F,∴FD=AO=1m,∴CF=5m,在Rt△ACF中,由勾股定理AF==2m.∴OD=2≈4.5m.4.【解答】解:(1)p=60﹣5×(8﹣6)=60﹣10=50,故答案为:50;(2)由题意可得,p=60﹣5(x﹣6)=﹣5x+90,则w=(x﹣4)(﹣5x+90)=﹣5(x﹣11)2+245,∵每瓶售价不得少于6元,日销售量不低于40瓶,∴,解得6≤x≤10,∵﹣5<0,∴当x=10时,w有最大值,最大利润为240,答:当每瓶售价定为10元时,日销售利润w(元)最大,最大利润是240元;(3)设日销售额为y元,则y=x(﹣5x+90)=﹣5(x﹣9)2+405,∵﹣5<0,6≤x≤10,∴当x=9时,日销售额y有最大值为405元,而此时日销售利润w为225元,不是最大,所以原命题是真命题,故答案为:真.5.【解答】解:(1)选择促销方式一更优惠,理由如下:选择促销方式一需付款500×85%=425(元);选择促销方式二需付款500﹣60=440(元).∵425<440,∴选择促销方式一更优惠;(2)设商品原价为x元,当300≤x<600时,85%x=x﹣60,解得:x=400;当600≤x<900时,85%x=x﹣120,解得:x=800;当900≤x<1200时,85%x=x﹣180,解得:x=1200(不符合题意,舍去),∴当x≥900时,不存在.答:当商品原价为400元或800元时,两种促销方式一样优惠;(3)当0<m<300时,选择促销方式一需付款85%m元,选择促销方式二需付款m元,∴此时促销方式一比促销方式二更优惠;当300≤m<600时,选择促销方式一需付款85%m元,选择促销方式二需付款(m﹣60)元,根据题意得:85%m>m﹣60,解得:m<400,∴当300≤m<400时,促销方式二比促销方式一更优惠;当600≤m<900时,选择促销方式一需付款85%m元,选择促销方式二需付款(m﹣120)元,根据题意得:85%m>m﹣120,解得:m<800,当600≤x<800时,促销方式二比促销方式一更优惠.答:当300≤m<400或600≤x<800时,促销方式二比促销方式一更优惠.6.【解答】解:(1)设y=kx+b,把(5,90),(6,60)代入得:,解得,∴y=﹣30x+240;(2)设经销商销售此种蔬菜的当日利润为w元,①当20≤x≤50时,w=(﹣30x+240)(x﹣5)=﹣30x2+390x﹣1200=﹣30(x﹣6.5)2+67.5,∵﹣30<0,∴当x=6.5时,w最大值为67.5,此时y=﹣30×6.5+240=45;②当x>50时,w=(﹣30x+240)(x﹣5×0.8)=﹣30x2+360x﹣960=﹣30(x﹣6)2+120,∵﹣30<0,∴当x=6时,w取最大值120,此时y=﹣30×6+240=60;∵120>67.5,∴零售价定为6元时,该经销商销售此种蔬菜的当日利润最大,最大利润为120元.7.【解答】解:(1)设每辆A型汽车的进价是x万元,每辆B型汽车的进价是y万元,根据题意得:,解得:.答:每辆A型汽车的进价是25万元,每辆B型汽车的进价是10万元;(2)设该公司购进m辆A型汽车,全部售出后获得的总利润为w万元,则该公司购进辆B 型汽车,根据题意得:w=8000m+5000×,即w=﹣4500m+100000,∵﹣4500<0,∴w随m的增大而减小,又∵m,均为正整数,∴m的最小值为2,∴当m=2时,w取得最大值,最大值为﹣4500×2+100000=91000(元),此时==15(辆).答:购进2辆A型汽车,15辆B型汽车时,才能获得最大利润,最大利润是91000元.8.【解答】解:(1)当x=30时,日销售价格为60﹣0.5×30=60﹣15=45(元),日销售量为30+20=50(件),日销售利润为(45﹣30)×50=750(元),答:第30天的销售利润为750元;(2)该商品的日销售利润为w元,当1≤x≤40时,w=(60﹣0.5x﹣30)(x+20)=﹣0.5x2+20x+600=﹣0.5(x﹣20)2+800,∵﹣0.5<0,∴当x=20时,w有最大值,最大值为800;当41≤x≤60时,w=(40﹣30)(﹣x+80)=﹣5x+800,∵﹣5<0,∴当x=41时,w有最大值,最大值为595,∵800>595,∴商品在第20天的日销售利润最大,最大日销售利润是800元.9.【解答】解:(1)∵=100(kw•h),∴电动汽车每小时的充电量为100kw•h;故答案为:100;(2)∵到达景点时汽车剩余电量与出发时恰好相同,∴汽车行驶时每小时耗电=20(kw•h),∴到达景点时汽车剩余电量为100﹣20×(3﹣1.5)=70(kw•h),设线段AB所表示的Q与t之间的函数表达式为Q=kt+b,则,解得,∴线段AB所表示的Q与t之间的函数表达式为Q=﹣20t+130(1.5≤t≤3);(3)根据题意,小美在景区游玩了6.5﹣2[1+(3﹣1.5)]﹣(1.5﹣1)=1(小时),∴当t=4时,小美游玩结束开始返回,∴当0≤t≤1时,S=80t,图象过(0,0),(1,80),当1<t≤1.5时,S=80,图象过(1.5,80),当1.5<t≤3时,S=80+80(t﹣1.5)=80t﹣40,图象过(3,200),当3<t≤4时,S=200;图象过(4,200),当4<t≤6.5时,S=200﹣80(t﹣4)=﹣80t+520,图象过(6.5,0),画出图象如下:10.【解答】解:(1)当1≤x≤10时,设每台的销售价格y与x之间的函数关系式为y=kx+b(k≠0),∵图象过A(1,2850),B(10,1500)两点,∴,解得,∴当1≤x≤10时,每台的销售价格y与x之间的函数关系式为y=﹣150x+3000;(2)设销售收入为w万元,①当1≤x≤10时,w=(﹣150x+3000)(x+1)=﹣15(x﹣5)2+3375,∵﹣15<0,∴当x=5时,w=3375(万元);最大②当10<x≤12时,w=1500(x+1)=150x+1500,∴w随x的增大而增大,=150×12+1500=3300(万元);∴当x=12时,w最大∵3375>3300,∴第5个月的销售收入最多,最多为3375万元.11.【解答】解:(1)设A、B两厂分别生产了x吨和y吨救灾物资.根据题意,得,解得,∴A、B两厂分别生产了300吨和200吨救灾物资,故答案为:300,200.(2)根据题意,得这批物资从B厂运往乙地(200﹣x)吨,从A厂运往甲地(240﹣x)吨、运往乙地260﹣(200﹣x)=60+x(吨),∴w=15x+24(200﹣x)+20(240﹣x)+25(60+x)=﹣4x+11100(0≤x≤200),∴w与x之间的函数关系式为w=﹣4x+11100(0≤x≤200);∵﹣4<0,∴w随x的增大而减小,∴当x=200时,w的值最小,∴A厂运往甲地40吨、运往乙地260吨,B厂200吨全部运往甲地时费用最少.(3)由题意,得w=﹣4x+11100﹣500a.当x=200时,w的最小值为10300﹣500a,∴10300﹣500a≤5400,解得a≥,∵0<a≤15,且a为整数,∴a的最小值为10.12.【解答】解:(1)设甲两种水果的进价为每千克a元,乙两种水果的进价为每千克b元.由题意,得,解得,答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元.(2)设第三次购进x千克甲种水果,则购进(200﹣x)千克乙种水果.由题意,得12x+20(200﹣x)≤3360,解得x≥80.设获得的利润为w元,由题意,得w=(17﹣12)×(x﹣m)+(30﹣20)×(200﹣x﹣3m)=﹣5x﹣35m+2000,∵﹣5<0,∴w随x的增大而减小,∴x=80时,w的值最大,最大值为﹣35m+1600,由题意,得﹣35m+1600≥800,解得m≤,∴m的最大整数值为22.13.【解答】解:(1)设t分钟首次相遇.由题意:200t+200t=2000解得:t=5答:5分钟两次=车首次相遇.(2)由题意:200t+200t+400=2000或200t+200t﹣400=2000解得:t=4或6答:t=4或6两车相距的路程是400米;(3)方式1:,方式2:;,方式2用时少,少10分钟14.【解答】解:(1)∵甲的速度==60(km/h),∴BC的距离a=60×2=120(km),∴AB=360+120=480(km),∴乙车速度==80(km/h),∴m==1.5(h),故答案为:120,1.5,480;(2)设1.5小时后,乙车离C站的路程y(km)与行驶时间x(h)之间的函数关系式y=kx+b,第21页(共21页),解得:,∴函数关系式为y =80x ﹣120;(3)当0≤x ≤1.5时,360﹣60x +120﹣80x ≤300,∴x≥,∴当≤x ≤,两车与车站C 的路程之和不超过300km ,当1.5<x ≤6时,360﹣60x +80x ﹣120≤300,∴x ≤3,∴当1.5<x ≤3时,两车与车站C 的路程之和不超过300km ,综上所述:当≤x ≤3,两车与车站C 的路程之和不超过300km .。

