华南农业大学现代控制理论期末考试试卷

合集下载

现代控制理论试题(详细答案)

现代控制理论试题(详细答案)

现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是cvcvx ,能观测的状态变量个数是。

2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个)解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。

状态变量个数是2。

…..(4分)2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分)12233131835x x x x x x x u y x ===--+= …..….…….(1分)写成010*********x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦…..….…….(1分)[]100y x = …..….…….(1分)二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。

(3分)2已知系统[]210 020,011003x x y x ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。

若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。

…..….…….(3分) 2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分)[][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为2122211(),()3232s s g s g s s s s s -+==++-+求两系统串联后系统的最小实现。

现代控制理论试卷与答案.docx

现代控制理论试卷与答案.docx

、名词解释与简答题(共3题,每小题5分,共15分)U i21 这甲 3!::l即U['4 _3 111 02 7 ^23 -u 2⑶尖用芷養变换送求取状壽空问表込5t 对賀分产 程⑶在零初Ife 条井下取拉氏娈换笹Jv(J)+ ⅛⅛(r)+3⅛ru) + 5K⅛)=5ιt⅛j)+7Γ(i) Γ⅛⅜g√⅛7LF(O =S 7Ti?+JijTS在用传诺两數求系绑的状态空何表达式IL 一定要 注咸传递函JS 足百为严搐H 育瑾分SL 即■是百小 于札 ⅛ffl =ri WPflTSt 理*U C1R 2 _ U 2U C 21、经典控制理论与现代控制理论的区别2、对偶原理的内容3、李雅普诺夫稳定5、已知系统的微分方程 y - 2y 3y7u。

试列写出状态空间表达式。

6、试将下列状态方程化为对角标准型或者约当标准型。

二、分析与计算题(共8小题,其中4-10小题每题10分,第11小题15分,共 85分)4、电路如图所示,设输入为U 1 ,输出为U 2 ,试自选状态变量并列写出其状态空间表达式。

麻曙秋恋爱■为J l*i ζlX i甘态空闿枝达式为 IHl IitBG 迦睾样机理分箭法,首先帳撼电踣定律则 ^ffl⅛⅛SS ・苒选澤就JS 娈■・求欄粗应的糸筑狀 盃空珂舌达式B 也珂以先由电路邀求袴糸址f⅛递函 ≡,再由悟越塑救求潯系臧帝空间表达式 采厢机理分护走“设G 两鋼电∣1⅛*ΓP G 两睛的电丘為越小则气 I *+ M TJ C M l⑴j Of ", ⅝+⅞c j i 1口白逐求得条统吠态△■期表込丄(刊 -13」LX3」L5ff It i.IW 1I⅛GV ∙K2 Lu试将下处伏越程化为朋融感P-I-I•-^S∣9U[-3-a 1•u≡IIZ7 4J u..,U.则猖对吊标■壯理l∣⅞^tη=Kn代入求聲公弍轉—⅛l- —<,i*2 f1 丿 1 ,j,1 ⅛'3f,-t i,rt<r-⅛* ft r2 2 2 1-r,(0J- JM(My IM MW-女"C F-3⅛"λf乩* J⅛4f丄■■i⅛,≡≡^Ll J——-一JfJOI-------- ---- X i(O)+βf- Iι7 -.∙Kl⅛ιp TΓl«期于占=-ι¾-I -L d-3 -( -2IJ Il∣2) IK:(IJ液转证追® 求4,j tf-3-3-1-2P llF l aLπIl%二i-3127J如n"Jf Ij= -3^f,A尸U1-12-41■'3 ⅛f,'=H1 -351 -21-I91-S5-21-12I35J7*5-27-Zfl -1I5 3 15J17I27JA_ 2*J22—_屯尸a371-15-27-202716HΛJ-A∣= -J Λs*^⅛r7、已知系统状态空间表达式为X -1-3 y =h:X Iu1 Ix求系统的单位阶跃响应。

现代控制理论试卷及答案-总结

现代控制理论试卷及答案-总结

、〔10分,每小题1分〕试判断以下结论的正确性,若结论是正确的, 一〔√〕1. 由一个状态空间模型可以确定惟一一个传递函数.〔√〕2. 若系统的传递函数不存在零极点对消,则其任意的一个实现均为最小实现.〔×〕 3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的.〔√〕4. 对线性定常系统x = Ax ,其Lyapunov意义下的渐近稳定性和矩阵A的特征值都具有负实部是一致的.〔√〕5.一个不稳定的系统,若其状态彻底能控,则一定可以通过状态反馈使其稳定.〔×〕 6. 对一个系统,只能选取一组状态变量;〔√〕7. 系统的状态能控性和能观性是系统的结构特性,与系统的输入和输出无关;〔×〕 8. 若传递函数G(s) = C(sI 一A)一1 B 存在零极相消,则对应的状态空间模型描述的系统是不能控且不能观的;〔×〕9. 若一个系统的某个平衡点是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的;〔×〕 10. 状态反馈不改变系统的能控性和能观性.二、已知下图电路,以电源电压 u<t>为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻 R2 上的电压为输出量的输出方程.〔10 分〕解:〔1〕由电路原理得:二.〔10 分〕图为 R-L-C 电路,设u 为控制量,电感L 上的支路电流和 电容 C 上的电压x 为状态变量,电容 C 上的电压x 为输出量,试求: 网2 2络的状态方程和输出方程,并绘制状态变量图.解:此电路没有纯电容回路,也没有纯电感电路,因有两个储能元件, 故有独立变量.以 电感 L 上 的 电流和 电容两端 的 电压为状态变量 , 即令:i L = x 1 , u c = x 2,由基尔霍夫电压定律可得电压方程为: • •y y21 =-x x21+ u三、 〔每小题 10 分共 40 分〕基础题〔1〕试求 y - 3y - 2y = u + u 的一个对角规 X 型的最小实现.〔10 分〕Y(s) = s 3 + 1 = (s +1)(s 2 - s +1) = s 2 - s +1 = 1+ 1+ -1 …………4 分不妨令X (s)1 = 1 ,X (s)2 = - 1 …………2 分 于是有 又Y(s)U(s)= 1+ X (s)1U(s)+ X (s)2U(s),所以Y(s) = U (s) + X 1 (s) + X 2 (s) , 即有y = u + x + x …………2 分1 2最终的对角规 X 型实现为则系统的一个最小实现为:=「|2 0 ]+「| 1 ]|u, y = [1 1…………2 分 U (s) s 3 - 3s - 2 (s +1)(s 2 - s - 2) s 2 - s - 2 s - 2 s + 1 L 0 -1-1」U (s) s - 2 U (s) s + 1从上述两式可解出x 1 ,x 2 ,即可得到状态空间表达式如下:〔2〕已知系统 =「| 0 1]| +「|1]|u, y = [1 -2] ,写出其对偶系统,判断该系统的能控性与其对偶系统的能观性.〔10 分〕解答:= 10 3-2+ -12 u…………………………2 分y = [1 2] ……………………………………2 分〔3〕设系统为试求系统输入为单位阶跃信号时的状态响应〔10 分〕 .解(t )=「|e-t 0 ]|L 0 e -2t 」……………………………..…….……..3 分(t) = (t )(0) + j 0t (t )u(t )d τ……….….……….……..3 分=11+ j 0t11d τ ….……..2 分=「| e-t ]| + j t 「| e -(t -t ) ]|d τL e -2t 」 0 |L e -2(t -t )」| .................................................................................... 1 分=(1- e1(1-2= 21 (1 e -2t )………………..1 分〔4〕已知系统 x =01 01x + 11u 试将其化为能控标准型.〔10 分〕 「0 1 ]解: u c = 11 02 , u -c 1 =|L 21 - 21 」| ............2 分 p 1= [0 1]u -c1 = [0 1]-121= [21 - 21].…….1 分 p 2= p 1A = [21- 21]01 01= [21 21].