成都中考一元二次方程应用题

成都中考一元二次方程应用题

成都中考一元二次方程应用题(共29页)-本页仅作为预览文档封面,使用时请删除本页-专练(方程与不等式应用题)(30道)1.(2019·四川省中考模拟)雾霾是对大气中各种悬浮颗粒物含量超标的笼统表述,雾霾的主要危害可归纳为两种:一是对人体产生危害,二是对交通产生危害.雾霾天气是一种大气污染状态,成都市区冬天雾霾天气比较严重,很多家庭兴起了为家里添置“空气清洁器”的热潮,为此,我市某商场根据民众健康要,代理销售某种进价为600元/台的家用“空气清洁器”.经过市场销售后发现:在一个月内,当售价是700元/台时,可售出350台,且售价每提高10元,就会少售出5台.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;(2)请计算当售价x(元台)定为多少时,该商场每月销售这种“空气清洁器”所获得的利润W(元)最大最大利润是多少(3)若政府计划遴选部分商场,将销售“空气清洁器”纳入民生工程项目,规定:每销售一台“空气淸洁器”,财政补贴商家200元,但销售利润不能高于进价的25%,请问:该商场想获取最大利润,是否参与竞标此民生工程项目?并说明理由.【解析】(1)由题意得:y=350﹣510(x﹣700)=﹣12x+700;(2)由题意得:w=y(x﹣600)=﹣12(x﹣600)(x﹣1400),∵-12<0,故函数有最大值,当x=﹣2ba=100时,w=80000;(3)每台销售利润不能高于进价的25%,即600×(1+25%)=750,即:x≤750,由题意得:w=(700﹣12x)(x﹣600+200)=﹣12(x﹣1400)(x﹣400),x≤750时,当x=750时,取得最大值利润为:113750>80000,故:该商场想获取最大利润,会参与竞标此民生工程项目.2.(2020·四川省初三一模)某工艺品厂生产一种汽车装饰品,每件生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万个)与销售价格(元/个)的函数关系如图所示.(1)当30≤x≤60时,求y与x的函数关系式;(2)求出该厂生产销售这种产品的纯利润w (万元)与销售价格x (元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?【答案】(1)y=﹣+8(30≤x≤60)(2)w=20.110210(3060)240070(6080)x x x x x ⎧-+-≤≤⎪⎨-+≤≤⎪⎩(3)当销售价格定为50元/件或80元/件,获得利润最大,最大利润是40万元【解析】(1)当x=60时,y=12060=2, ∴当30≤x≤60时,图象过(60,2)和(30,5),设y=kx+b ,则305602k b k b +=⎧⎨+=⎩, 解得:0.18k b =-⎧⎨=⎩, ∴y=﹣+8(30≤x≤60);(2)根据题意,当30≤x≤60时,W=(x ﹣20)y ﹣50=(x ﹣20)(﹣+8)﹣50=20.1x -+10x ﹣210,当60<x≤80时,W=(x ﹣20)y ﹣50=(x ﹣20)•120x ﹣50=2400x-+70, 综上所述:W=20.110210(3060)240070(6080)x x x x x ⎧-+-≤≤⎪⎨-+≤≤⎪⎩; (3)当30≤x≤60时,W=20.1x -+10x ﹣210=()20.15040x --+,当x=50时,W 最大=40(万元);当60<x≤80时,W=2400x-+70, ∵﹣2400<0,W 随x 的增大而增大, ∴当x=80时,W 最大=240080-+70=40(万元), 答:当销售价格定为50元/件或80元/件,获得利润最大,最大利润是40万元.3.(2017·四川省中考模拟)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.【解析】解:(1)设每个篮球和每个排球的销售利润分别为x 元,y 元,根据题意得:793551020650x y x y +=+=⎧⎨⎩,解得:2520x y ⎧⎨⎩==. 答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m 个,排球(100﹣m )个,根据题意得:200160(100)174001002m m m m ⎪+-≤-⎧⎪⎨⎩≥, 解得:100353m ≤≤,∴m=34或m=35, ∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.4.(2018·四川省中考模拟)学校准备购进一批节能灯,已知1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元.(1)求一只A 型节能灯和一只B 型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A 型节能灯的数量不多于B 型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【解析】(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元,根据题意列方程组,解方程组即可;(2)设购进A 型节能灯m 只,总费用为w 元,根据题意求出w 与x 的函数关系式,再求得m 的取值范围,根据一次函数的性质确定最省钱方案即可.(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元.依题意得,解得.所以一只A 型节能灯的售价是5元,一只B 型节能灯的售价是7元.(2)设购进A 型节能灯m 只,总费用为w 元,依题意得w=5m+7(50-m )=-2m+350, 因-2<0,∴当m 取最大值时w 有最小值.∵m≤3(50-m ),解得m≤.而m 为整数,∴当m=37时,w 最小=-2×37+350=276.此时50-37=13.所以最省钱的购买方案是购进A 型节能灯37只,B 型节能灯13只.5.(2018·四川省中考模拟)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备每台的价格;(2)该公司经决定购买甲型设备不少于3台,预算购买节省能源的新设备资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备每月的产量为240吨,乙型设备每月的产量为180吨.若每月要求产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.【解析】解:(1)设甲型设备每台的价格为x 万元,乙型设备每台的价格为y 万元,根据题意得: 3216263x y x y-=⎧⎨+=⎩,解得: 1210x y =⎧⎨=⎩甲型设备每台的价格为12万元,乙型设备每台的价格为10万(2)设购买甲型设备m 台,则购买乙型设备()10m -台,根据题意得: ()1210101103m m m ⎧+-≤⎨≥⎩解得:35m ≤≤∵m 取非负整数,∴3,4,5m =∴该公司有3种购买方案,方案一:购买甲型设备3台、乙型设备7台;方案二:购买甲型设备4台、乙型设备6台;方案三:购买甲型设备5台、乙型设备5台(3)由题意:()240180102040m m +-≥,解得:4m ≥,∴m 为4或5当4m =时,购买资金为:124106108⨯+⨯=(万元)当m =5时,购买资金为:125105110⨯+⨯=(万元)∵108110<,∴最省钱的购买方案为:选购甲型设备4台,乙型设备6台【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,正确列出一元一次不等式.6.(2018·四川省中考模拟)倡导健康生活,推进全民健身,某社区要购进A 、B 两种型号的健身器材若干套,A 、B 两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A 、B 两种型号的健身器材共50套,且恰好支出20000元,求A 、B 两种型号健身器材各购买多少套?(2)若购买A 、B 两种型号的健身器材共50套,且支出不超过18000元,求A 种型号健身器材至少要购买多少套?【解析】(1)设购买A 种型号健身器材x 套,B 型器材健身器材y 套,根据题意,得:,解得:x=20,y=30,(2)设购买A 型号健身器材m 套,根据题意,得:310m+460(50﹣m )≤18000,解得:m≥33,∵m 为整数,∴m 的最小值为34,答:A 种型号健身器材至少要购买34套.7.(2019·四川省中考模拟)“绿水青山就是金山银山”,为保护生态环境,A ,B 两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【解析】(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,根据题意,得:15957000101668000x y x y +=⎧⎨+=⎩,解得:20003000x y =⎧⎨=⎩, (2)设m 人清理养鱼网箱,则(40﹣m )人清理捕鱼网箱,根据题意,得:()200030004010200040m m m m⎧+-≤⎨-⎩<, 解得:18≤m<20,∵m 为整数,∴m=18或m=19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.8.(2018·四川省初三一模)为了更好的治理西流湖水质,保护环境,市治污公司决定购买 10 台污水处理设备.现有 A 、B 两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买3 台 B 型设备少 6 万元.(1)求 a,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过 105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于 2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【答案】(1)1210ab==⎧⎨⎩;(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解析】(1)根据题意得:2326a bb a-=-=⎧⎨⎩,∴1210ab==⎧⎨⎩;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽,x取非负整数,∴x为1,2. 当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.9.(2019·四川省花丛中学中考模拟)甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价,已知该商品现价为每件元.⑴若该商品两次调价的降价率相同,求这个降价率;⑵经调查,该商品每降价元,即可多销售10件. 已知甲商品售价40元时每月可销售500件,若该商场希望该商品每月能盈利10000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整?【解析】解:(1)设这种商品平均降价率是x ,依题意得:40(1﹣x )2=,解得:x 1==10%,x 2=(舍去);答:这个降价率为10%;(2)设降价y 元,则多销售y ÷×10=50y 件,根据题意得(40﹣20﹣y )(500+50y )=10000解得:y =0(舍去)或y =10,答:在现价的基础上,再降低10元.10.(2019·四川省中考模拟)某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元【解析】设每张贺年卡应降价x 元,根据题意得:(x )(500+1000.1x )=120,整理,得:21002030x x +-=, 解得:120.1,0.3x x ==-(不合题意,舍去),∴0.1x =,答:每张贺年卡应降价元.11.(2019·四川省中考模拟)某商店2月购进了甲乙两种货物共300千克,已知甲进价每千克20元,售价每千克40元,乙进价每千克5元,售价每千克10元.(1)若这批货物全部销售完获利不低于4500元,则甲至少购进多少千克?(2)第一批货物很快售完,于是商家决定购进第二批甲和乙两种货物,甲和乙的进价不变,经调查发现甲售价每上涨2元,销量比(1)中获得最低利润时的销量下降5千克:乙每千克售价比第一批上涨元,销量与(1)中获得最低利润的销量保持不变,结果第二批中已经卖掉的甲和乙的销售总额比(1)中第一批甲和乙售完后对应的最低销售总额增加了480元,求第二批货物中甲的售价.【解析】1)设购进甲x 千克,则购进乙(300﹣x )千克,根据题意得:(40﹣20)x+(10﹣5)(300﹣x)≥4500,解得:x≥200.答:甲至少购进200千克;(2)设第二批货物中甲的售价为a,根据题意得:a×[200﹣5(a﹣40)÷2]+(10+)(300﹣200)=40×200+10×(300﹣200)+480,整理得:a2﹣120a+3344=0,解得:a1=44,a2=76,答:第二批货物中甲的售价为44或76.12.(2018·四川省中考模拟)“一碗面,一座城”!中江挂面在2017年全国魅力城市PK 中,作为德阳市的一张名片登上中央电视台,为“德阳魅力城”的晋升立下了汗马功劳,为发展中江经济,县政府决定在2016年底生产100吨挂面的基础上继续扩大生产规模,到2018年底产量达到169吨.(1)求中江挂面这两年产量的平均增长率;(2)若按此速度继续扩大生产规模,请你计算到2019年底时,中江挂面的产量将达到多少吨?每吨挂面可盈利6千元,则2019年仅挂面一项,能为中江赚多少钱?【解析】(1)设中江挂面这两年产量的平均增长率为x,根据题意得:100(1+x)2=169,解得:x1==30%,x2=﹣(不合题意,舍去).答:中江挂面这两年产量的平均增长率为30%.(2)169×(1+30%)=(吨),×6000=1318200(元).答:到2019年底时,中江挂面的产量将达到吨,2019年仅挂面一项,能为中江赚1318200元钱.13.(2018·四川省中考模拟)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少(数据来源于网络)【解析】(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=116;(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=,解得:x1=10%,x2=(不符题意,舍去),14.(2018·四川省中考模拟)工人师傅用一块长为10分米,宽为8分米的矩形铁皮(厚度不计)制作一个无盖的长方体容器,如图所示,需要将四角各裁掉一个小正方形.(1)若长方体容器的底面面积为48平方分米,求裁掉的小正方形边长是多少分米(2)若要求制作的长方体容器的底面长不大于底面宽的3倍,并将容器内部进行防锈处理,侧面每平方分米的防锈处理费用为元,底面每平方分米的防锈处理费用为2元,问裁掉的正方形边长是多少分米时,总费用最低,最低费用为多少元解:(1)设裁掉的小正方形的边长为x分米,由题意可得(10-2x)(8-2x)=48 ,解得x1=8(不符合题意,舍去),x2=1 .(2)∵长不大于宽的3倍,∴10-2x≤3(8-2x),解得x≤72,设总费用为w元,由题意可知w=×[2x(10-2x)+2x(8-2x)]+2×(10-2x)(8-2x)=4x2-54x+160 ,∵对称轴为x=5424--⨯=274,开口向上,∴当0<x≤72时,w随x的增大而减小,∴当x=72时,w有最小值,w最小值=4×(72)2-54×(72)+160=20元.答:(1)裁掉的小正方形的边长为1分米,底面积为48分米2;(2)当裁掉的小正方形边长为72分米的小正方形时,总费用最低,最低费用为20元.15.(2018·四川省中考模拟)小米手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A款手机每部售价多少元?(2)该店计划新进一批A款手机和B款手机共60部,且B款手机的进货数量不超过A款手机数量的两倍,应如何进货才能使这批手机获利最多?A,B两款手机的进货和销售价格如下表:【解析】解:(1)设今年A款手机每部售价x元,则去年售价每部为(x+400)元,由题意,得()50000120%50000400x x-=+,解得:x=1600.经检验,x=1600是原方程的根.答:今年A款手机每部售价1600元;(2)设今年新进A款手机a部,则B款手机(60﹣a)部,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B款手机的进货数量不超过A款手机数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B款手机的数量为:60﹣20=40部.∴当新进A款手机20部,B款手机40部时,这批手机获利最大.16.(2019·四川省初三一模)我市从 2018 年 1 月 1 日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入 8 万元购进 A、B 两种型号的电动自行车共 30 辆,其中每辆 B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一样.(1)求 A、B 两种型号电动自行车的进货单价;(2)若 A 型电动自行车每辆售价为 2800 元,B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售后可获利润 y 元.写出 y 与 m 之间的函数关系式;(3)该商店如何进货才能获得最大利润;此时最大利润是多少元.【答案】(1)A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;(2)y=﹣200m+15000(20≤m≤30);(3)m=20 时,y 有最大值,最大值为 11000 元.【解析】解:(1)设 A、B 两种型号电动自行车的进货单价分别为 x 元、(x+500)元,由题意:50000x=60000x+500,解得:x=2500,经检验:x=2500 是分式方程的解,答:A、B 两种型号电动自行车的进货单价分别为 2500 元 3000 元;(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30);(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20 时,y 有最大值,最大值为 11000 元.17.(2018·四川省中考模拟)2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?【解析】(1)设第一批花每束的进价是x 元,则第二批花每束的进价是()0.5x +元, 根据题意得:1000250020.5x x ⨯=+,解得:2x =,经检验:2x =是原方程的解,且符合题意. (2)由()1可知第二批菊花的进价为2.5元.设第二批菊花的售价为m 元, 根据题意得:()()1000250032 2.515002 2.5m ⨯-+⨯-≥,解得: 3.5m ≥. 18.(2019·四川省初三二模)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息: 进价(单位:元)(1)已知科普类图书的标价是文学类图书标价的倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;(2)经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a (0<a <5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?【解析】解:(1)设B 类图书的标价为x 元,则A 类图书的标价为元,根据题意可得54054010 1.5x x-=, 化简得:540-10x =360,解得:x =18,经检验:x =18是原分式方程的解,且符合题意,则A类图书的标价为:=×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0<a<5),由题意得,()1812100016800600t tt+-≤⎧≥⎨⎩,解得:600≤t≤800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0<a<3时,3-a>0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3<a<5时,3-a<0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大.19.(2018·四川省中考模拟)某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.()1求每辆A,B两种自行车的进价分别是多少?()2现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.【解析】(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+400=1 600+400=2 000,答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根据题意,得,解得:33≤m≤40,∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=﹣50m+15000,k=﹣50<0,∴y随m的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.20.(2019·四川省中考模拟)某宾馆有若干间住房,住宿记录提供了如下信息:(1)4月17日全部住满,一天住宿费收入为12000元;(2)4月18日有20间房空着,一天住宿费收入为9600元;(3)该宾馆每间房每天收费标准相同.①一个分式方程,求解该宾馆共有多少间住房,每间住房每天收费多少元?②通过市场调查发现,每间住房每天的定价每增加10元,就会有5个房间空闲;已知该宾馆空闲房间每天每间支出费用10元,有顾客居住房间每天每间支出费用20元,问房价定为多少元时,该宾馆一天的利润为11000元(利润=住宿费收入﹣支出费用)③在(2)的计算基础上,你能发现房价定为多少元时,该宾馆一天的利润最大?请直接写出结论.【解析】解:①设每间住房每天收费x元,根据题意,得12000960020x x=+,解得x=120,经经验,x=120是原方程的根.12000÷120=100.答:该宾馆共有100间住房,每间住房每天收费120元;②设每间房的房价为y元,根据题意,得(y﹣20)(100﹣12010y-×5)﹣10×12010y-×5=11000,解得:y1=160,y2=170.答:房价定为160元或170元时,该宾馆一天的利润为11000元.③设房价定为每间a元时,该宾馆一天的利润为w元,根据题意,得w=(a﹣20)(100﹣12010a-×5)﹣10×12010a-×5=﹣12a2+165a﹣2600=﹣12(a﹣165)2+,∴当房价定为165元时,该宾馆一天的利润最大,为元.21.(2018·四川省中考模拟)绵阳某工厂从美国进口A 、B 两种产品销售,已知每台A 种产品进价为3000元,售价为4800元;受中美贸易大战的影响,每台B 种产品的进价上涨500元,进口相同数量的B 种产品,在中美贸易大战开始之前只需要60万元,中美贸易大战开始之后需要80万元。

中考数学专题复习—— 应用性问题

中考数学专题复习—— 应用性问题

中考数学专题复习——应用性问题足球场上有句顺口溜:“向着球门跑,越近就越好;歪着球门跑,射点要选好!”从数学角度看是何道理?应用题是中考试题的经典试题,解决应用题的思想方法如下:实际问题分析、联想、转化、抽象解答数学问题建立数学模型应用性问题的常见模型有:方程模型、不等式模型、函数模型、统计模型、几何模型方程(组)型应用题一般步骤:(1)审:未知量、已知量、相等关系;(2)设:用字母表示未知数(写明单位);(3)列:列出方程(组);(4)解:解所列方程(组);(5)验:检验答案是否符合方程、符合题意(6)答:写出答案。

例1、5.12汶川大地震发生以后,全国人民众志成城.首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务.厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半.首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务!根据两人对话,问该厂原来每天生产多少顶帐篷?不等式(组)型应用题现实世界中不等关系是普遍存在的,有关最佳决策、合理调配、统筹安排等最优化问题,一般可通过对给出的一些数据进行分析、转化、建立不等式模型,再求在约束条件下的不等式的解集.例2:某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。

学校花去捐款96000元,正好可供2300人临时居住。

(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷。

如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区?有哪几种方案?初三数学第1 页共4 页初三数学 第 2 页 共 4 页4%函数型应用问题一般步骤:(1)审:常量、变量、相等关系;(2)设:用两个字母分别表示自变量、因变量;(3)列:列出函数关系式(写出自变量的取值范围)(4)解:解决函数问题;(5)验:检验答案是否符合函数关系、符合题意(6)答:写出答案.例3、红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)与时间t (天)的关系如下表:未来40天内,前20天每天的价格1y (元/件)与时间t (天)的函数关系式为1254y t =+(120t ≤≤且t 为整数),后20天每天的价格2y (元/件)与时间t (天)的函数关系式为21402y t =-+(2140t ≤≤且t 为整数).下面我们就来研究销售这种商品的有关问题: (1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m (件)与t (天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润(a <4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求a 的取值范围.统计型应用问题:统计的内容有着非常丰富的实际背景,其实际应用性特别强,与统计有关的实际问题可建立统计模型,并利用统计的知识加以解决。