……..1 分 L -2 3」 L 2」「 1 - 1 ] 「 1 1]P = |L 212」| ,P -1 = |L -1 1」| ....................2 分能控标准型为x =「|0 1]|x +「|0]|u........ 4 分 四、设系统为试对系统进行能控性与能观测性分解,并求系统的传递函数.〔10 分〕 解:能控性分解:能观测性分解: 传递函数为g(s) ==(2分)五、试用李雅普诺夫第二法,判断系统 x •=「| 0 1 ]| x 的稳定性.〔10分〕方法一:解: x 1= x 2原点 x =0是系统的惟一平衡状态 .选取标准二次型函数为李雅e普诺夫函数,即当x 1 = 0 ,x 2 = 0 时, v(x) = 0 ;当x 1 丰 0 ,x 2 = 0 时,v(x) = 0 ,因此v(x) 为 负半定.根据判断,可知该系统在李雅普诺夫意义下是稳定的. 另选一个李雅普诺夫函数,例如:为正定,而为负定的,且当 x ) w ,有V (x)) w .即该系统在原点处是大 X 围渐进 稳定. 方法二:• • ••L -1 -1」L 0 1」 L 1」解:或者设P =则由 A T P + PA = -I 得+=可知 P 是正定的.因此系统在原点处是大 X 围渐近稳定的六、 〔20 分〕线性定常系统的传函为 Y (s) = s +4U (s) (s + 2)(s +1)〔1〕实现状态反馈,将系统闭环的希翼极点配置为(-4,-3),求反馈阵K .〔5 分〕〔2〕试设计极点为(-10,-10) 全维状态观测器〔5 分〕 . 〔3〕绘制带观测器的状态反馈闭环系统的状态变量图〔4 分〕 〔4〕分析闭环先后系统的能控性和能观性〔4 分〕注明:由于实现是不惟一的,本题的答案不惟一!其中一种答案为:解:〔1〕 Y (s) = s + 4 = s + 4U (s) (s + 2)(s +1) s 2 + 3s + 2系统的能控标准型实现为: X =「| 0 1 ]| X +「|0]| u, y = [4 1]X ……1 分系统彻底可控,则可以任意配置极点……1 分 令状态反馈增益阵为K = [k k ]……1 分1 2则有A - BK =「| 0 1 ]|,则状态反馈闭环特征多项式为又期望的闭环极点给出的特征多项式为: (s + 4)(s + 3) = s 2+ 7s +12由入2 + (k + 3)入 + (k + 2) = s 2 + 7s +12 可得到K = [4 10]……3 分1 2〔2〕观测器的设计:L -k 2 - 2 -k 1- 3」 L -2 -3」 L 1」由传递函数可知,原系统不存在零极点相消,系统状态彻底能观,可以任意配置观测器的极点.……1 分 令E = [e e ]T ……1 分1 2由观测器 = (A - EC)+ Bu + Ey 可得其期望的特征多项式为:f * (s) = f (s) 亭 E = - 311 395T ……4 分〔3〕绘制闭环系统的摹拟结构图第一种绘制方法:……4 分〔注:观测器输出端的加号和减号应去掉!不好意思, 刚发现!!〕第二种绘制方法:〔4〕闭环前系统状态彻底能控且能观,闭环后系统能控但不能观〔因 为状态反馈不改变系统的能控性 ,但闭环后存在零极点对消 ,所以系 统状体不彻底可观测〕……4 分A 卷-+-41 s32x 21 sx1x14+ + y10++22 - 3+ +1 s 222 - 358 -34 322 - 3 + ++1+ + - s1 4 43v u +-++++一、判断题,判断下例各题的正误,正确的打√ , 错误的打×〔每小题1 分,共10 分〕1、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换过程〔√〕2、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕3、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕4、系统的状态转移矩阵就是矩阵指数〔×〕5、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕6、状态的能空性是系统的一种结构特性,依赖于系统的结构, 与系统的参数和控制变量作用的位置有关〔√〕7、状态能控性与输出能控性之间存在必然的联系〔×〕8、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√ 〕9、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无关〔√〕10、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕二、已知系统的传递函数为试分别用以下方法写出系统的实现:(1) 串联分解(2) 并联分解(3) 直接分解(4) 能观测性规X 型〔20 分〕解:2对于s3 +10s2 + 31s + 30 有(1) 串联分解串联分解有多种,如果不将 2 分解为两个有理数的乘积,如2 = 1 8 ,绘制该系统串联分解的结4构图,然后每一个惯性环节的输出设为状态变量,则可得到系统四种典型的实现为:则对应的状态空间表达式为:需要说明的是, 当交换环节相乘的顺序时,对应地交换对应行之间对角线的元素. . 