2022年四川省成都市中考数学二轮复习——第26题应用题专题方程与不等式类训练2

2022年四川省成都市中考数学二轮复习——第26题应用题专题方程与不等式类训练2

2022年成都中考数学二轮复习第26题应用题专题方程与不等式类训练21.2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有效隔离,经过两轮传染后共有256人患新冠肺炎,求:(1)每轮传染中平均每个人传染了几个人?(2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多少人患病?2.现有A、B两种商品,已知买一件A商品要比买一件B商品少30元,用160元全部购买A商品的数量与用400元全部购买B商品的数量相同.(1)求A、B两种商品每件各是多少元?(2)如果小亮准备购买A、B两种商品共10件,总费用不超过380元,且不低于300元,问有几种购买方案,哪种方案费用最低?3.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备精加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍;信息三:甲工厂加工一天、乙工厂加工2天共需加工费11200元,甲工厂加工2天、乙工厂加工3天共需加工费18400元.根据以上信息,完成下列问题:(1)甲、乙两个工厂每天分别能加工多少件新产品?(2)公司将1200件新产品交甲、乙两工厂一起加工3天后, 根据产品质量和市场需求, 决定将剩余产品交乙工厂单独加工,求该公司这批产品的加工费用为多少?4.为落实国家“三农”政策,某地政府组织40辆汽车装运A,B,C三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:(1)如果装运C种农产品需13辆汽车,那么装运A,B两种农产品各需多少辆汽车?(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案.5.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少万元;(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?6.某公司计划购买A、B两种型号的机器人搬运材料,已知A型机器人比B型机器人每小时多搬运15kg材料,且A型机器人搬运500kg的材料所用的时间与B型机器人搬运400kg材料所用的时间相同.(1)求A、B两种型号的机器人每小时分别搬运多少材料?(2)该公司计划采购A、B两种型号的机器人共10台,要求每小时搬运的材料不得少于700kg,则至少购进A型机器人多少台?7.某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台,和液晶显示器8台,共需要资金7000元,若购进电脑机箱两台和液晶显示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元,根据市场行情,销售电脑机箱,液晶显示器一台分别可获得10元和160元,该经销商希望销售完这两种商品,所获得利润不少于4100元,试问:该经销商有几种进货方案?哪种方案获利最大?最大利润是多少?8.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购.经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经决定购买甲型设备不少于3台,预算购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备每月的产量为240吨,乙型设备每月的产量为180吨.若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.9.新冠肺炎疫情期间,我市对学生进行了“停课不停学”的线上教学活动.某中学为了解这期间九年级学生数学学习的情况,开学后进行了两次诊断性练习.综合成绩由两次练习成绩组成,其中第一次练习成绩占40%,第二次练习成绩占60%.当综合成绩不低于135分时,该生数学学科综合评价为优秀.(1)小明同学的两次练习成绩之和为260分,综合成绩为132分,则他这两次练习成绩各得多少分?(2)如果小张同学第一次练习成绩为120分,综合成绩要达到优秀,他的第二次练习成绩至少要得多少分?10.目前节能灯已基本普及,节能还环保,销量非常好,某商场计划购进甲、乙两种型号节能灯共1200只,这两种节能灯的进价、售价如表所示:元?(2)若商场销售完节能灯后获利不超过进货价的30%,至少购进甲种型号节能灯多少只?11.某零件制造车间有工人20名.已知每名工人每天可制造甲种零件4个或乙种零件3个.(1)若将零件进行组合,1个乙种零件与2个甲种零件配成一套,则应安排多少人生产甲种零件、多少人生产乙种零件,才能使每天生产的两种零件刚好配套?(2)若将零件出售,每个甲种零件可获利润200元,每个乙种零件可获利润240元,要使车间每天所获利润不低于15280元,且生产的甲种零件数不超过乙种零件数的2.5倍,则有哪几种安排工人的方案?12.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费6200元;如果购买2台A型电脑,1台B型打印机,一共需要花费7900元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机.的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?13.为提高教学质量,市教育局准备采购若干套投影设备升级各学校教学硬件,经考察,某公司有A、B两种型号的投影设备可供选择.(1)该公司2021年年初每套A型投影设备的售价为2.5万元,经过连续两次降价,年底每套售价为1.6万元,求每套A型投影设备平均下降率n;(2)2021年年底市教育局经过招标,决定采购并安装该公司A,B两种型号的投影设备共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型投影设备售价为1.6万元,每套B型投影设备售价为1.5(1﹣n)万元,则A型投影设备最多可购买多少套?14.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?15.某服装店用3.6万元购进A、B两种品牌的服装,销售完后共获利0.6万元,其进价和售价如下表:(2)第二次以原价购进A、B两种服装,购进B服装的件数不变,购进A服装的件数是第一次的2倍,A种服装按原价出售,而B种服装打折销售;若两种服装销售完毕,要使第二次销售活动获利不少于8160元,则B种服装最低打几折销售?16.为减少环境污染,提高生产效率,公司计划对A、B两类生产线全部进行改造.改造一条A类生产线和两条B类生产线共需资金200万元;改造两条A类生产线和一条B类生产线共需资金175万元.(1)改造一条A类生产线和一条B类生产线所需的资金分别是多少万元?(2)公司计划今年对A,B两类生产线共6条进行改造,改造资金由公司自筹和国家财政补贴共同承担.若今年公司自筹的改造资金不超过320万元;国家财政补贴投入的改造资金不少于70万元,其中国家财政补贴投入到A、B两类生产线的改造资金分别为每条10万元和15万元.请你通过计算求出有几种改造方案?17.某商场在五四青年节来临之际用2400元购进A,B两种运动衫共22件.已知购买A种运动衫与购买B种运动衫的费用相同,A种运动衫的单价是B种运动衫单价的1.2倍.(1)求A,B两种运动衫的单价各是多少元?(2)若计划用不超过5600元的资金再次购进A,B两种运动衫共50件,已知A,B两种运动衫的进价不变.求A种运动衫最多能购进多少件?18.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg 材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?。

四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.一次函数的应用(共1小题)1.(2023•成都)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.二.反比例函数综合题(共3小题)2.(2021•成都)如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.(1)求反比例函数的表达式;(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.3.(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ 是完美筝形时,求P,Q两点的坐标.4.(2023•成都)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数y=的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.三.二次函数综合题(共3小题)5.(2023•成都)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P(4,﹣3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;(3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.6.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.7.(2021•成都)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B 的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C 的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.四.三角形综合题(共1小题)8.(2023•成都)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且=(n为正整数),E 是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).【拓展运用】(3)如图3,连接EF,设EF的中点为M,若AB=2,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).五.圆的综合题(共2小题)9.(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.(1)求证:∠A=∠ACF;(2)若AC=8,cos∠ACF=,求BF及DE的长.10.(2021•成都)如图,AB为⊙O的直径,C为⊙O上一点,连接AC,BC,D为AB延长线上一点,连接CD,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为,△ABC的面积为2,求CD的长;(3)在(2)的条件下,E为⊙O上一点,连接CE交线段OA于点F,若=,求BF的长.六.几何变换综合题(共2小题)11.(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG ∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n 的代数式表示).12.(2021•成都)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.七.解直角三角形的应用(共1小题)13.(2022•成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是A的对应点),用眼舒适度较为理想.求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)八.解直角三角形的应用-仰角俯角问题(共1小题)14.(2021•成都)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A,D与N在一条直线上),求电池板离地面的高度MN的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2023•成都)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.【答案】(1)A种食材单价是每千克38元,B种食材单价是每千克30元;(2)A种食材购买24千克,B种食材购买12千克时,总费用最少,为1272元.【解答】(1)设A种食材的单价为x元/千克,B种食材的单价为y元/千克,由题意得:,解得:,∴A种食材单价是每千克38元,B种食材单价是每千克30元;(2)设A种食材购买m千克,B种食材购买(36﹣m)千克,总费用为w元,由题意得:w=38m+30(36﹣m)=8m+1080,∵m≥2(36﹣m),∴24≤m≤36,∵k=8>0,∴w随m的增大而增大,∴当m=24时,w有最小值为:8×24+1080=1272(元),∴A种食材购买24千克,B种食材购买12千克时,总费用最少,为1272元.二.反比例函数综合题(共3小题)2.(2021•成都)如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.(1)求反比例函数的表达式;(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.【答案】(1)反比例函数的表达式为y=;(2)直线AD的函数表达式为y=﹣x+,点C的坐标为(4,).【解答】(1)∵一次函数y=x+的图象经过点A(a,3),∴a+=3,解得:a=2,∴A(2,3),将A(2,3)代入y=(x>0),得:3=,∴k=6,∴反比例函数的表达式为y=;(2)如图,过点A作AE⊥x轴于点E,在y=x+中,令y=0,得x+=0,解得:x=﹣2,∴B(﹣2,0),∵E(2,0),∴BE=2﹣(﹣2)=4,∵△ABD是以BD为底边的等腰三角形,∴AB=AD,∵AE⊥BD,∴DE=BE=4,∴D(6,0),设直线AD的函数表达式为y=mx+n,∵A(2,3),D(6,0),∴,解得:,∴直线AD的函数表达式为y=﹣x+,联立方程组:,解得:(舍去),,∴点C的坐标为(4,).3.(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ 是完美筝形时,求P,Q两点的坐标.【答案】(1)反比例函数的解析式为:y=,点B(2,2);(2)BC的长为4或;(3)点P(﹣4,﹣1),点Q(﹣1,5).【解答】解:(1)∵一次函数y=﹣2x+6的图象过点A,∴4=﹣2a+6,∴a=1,∴点A(1,4),∵反比例函数y=的图象过点A(1,4),∴k=1×4=4;∴反比例函数的解析式为:y=,联立方程组可得:,解得:,,∴点B(2,2);(2)如图,过点A作AE⊥y轴于E,过点C作CF⊥y轴于F,∴AE∥CF,∴△AEH∽△CFH,∴,当=时,则CF=2AE=2,∴点C(﹣2,﹣2),∴BC==4,当=2时,则CF=AE=,∴点C(﹣,﹣8),∴BC==,综上所述:BC的长为4或;(3)如图,当∠AQP=∠ABP=90°时,设直线AB与y轴交于点E,过点B作BF⊥y 轴于F,设BP与y轴的交点为N,连接BQ,AP交于点H,∵直线y=﹣2x+6与y轴交于点E,∴点E(0,6),∵点B(2,2),∴BF=OF=2,∴EF=4,∵∠ABP=90°,∴∠ABF+∠FBN=90°=∠ABF+∠BEF,∴∠BEF=∠FBN,又∵∠EFB=∠BFN=90°,∴△EBF∽△BNF,∴,∴FN==1,∴点N(0,1),∴直线BN的解析式为:y=x+1,联立方程组得:,解得:,,∴点P(﹣4,﹣1),∴直线AP的解析式为:y=x+3,∵AP垂直平分BQ,∴设BQ的解析式为y=﹣x+4,∴x+3=﹣x+4,∴x=,∴点H(,),∵点H是BQ的中点,点B(2,2),∴点Q(﹣1,5).4.(2023•成都)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数y=的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.【答案】(1)点A的坐标为(0,5),反比例函数的表达式为(2)点C的坐标为(6,9)或(﹣4,﹣1);(3)点P的坐标为的值为3.【解答】解:(1)令x=0,则y=﹣x+5=5,∴点A的坐标为(0,5),将B(a,4)代入y=﹣x+5得,4=﹣a+5,∴a=1,∴B(1,4),将B(1,4)代入y=得,4=,解得k=4,∴反比例函数的表达式为y=;(2)设直线l与y轴交于M,直线y=﹣x+5与x轴交于N,令y=﹣x+5=0得,x=5,∴N(5,0),∴OA=ON=5,∵∠AON=90°,∴∠OAN=45°,∵A(0,5),B(1,4),∴=,∵直线l是AB的垂线,即∠ABM=90°,∠OAN=45°,∴,∴M(0,3),设直线l的解析式为y=k1x+b1,将M(0,3),B(1,4)代入y=k1x+b1得,,解得,∴直线l的解析式为y=x+3,设点C的坐标为(t,t+3),∵•|x B﹣x C|=,解得t=﹣4或t=6,当t=﹣4时,t+3=﹣1,当t=6时,t+3=9,∴点C的坐标为(6,9)或(﹣4,﹣1);方法二:设点C的坐标为(t,t+3),∴BC==|1﹣t|,===5,∴S△ABC∴t=﹣4或t=6,当t=﹣4时,t+3=﹣1,当t=6时,t+3=9,∴点C的坐标为(6,9)或(﹣4,﹣1);(3)∵位似图形的对应点与位似中心三点共线,∴点B的对应点也在直线l上,不妨设为E点,则点A的对应点为D,将直线l与双曲线的解析式联立方程组,解得,或,∴E(﹣4,﹣1),画出图形如图所示,∵△PAB∽△PDE,∴∠PAB=∠PDE,∴AB∥DE,∴直线AB与直线DE的一次项系数相等,设直线DE的解析式为y=﹣x+b2,∴﹣1=﹣(﹣4)+b2,∴b2=﹣5,∴直线DE的解析式为y=﹣x﹣5,∵点D在直线DE与双曲线的另一个交点,∴解方程组得,或,∴D(﹣1,﹣4),则直线AD的解析式为y=9x+5,解方程组得,,∴P(﹣,),∴,,∴m=.三.二次函数综合题(共3小题)5.(2023•成都)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P(4,﹣3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;(3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.【答案】(1)y=﹣x2+1;(2)点B的坐标为(﹣4,﹣3)或(﹣2﹣2、5,﹣5﹣2,5)或(﹣2+2,﹣5+2);(3)存在,2或.【解答】解:(1)将P(4,﹣3)、A(0,1)代入y=ax2+c,∴16a+1=﹣3,解得a=﹣,∴y=﹣x2+1;(2)设B(x,y),∵P(4,﹣3),A(0,1),∴AB=,AP=4,BP=,当AB=AP时,4=,∵y=﹣x2+1,∴x=4或x=﹣4,∴B(﹣4,﹣3);当AB=BP时,=,解得x=﹣2+2或x=﹣2﹣2,∴B(﹣2+2,﹣5+2)或(﹣2﹣2,﹣5﹣2);综上所述:B点坐标为(﹣4,﹣3)或(﹣2+2,﹣5+2)或(﹣2﹣2,﹣5﹣2);(3)存在常数m,使得OD⊥OE始终成立,理由如下:设B(t,kt),C(s,ks),联立方程,整理得x2+4kx﹣4=0,∴t+s=﹣4k,t•s=﹣4,直线AB的解析式为y=x+1,直线AC的解析式为y=x+1,∴D(,m),E(,m),过D点作DG⊥x轴交于G点,过点E作EK⊥x轴交于K点,∵∠DOE=90°,∴∠DOG+∠EOK=90°,∵∠DOG+∠ODG=90°,∴∠EOK=∠ODG,∴△DOG∽△OEK,∴=,∴m2=﹣,∴m2=4(m﹣1)2,解得m=2或m=.6.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.【答案】(1)A(﹣3,﹣9),B(1,﹣1);(2)k的值为或﹣;(3)直线AB'经过定点(0,3),理由见解答过程.【解答】解:(1)当k=2时,直线为y=2x﹣3,由得:或,∴A(﹣3,﹣9),B(1,﹣1);(2)当k>0时,如图:∵△B'AB的面积与△OAB的面积相等,∴OB'∥AB,∴∠OB'B=∠B'BC,∵B、B'关于y轴对称,∴OB=OB',∠ODB=∠ODB'=90°,∴∠OB'B=∠OBB',∴∠OBB'=∠B'BC,∵∠ODB=90°=∠CDB,BD=BD,∴△BOD≌△BCD(ASA),∴OD=CD,在y=kx﹣3中,令x=0得y=﹣3,∴C(0,﹣3),OC=3,∴OD=OC=,D(0,﹣),在y=﹣x2中,令y=﹣得﹣=﹣x2,解得x=或x=﹣,∴B(,﹣),把B(,﹣)代入y=kx﹣3得:﹣=k﹣3,解得k=;当k<0时,过B'作B'F∥AB交y轴于F,如图:在y=kx﹣3中,令x=0得y=﹣3,∴E(0,﹣3),OE=3,∵△B'AB的面积与△OAB的面积相等,∴OE=EF=3,∵B、B'关于y轴对称,∴FB=FB',∠FGB=∠FGB'=90°,∴∠FB'B=∠FBB',∵B'F∥AB,∴∠EBB'=∠FB'B,∴∠EBB'=∠FBB',∵∠BGE=90°=∠BGF,BG=BG,∴△BGF≌△BGE(ASA),∴GE=GF=EF=,∴OG=OE+GE=,G(0,﹣),在y=﹣x2中,令y=﹣得﹣=﹣x2,解得x=或x=﹣,∴B(,﹣),把B(,﹣)代入y=kx﹣3得:﹣=k﹣3,解得k=﹣,综上所述,k的值为或﹣;(3)直线AB'经过定点(0,3),理由如下:由得:x2+kx﹣3=0,设x2+kx﹣3=0二根为a,b,∴a+b=﹣k,ab=﹣3,A(a,﹣a2),B(b,﹣b2),∵B、B'关于y轴对称,∴B'(﹣b,﹣b2),设直线AB'解析式为y=mx+n,将A(a,﹣a2),B'(﹣b,﹣b2)代入得:,解得:,∵a+b=﹣k,ab=﹣3,∴m=﹣(a﹣b)=b﹣a==,n=﹣ab=﹣(﹣3)=3,∴直线AB'解析式为y=•x+3,令x=0得y=3,∴直线AB'经过定点(0,3).7.(2021•成都)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B 的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C 的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.【答案】(1)y=x2﹣x;(2)(6,3)或(﹣1,);(3)C的横坐标为﹣t﹣+4;当t<0时,点C的横坐标的取值范围是x C≥12.【解答】解:(1)∵抛物线y=a(x﹣h)2+k,顶点P的坐标为(2,﹣1),∴h=2,k=﹣1,即抛物线y=a(x﹣h)2+k为y=a(x﹣2)2﹣1,∵抛物线y=a(x﹣h)2+k经过O,即y=a(x﹣2)2﹣1的图象过(0,0),∴0=a(0﹣2)2﹣1,解得a=,∴抛物线的函数表达为y=(x﹣2)2﹣1=x2﹣x;(2)在y=x2﹣x中,令y=x得x=x2﹣x,解得x=0或x=8,∴B(0,0)或B(8,8),①当B(0,0)时,过B作BC∥AP交抛物线于C,此时∠ABC=∠OAP,如图:在y=x2﹣x中,令y=0,得x2﹣x=0,解得x=0或x=4,∴A(4,0),设直线AP解析式为y=kx+b,将A(4,0)、P(2,﹣1)代入得:,解得,∴直线AP解析式为y=x﹣2,∵BC∥AP,∴设直线BC解析式为y=x+b',将B(0,0)代入得b'=0,∴直线BC解析式为y=x,由得(此时为点O,舍去)或,∴C(6,3);②当B(8,8)时,过P作PQ⊥x轴于Q,过B作BH⊥x轴于H,作H关于AB的对称点M,作直线BM交抛物线于C,连接AM,如图:∵P(2,﹣1),A(4,0),∴PQ=1,AQ=2,Rt△APQ中,tan∠OAP==,∵B(8,8),A(4,0),∴AH=4,BH=8,Rt△ABH中,tan∠ABH==,∴∠OAP=∠ABH,∵H关于AB的对称点M,∴∠ABH=∠ABM,∴∠ABM=∠OAP,即C是满足条件的点,设M(x,y),∵H关于AB的对称点M,∴AM=AH=4,BM=BH=8,∴,两式相减变形可得x=8﹣2y,代入即可解得(此时为H,舍去)或,∴M(,),设直线BM解析式为y=cx+d,将M(,),B(8,8)代入得;,解得,∴直线BM解析式为y=x+2,解得或(此时为B,舍去),∴C(﹣1,),综上所述,C坐标为(6,3)或(﹣1,);(3)设BC交y轴于M,过B作BH⊥x轴于H,过M作MN⊥BH于N,如图:∵点B的横坐标为t,∴B(t,t2﹣t),又A(4,0),∴AH=|t﹣4|,BH=|t2﹣t|,OH=|t|=MN,∵∠ABC=90°,∴∠MBN=90°﹣∠ABH=∠BAH,且∠N=∠AHB=90°,∴△ABH∽△BMN,∴=,即=∴BN==4,∴NH=t2﹣t+4,∴M(0,t2﹣t+4),设直线BM解析式为y=ex+t2﹣t+4,将B(t,t2﹣t)代入得t2﹣t=et+t2﹣t+4,∴e=﹣,∴直线BC解析式为y=﹣x+t2﹣t+4,由得,解得x1=t(B的横坐标),x2=﹣=﹣t﹣+4,∴点C的横坐标为﹣t﹣+4;当t<0时,x C=﹣t﹣+4=()2+()2+4=(﹣)2+12,∴=时,x C最小值是12,此时t=﹣4,∴当t<0时,点C的横坐标的取值范围是x C≥12.四.三角形综合题(共1小题)8.(2023•成都)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且=(n为正整数),E 是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).【拓展运用】(3)如图3,连接EF,设EF的中点为M,若AB=2,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).【答案】(1)见解析过程;(2)①=,见解析过程;②当点F在射线BC上时,,当点F在CB延长线上时,;(3)点M运动的路径长为.【解答】(1)证明:连接CD,∵∠C=90°,AC=BC,AD=DB,∴AB=AC,∠A=∠B=∠ACD=45°,AD=CD=BD,CD⊥AB,∵ED⊥FD,∴∠EDF=∠CDB=90°,∴∠CDE=∠BDF,∴△CDE≌△BDF(ASA),∴CE=BF,∴AE+BF=AE+CE=AC=AB;(2)①AE+BF=AB,理由如下:过点D作DN⊥AC于N,DH⊥BC于H,∵∠C=90°,AC=BC,∴∠A=∠B=45°,∵DN⊥AC,DH⊥BC,∴△ADN和△BDH是等腰直角三角形,∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,∴△ADN∽△BDH,∴=,设AN=DN=x,BH=DH=2x,∴AD=x,BD=2x,∴AB=3x,∵DN⊥AC,DH⊥BC,∠ACB=90°,∴四边形DHCN是矩形,∴∠NDH=90°=∠EDF,∴∠EDN=∠FDH,又∵∠END=∠FHD,∴△EDN∽△FDH,∴=,∴FH=2NE,∴AE+BF=x+NE+(2x﹣FH)=2x=AB;②如图4,当点F在射线BC上时,过点D作DN⊥AC于N,DH⊥BC于H,∵∠C=90°,AC=BC,∴∠A=∠B=45°,∵DN⊥AC,DH⊥BC,∴△ADN和△BDH是等腰直角三角形,∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,∴△ADN∽△BDH,∴=,设AN=DN=x,BH=DH=nx,∴AD=x,BD=nx,∴AB=(n+1)x,∵DN⊥AC,DH⊥BC,∠ACB=90°,∴四边形DHCN是矩形,∴∠NDH=90°=∠EDF,∴∠EDN=∠FDH,又∵∠END=∠FHD,∴△EDN∽△FDH,∴=,∴FH=nNE,∴AE+BF=x﹣NE+(nx+FH)=2x=AB;当点F在CB的延长线上时,如图5,∵∠C=90°,AC=BC,∴∠A=∠B=45°,∵DN⊥AC,DH⊥BC,∴△ADN和△BDH是等腰直角三角形,∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,∴△ADN∽△BDH,∴=,设AN=DN=x,BH=DH=nx,∴AD=x,BD=nx,∴AB=(n+1)x,∵DN⊥AC,DH⊥BC,∠ACB=90°,∴四边形DHCN是矩形,∴∠NDH=90°=∠EDF,∴∠EDN=∠FDH,又∵∠END=∠FHD,∴△EDN∽△FDH,∴=,∴FH=nNE,∴AE﹣BF=x+NE﹣(FH﹣nx)=2x=AB;综上所述:当点F在射线BC上时,,当点F在CB延长线上时,;(3)如图,连接CD,CM,DM,∵EF的中点为M,∠ACB=∠EDF=90°,∴CM=DM=EF,∴点M在线段CD的垂直平分线上运动,如图,当点E'与点A重合时,点F'在BC的延长线上,当点E'与点C重合时,点F″在CB的延长线上,过点M'作M'R⊥F'C于R,∴M'R∥AC,∴=,∴M'R=1,F'R=CR,设AN=DN=x,BH=DH=nx,∴AD=x,BD=nx,∴AB=(n+1)x=2,∴x=,∵F'D=BD=nx,∴F'B=2nx,∴CF'=2nx﹣2,∴CR=nx﹣1=﹣1=,由(2)可得:CD==x•,DF″=nDE″=nx•,∴CF″=(1+n2)x,∴CM″===,∴RM″=n,∴M″M'=,∴点M运动的路径长为.五.圆的综合题(共2小题)9.(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.(1)求证:∠A=∠ACF;(2)若AC=8,cos∠ACF=,求BF及DE的长.【答案】(1)证明见解析;(2)BF=5,DE=.【解答】(1)证明:∵=,∴∠BCF=∠FBC,∵∠ACB=90°,∴∠A+∠FBC=90°,∠ACF+∠BCF=90°,∴∠A=∠ACF;(2)解:连接CD.∵∠A=∠ACF,∠FBC=∠BCF,∴AF=FC=FB,∴cos∠A=cos∠ACF==,∵AC=8,∴AB=10,BC=6,∵BC是直径,∴∠CDB=90°,∴CD⊥AB,=•AC•BC=•AB•CD,∵S△ABC∴CD==,∴BD===,∵BF=AF=5,∴DF=BF﹣BD=5﹣=,∵∠DEF+∠DEC=180°,∠DEC+∠B=180°,∴∠DEF=∠B=∠BCF,∴DE∥CB,∴△DEF∽△BCF,∴=,∴=,∴DE=.10.(2021•成都)如图,AB为⊙O的直径,C为⊙O上一点,连接AC,BC,D为AB延长线上一点,连接CD,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为,△ABC的面积为2,求CD的长;(3)在(2)的条件下,E为⊙O上一点,连接CE交线段OA于点F,若=,求BF的长.【答案】见试题解答内容【解答】(1)证明:连接OC,如图:∵AB为⊙O的直径,∴∠ACB=90°,∠A+∠ABC=90°,∵OB=OC,∴∠ABC=∠BCO,又∠BCD=∠A,∴∠BCD+∠BCO=90°,即∠DCO=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)过C作CM⊥AB于M,过B作BN⊥CD于N,如图:∵⊙O的半径为,∴AB=2,∴AB•CM=2,即×2•CM=2,∴CM=2,Rt△BCM中,∠BCM=90°﹣∠CBA,Rt△ABC中,∠A=90°﹣∠CBA,∴∠BCM=∠A,∴tan∠BCM=tan A,即=,∴=,解得BM=﹣1,(BM=+1已舍去),∵∠BCD=∠A,∠BCM=∠A,∴∠BCD=∠BCM,而∠BMC=∠BNC=90°,BC=BC,∴△BCM≌△BCN(AAS),∴CN=CM=2,BN=BM=﹣1,∵∠DNB=∠DMC=90°,∠D=∠D,∴△DBN∽△DCM,∴==,即==,解得DN=2﹣2,∴CD=DN+CN=2;方法二:过C作CM⊥AB于M,连接OC,如图:∵⊙O的半径为,∴AB=2,∴AB•CM=2,即×2•CM=2,∴CM=2,Rt△MOC中,OM==1,∵∠DMC=∠CMO=90°,∠CDM=90°﹣∠DCM=∠OCM,∴△DCM∽△COM,∴=,即=,∴CD=2;(3)过C作CM⊥AB于M,过E作EH⊥AB于H,连接OE,如图:∵CM⊥AB,EH⊥AB,∴==,∵=,∴==,由(2)知CM=2,BM=﹣1,∴HE=1,MF=2HF,Rt△OEH中,OH===2,∴AH=OA﹣OH=﹣2,设HF=x,则MF=2x,由AB=2可得:BM+MF+HF+AH=2,∴(﹣1)+2x+x+(﹣2)=2,解得:x=1,∴HF=1,MF=2,∴BF=BM+MF=(﹣1)+2=+1.六.几何变换综合题(共2小题)11.(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG ∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n 的代数式表示).【答案】(1)理由见解答;(2)tan∠ABE的值是;(3)tan∠ABE的值是或.【解答】解:(1)∵四边形EBFG和四边形ABCD是矩形,∴∠A=∠BEG=∠D=90°,∴∠ABE+∠AEB=∠AEB+∠DEH=90°,∴∠DEH=∠ABE,∴△ABE∽△DEH,∴在点E的运动过程中,△ABE与△DEH始终保持相似关系;(2)如图1,∵H是线段CD中点,∴DH=CH,设DH=x,AE=a,则AB=2x,AD=4x,DE=4x﹣a,由(1)知:△ABE∽△DEH,∴=,即=,∴2x2=4ax﹣a2,∴2x2﹣4ax+a2=0,∴x==,∵tan∠ABE==,当x=时,tan∠ABE==,当x=时,tan∠ABE==;综上,tan∠ABE的值是.(3)分两种情况:①如图2,BH=FH,设AB=x,AE=a,∵四边形BEGF是矩形,∴∠BEG=∠G=90°,BE=FG,∴Rt△BEH≌Rt△FGH(HL),∴EH=GH,∵矩形EBFG∽矩形ABCD,∴==n,∴=n,∴=,由(1)知:△ABE∽△DEH,∴==,∴=,∴nx=2a,∴=,∴tan∠ABE===;②如图3,BF=FH,∵矩形EBFG∽矩形ABCD,∴∠ABC=∠EBF=90°,=,∴∠ABE=∠CBF,∴△ABE∽△CBF,∴∠BCF=∠A=90°,∴D,C,F共线,∵BF=FH,∴∠FBH=∠FHB,∵EG∥BF,∴∠FBH=∠EHB,∴∠EHB=∠CHB,∵BE⊥EH,BC⊥CH,∴BE=BC,由①可知:AB=x,AE=a,BE=BC=nx,由勾股定理得:AB2+AE2=BE2,∴x2+a2=(nx)2,∴x=(负值舍),∴tan∠ABE===,综上,tan∠ABE的值是或.12.(2021•成都)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.【答案】(1)8;(2);(3)1.【解答】解:(1)∵∠ACB=90°,AB=5,BC=3,∴AC==4,∵∠ACB=90°,△ABC绕点B顺时针旋转得到△A′BC′,点A′落在AC的延长线上,∴∠A'CB=90°,A'B=AB=5,Rt△A'BC中,A'C==4,∴AA'=AC+A'C=8;(2)过C作CE∥A'B交AB于E,过C作CD⊥AB于D,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴∠A'BC'=∠ABC,BC'=BC=3,∵CE∥A'B,∴∠A'BC'=∠CEB,∴∠CEB=∠ABC,∴CE=BC=3,Rt△ABC中,S△ABC=AC•BC=AB•CD,AC=4,BC=3,AB=5,∴CD==,Rt△CED中,DE===,同理BD=,∴BE=DE+BD=,C'E=BC'+BE=3+=,∵CE∥A'B,∴=,∴=,∴BM=;(3)DE存在最小值1,理由如下:过A作AP∥A'C'交C'D延长线于P,连接A'C,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴BC=BC',∠ACB=∠A'C'B=90°,AC=A'C',∴∠BCC'=∠BC'C,而∠ACP=180°﹣∠ACB﹣∠BCC'=90°﹣∠BCC',∠A'C'D=∠A'C'B﹣∠BC'C=90°﹣∠BC'C,∴∠ACP=∠A'C'D,∵AP∥A'C',∴∠P=∠A'C'D,∴∠P=∠ACP,∴AP=AC,∴AP=A'C',在△APD和△A'C'D中,,∴△APD≌△A'C'D(AAS),∴AD=A'D,即D是AA'中点,∵点E为AC的中点,∴DE是△AA'C的中位线,∴DE=A'C,要使DE最小,只需A'C最小,此时A'、C、B共线,A'C的最小值为A'B﹣BC=AB﹣BC =2,∴DE最小为A'C=1.七.解直角三角形的应用(共1小题)13.(2022•成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是A的对应点),用眼舒适度较为理想.求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【答案】此时顶部边缘A'处离桌面的高度A'D的长约为19cm.【解答】解:∵∠AOB=150°,∴∠AOC=180°﹣∠AOB=30°,在Rt△ACO中,AC=10cm,∴AO=2AC=20(cm),由题意得:AO=A′O=20cm,∵∠A′OB=108°,∴∠A′OD=180°﹣∠A′OB=72°,在Rt△A′DO中,A′D=A′O•sin72°≈20×0.95=19(cm),∴此时顶部边缘A'处离桌面的高度A'D的长约为19cm.八.解直角三角形的应用-仰角俯角问题(共1小题)14.(2021•成都)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A,D与N在一条直线上),求电池板离地面的高度MN的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)【答案】见试题解答内容【解答】解:延长BC交MN于点H,AD=BE=3.5,设MH=x米,∵∠MEC=45°,∴EH=x米,在Rt△MHB中,tan∠MBH==≈0.65,解得x=6.5,则MN=1.6+6.5=8.1≈8(米),∴电池板离地面的高度MN的长约为8米.。

成都初升高数学题库及答案

成都初升高数学题库及答案【成都初升高数学题库及答案】【一、选择题】1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(2) \)的值。

A. 5B. 3C. 1D. -12. 一个圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π3. 如果一个三角形的内角和为180°,那么一个四边形的内角和是多少度?A. 360°B. 540°C. 720°D. 900°【答案】1. A解析:将\( x = 2 \)代入函数\( f(x) \)中,得到\( f(2) =2*2^2 - 3*2 + 1 = 8 - 6 + 1 = 3 \)。

2. B解析:圆的面积公式为\( A = πr^2 \),代入半径\( r = 5 \),得到面积\( A = π*5^2 = 25π \)。

3. B解析:一个四边形可以被划分为两个三角形,所以内角和为\( 180° \times 2 = 360° \)。

【二、填空题】4. 一个数的平方根是4,这个数是_________。

答案:165. 如果\( 2x + 3 = 11 \),那么\( x \)的值是_________。

答案:46. 一个直角三角形的两条直角边分别是3和4,斜边的长度是_________。

答案:5【三、解答题】7. 解方程:\( 3x^2 - 5x + 2 = 0 \)。

答案:首先,我们可以使用二次方程的求根公式,\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)。

在这个方程中,\( a = 3 \),\( b = -5 \),\( c = 2 \)。

代入公式得到:\[x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4*3*2}}{2*3} = \frac{5 \pm \sqrt{25 - 24}}{6} = \frac{5 \pm 1}{6}\]因此,方程的解为\( x = 1 \)或\( x = \frac{2}{3} \)。

2024成都中考数学一轮复习专题 一元二次方程及其应用 (含解析)

2024成都中考数学一轮复习专题一元二次方程及其应用一、单选题A.5m B.70m5.(2023·河南·统考中考真题)关于x的一元二次方程A.有两个不相等的实数根C.只有一个实数根二、填空题20.(2023·重庆·统考中考真题)某新建工业园区今年六月份提供就业岗位1501个,并按计划逐月增长,预计八月份将提供岗位1815个.设七、八两个月提供就业岗位数量的月平均增长率为x ,根据题意,可列方程为___________.21.(2023·四川达州·统考中考真题)已知12,x x 是方程2220x kx +-=的两个实数根,且()()122210x x --=,则k 的值为___________.22.(2023·四川遂宁·统考中考真题)若A.b 是一元二次方程2310x x -+=的两个实数根,则代数式a b ab +-的值为_________.23.(2023·四川眉山·统考中考真题)已知方程2340x x --=的根为12,x x ,则()()1222x x +⋅+的值为____________.24.(2023·湖南怀化·统考中考真题)已知关于x 的一元二次方程220x mx +-=的一个根为1-,则m 的值为__________,另一个根为__________.25.(2023·甘肃武威·统考中考真题)关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,则c =________(写出一个满足条件的值).26.(2023·上海·统考中考真题)已知关于x 的一元二次方程2610ax x ++=没有实数根,那么a 的取值范围是________.27.(2023·湖南·统考中考真题)已知关于x 的方程2200x mx +-=的一个根是4-,则它的另一个根是________.28.(2023·山东枣庄·统考中考真题)若3x =是关x 的方程26ax bx -=的解,则202362a b -+的值为___________.29.(2022春·江苏泰州·九年级校考阶段练习)已知一元二次方程x 2﹣3x +1=0有两个实数根x 1,x 2,则x 1+x 2﹣x 1x 2的值等于_____.30.(2023·四川内江·统考中考真题)已知A.b 是方程2340x x +-=的两根,则243a a b ++-=___________.31.(2023·湖北黄冈·统考中考真题)已知一元二次方程230x x k -+=的两个实数根为12,x x ,若1212221x x x x ++=,则实数k =_____________.32.(2023·湖南·统考中考真题)某校截止到2022年底,校园绿化面积为1000平方米.为美化环境,该校计划2024年底绿化面积达到1440平方米.利用方程想想,设这两年绿化面积的年平均增长率为x ,则依题意列方程为__________.33.(2022秋·北京东城·九年级景山学校校考阶段练习)关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是______.34.(2023·湖南岳阳·统考中考真题)已知关于x 的一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根,且12122x x x x ++⋅=,则实数m =_________.三、解答题39.(2023·浙江杭州·统考中考真题)设一元二次方程20x bx c ++=.在下面的四组条件中选择其中一组..,b c 的值,使这个方程有两个不相等的实数根,并解这个方程.①2,1b c ==;②3,1b c ==;③3,1b c ==-;④2,2b c ==.注:如果选择多组条件分别作答,按第一个解答计分.40.(2023·湖南郴州·统考中考真题)随旅游旺季的到来,某景区游客人数逐月增加,2月份游客人数为1.6万人,4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率;(2)预计5月份该景区游客人数会继续增长,但增长率不会超过....前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?41.(2023·湖北荆州·统考中考真题)已知关于x 的一元二次方程()22460kx k x k -++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当1k =时,用配方法...解方程.参考答案一、单选题二、填空题15.【答案】1k <【分析】若一元二次方程有两个不相等的实数根,则根的判别式24>0b ac ∆=-,建立关于k 的不等式,解不等式即可得出答案.【详解】解:∵关于x 的方程220x x k -+=有两个不相等的实数根,∴()224240b ac k ∆=-=-->,解得1k <.故答案为:1k <.【点拨】此题考查了根的判别式.一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:(1)0∆>⇔方程有两个不相等的实数根;(2)Δ0=⇔方程有两个相等的实数根;(3)Δ0<⇔方程没有实数根.16.【答案】1【详解】解:∵a ,b 是方程2340x x +-=的两根,∴23,340a b a a +=-+-=,∴234+=a a ,∴243a ab ++-233a a ab =+++-()433=+--2=-.故答案为:2-.【点拨】本题主要考查了一元二次方程的解的定义和根与系数的关系,熟练掌握一元二次方程的解的定义和根与系数的关系是解题的关键.31.【答案】5-【分析】根据一元二次方程的根与系数的关系,得出12123,x x x x k +==,代入已知等式,即可求解.【详解】解:∵一元二次方程230x x k -+=的两个实数根为12,x x ,∴12123,x x x x k+==∵1212221x x x x ++=,∴61k +=,解得:5k =-,故答案为:5-.【点拨】本题考查了一元二次方程的根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.32.【答案】()2100011440x +=【分析】设这两年绿化面积的年平均增长率为x ,依题意列出一元二次方程即可求解.【详解】解:设这两年绿化面积的年平均增长率为x ,则依题意列方程为()2100011440x +=,故答案为:()2100011440x +=.【点拨】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.33.【答案】k <1.【分析】由方程有两个不等实数根可得出关于k 的一元一次不等式,解不等式即可得出结论.【详解】∵关于x 的一元二次方程x 2+2x+k=0有两个不相等的实数根,∴△=2241k 0-⨯⨯>,解得:k 1<,故答案为:k 1<.【点拨】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k 的一元一次不等式.熟知“在一元二次方程()2ax bx c 0a 0++=≠中,若方程有两个不相等的实数根,则△=2b 4ac 0->”是解答本题的关键.34.【答案】3【分析】利用一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根求出m 的取值范围,由根与系数关系得到212122,2x x m x x m m +=-=-+,代入12122x x x x ++⋅=,解得m 的值,根据求得的m 的取值范围,确定m 的值即可.【详解】解:∵关于x 的一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根,∴()()22242480m m m m ∆=--+=->,解得m>2,∵212122,2x x m x x m m +=-=-+,12122x x x x ++⋅=,∴2222m m m -+-+=,解得123,0m m ==(不合题意,舍去),∴3m =故答案为:3.【点拨】此题考查一元二次方程根的判别式和一元二次方程根与系数关系,熟练掌握根的判别式和根与系数关系的内容是解题的关键.三、解答题35.【答案】11x =,22x =【分析】首先将方程进行因式分解,然后根据因式分解的结果求出方程的解.【详解】解:2320x x -+=(1)(2)0x x --=∴10x -=或20x -=∴11x =,22x =.【点拨】本题考查了解一元二次方程,解题的关键是掌握因式分解法求解方程.36.【答案】20%【分析】设20202022-年买书资金的平均增长率为x ,根据2022年买书资金=2020年买书资金()21x ⨯+建立方程,解方程即可得.【详解】解:设20202022-年买书资金的平均增长率为x ,由题意得:()2500017200x +=,解得0.220%x ==或 2.20x =-<(不符合题意,舍去),答:20202022-年买书资金的平均增长率为20%.【点拨】本题考查了一元二次方程的应用,找准等量关系,正确建立方程是解题关键.37.【答案】(1)见解析;(2)m 的值为1或2-【分析】(1)根据一元二次方程根的判别式可进行求解;(2)根据一元二次方程根与系数的关系可进行求解.【详解】(1)证明:∵()()22Δ21410m m m ⎡⎤=-+-⨯+=>⎣⎦,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵()22210x m x m m -+++=的两个实数根为,a b ,∴221,a b m ab m m +=+=+.∵()()2220a b a b ++=,∴2224220a ab b ab +++=,22()20a b ab ++=.∴222(21)20m m m +++=.即220m m +-=.解得1m =或2m =-.∴m 的值为1或2-.【点拨】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键.。

成都市中考核心考点 -第十一讲 应用题(26题)(B卷)

成都中考核心考点(成都版)简介--只要抓住核心考点,就能拿到卷子上80%的分数在历年的成都中考数学试题中,核心考点虽然只占总考点的20%,却占总分值的80%。

掌握了核心考点,相当于用20%的时间来把握80%的分数,在最短的时间内实现快速提分。

本文共分两轮复习:第一轮过关核心考点聚焦常考考点,五年真题回顾,三年诊断精选。

本文分13讲,由成都市中考数学A卷和B卷难度区分度较大,A卷1-19题较基础,大部分学生都容易掌握,选题主要以中考题和诊断题为主,20题-28题有一定综合性,选题除了中考题和诊断题外,还选择了大量的模拟题和改编题。

第一讲:考点1-考点6,第二讲:考点7-考点10,第三讲:考点11-考点14,第四讲:考点15-考点19,第五讲:考点20,第六讲:考点21,………第十三讲:考点28.(从考点20开始,每个考点一讲)。

第二轮过关B卷攻略专攻B卷重难,五年考点扫描,专题考向攻略。

暂定:B填空7-8讲,应用题1讲,几何综合3讲,抛物线综合5讲考点26、应用题命题方向:○1分式方程及不等式(组)或方程组;○2一元二次方程与二次函数关系式(或与不等式结合); ○3建立一次函数关系式或二次函数关系式(会利用函数求最值)等; 五年真题26. (18成都)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?26. (17成都) 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,A B C D E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x ,(单位:千米),乘坐地铁的时间1y 单位:分钟)是关于x 的一次函数,其关系如下表:地铁站ABCDEx (千米)8 9 10 11.5 13 1y (分钟)1820222528(1)求1y 关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间.建立一次函数关系式或二次函数关系式(会利用函数求最值)26.(16成都)某果园有100棵橙子树,平均每棵树结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少. 根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种x棵橙子树.(1)直接写出平均每棵树结的橙子数y(个)与x之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?分式方程与不等式:26、(15成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元够进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用题专题专题一增长率问题例1.(2011四川广安,27,9分)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?变式练习:(2010四川成都)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某市交通部门统计,20XX年底全市汽车拥有量为180万辆,而截止到20XX年底,全市的汽车拥有量已达216万辆.(1)求20XX年底至20XX年底该市汽车拥有量的年平均增长率;(2)为保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到20XX 年底全市汽车拥有量不超过231.96万辆;另据估计,从20XX年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假定每年新增汽车数量相同,请你计算出该市每年新增汽车数量最多不能超过多少万辆.专题二方案设计例2.(2008 重庆)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县。

根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。

(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。

其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨。

则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;为即使将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?变式练习:1. (2011四川眉山)在眉山市开展城乡综合治理的活动中,需要将A、B、C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D、E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.(1)求运往两地的数量各是多少立方米?(2)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,则A、C 两地运往D、E两地哪几种方案?(3)已知从A、B、C三地把垃圾运往D、E两地处理所需费用如下表:在(2)的条件下,请说明哪种方案的总费用最少?2.(2011山东日照)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?例3.(2011四川达州)我市化工园区一化工厂,组织20辆汽车装运A、B、C三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式;(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?请求出最少总运费.变式练习:1.(2011四川凉山)我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会.现有A 型、B 型、C 型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信息,解答问题.苦荞茶 青花椒 野生蘑菇每辆汽车运载量(吨)A 型2 2 B 型 4 2 C 型16(1)设A 型汽车安排x 辆,B 型汽车安排y 辆,求y 与x 之间的函数关系式. (2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案. (3)为节约运费,应采用(2)中哪种方案?并求出最少运费.车型 A B C 每辆车运费(元)150018002000特产车型专题三二次函数的最值问题例4.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?变式练习:1.(2009武汉)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元2. 有一经销商,按市场价收购了一种活蟹1000千克,放养在塘内,此时市场价为每千克30元。

据测算,此后每千克活蟹的市场价,每天可上升1元,但是,放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元(放养期间蟹的重量不变).(1)设x天后每千克活蟹市场价为P元,写出P关于x的函数关系式.(2)如果放养x天将活蟹一次性出售,并记1000千克蟹的销售总额为Q元,写出Q关于x 的函数关系式。

(3)该经销商将这批蟹放养多少天后出售,可获最大利润,(利润=销售总额-收购成本-费用)?最大利润是多少?例5.(2010潍坊)学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如果铺白色地面砖的费用为每平方米30元.铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?变式练习:1.(2010四川绵阳)如图,八一广场要设计一个矩形花坛,花坛的长、宽分别为200 m 、120 m ,花坛中有一横两纵的通道,横、纵通道的宽度分别为3x m 、2x m . (1)用代数式表示三条通道的总面积S ;当通道总面积为花坛总面积的12511时,求横、纵通道的宽分别是多少? (2)如果花坛绿化造价为每平方米3元,通道总造价为3168 x 元,那么横、纵通道的宽分别为多少米时,花坛总造价最低?并求出最低造价.(以下数据可供参考:852 = 7225,862 = 7396,872= 7569)2.(2009吉林)某数学研究所门前有一个边长为4米的正方形花坛,花坛内部要用红、黄、紫三种颜色的花草种植成如图所示的图案,图案中AE=MN .准备在形如Rt △MEH 的四个全等三角形内种植红色花草,在形如Rt △AEH 的四个全等三角形内种植黄色花草,在正方形MNPQ 内种植紫色花草,每种花草的价格如下表:品 种 红色花草 黄色花草 紫色花草 价格(元/米2)6080120设AE 的长为x 米,正方形EFGH 的面积为S 平方米,买花草所需的费用为W 元,解答下列问题:(1)S 与x 之间的函数关系式为S = ;(2)求W 与x 之间的函数关系式,并求所需的最低费用是多少元; (3)当买花草所需的费用最低时,求EM 的长.3.(2012营口)如图,四边形ABCD 是边长为60cm 的正方形硬纸片,剪掉阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使A 、B 、C 、D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒.(1)若折叠后长方体底面正方形的面积为1250cm 2,求长方体包装盒的高;(2)设剪掉的等腰直角三角形的直角边长为x (cm ),长方体的侧面积为S (cm 2),求S 与x 的函数关系式,并求x 为何值时,S 的值最大.例6.(2009成都)某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x ≤30,且x 为整数);又知前20天的销售价格1Q (元/件)与销售时间x(天)之间有如下关系:11Q 302x =+ (1≤x ≤20,且x 为整数),后10天的销售价格2Q (元/件)与销售时间x(天)之间有如下关系:2Q =45(21≤x ≤30,且x 为整数).(1)试写出该商店前20天的日销售利润1R (元)和后l0天的日销售利润2R (元)分别与销售时间x(天)之间的函数关系式;(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.注:销售利润=销售收入一购进成本.变式练习:1.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x 元,每个月的销售量为y 件.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;(2)设每月的销售利润为W ,请直接写出W 与x 的函数关系式;(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元2.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)与时间t (天)的关系如下表:未来40天内,前20天每天的价格y 1(元/件)与时间t (天)的函数关系式为25t 4y 1+=(20t 1≤≤且t 为整数),后20天每天的价格y 2(元/件)与时间t (天)的函数关系式为40t 21y 2+-=(40t 21≤≤且t 为整数)。

相关文档
最新文档