的实现为:〈0 0一311]XX + u则. .的实现为:〈0一311]XX + u挨次类推!! (2) 并联分解实现有无数种,若实现为〈X = X + 21u只要满足y = [c L 1 c 2 c 3]2 1〔3〕直接分解〔4〕能观测规 X 型三、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状态响应分别为试据此定出系统矩阵A.〔10 分〕解: x(t) = e At x(0) 可得四、已知系统的传递函数为〔1〕试确定 a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述 a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性; 〔3〕若a = 3 ,写出系统的一个最小实现.〔15 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 〔2〕可写系统的能控标准形实现为此问答案不惟一 存在零极相消,系统不能观 〔3〕 a = 3 ,则有G(s) =2 3 一1 3 如例如: s 3 + 10s 2 + 31s +30 = (s + 2) + (s + 3) + (s + 5),则其实现可以为:可写出能控标准形最小实现为此问答案不惟一,可有多种解五、已知系统的状态空间表达式为 〔1〕判断系统的能控性与能观测性; 〔2〕若不能控,试问能控的状态变量数为多少? 〔3〕试将系统按能控性进行分解; 〔4〕求系统的传递函数.〔15 分〕 解:〔1〕系统的能控性矩阵为U C = [b Ab ]= 10 -20, det U C = 0, rankU C = 1 < 2故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ]故系统的状态不能观测 4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1C〔3〕由状态方程式可知是x 能控的, x 是不能控的2 1〔4〕系统的传递函数为1 分2 分G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关六、给定系统解李雅普诺夫方程,求使得系统渐近稳定的 a 值 X 围.〔10 分〕七、伺服机电的输入为电枢电压,输出是轴转角,其传递函数为〔1〕设计状态反馈控制器u = -Kx + v ,使得闭环系统的极点为-5 士 j5 ;〔2〕设计全维状态观测器,观测器具有二重极点-15;〔3〕将上述设计的反馈控制器和观测器结合,构成带观测器的反馈控制器,画出闭环系统的状 态变量图;〔4〕求整个闭环系统的传递函数.〔20 分〕 第二章题 A 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 11、状态方程表达了输入引起状态变化的运动,输出方程则表达了状态引起输出变化的变换 过程〔 √〕12、对于给定的系统,状态变量个数和选择都不是惟一的〔×〕13、连续系统离散化都没有精确离散化,但近似离散化方法比普通离散化方法的精度高〔×〕3 分2 2 2s + 2U O= |L cA 」| = |L 19 -10」| , det U C = -115 丰 0, rankU O = 214、系统的状态转移矩阵就是矩阵指数〔×〕15、若系统的传递函数存在零极点相消,则系统状态不彻底能控〔×〕16、状态的能空性是系统的一种结构特性 ,依赖于系统的结构, 与系统的参数和控制变量作 用的位置有关〔 √〕17、状态能控性与输出能控性之间存在必然的联系〔×〕18、一个传递函数化为状态方程后,系统的能控能观性与所选择状态变量有关〔√〕 19、系统的内部稳定性是指系统在受到小的外界扰动后,系统状态方程解的收敛性,与输入无 关〔 √〕20、若不能找到合适的李雅普诺夫函数,那末表明该系统是不稳定的〔×〕第二题:已知系统的传递函数为G(s) == ,试分别用以下方法写出系统的实现:(5) 串联分解〔4 分〕 (6) 并联分解〔4 分〕 (7) 直接分解〔4 分〕 (8) 能观测性规 X 型〔4 分〕(9) 绘制串联分解实现时系统的结构图〔4 分〕解:s对于有s 3 +10s 2 + 31s + 30(3) 串联分解 串联分解有三种s = s . 1 . 1 = 1 . s . 1 = 1 . 1 . s s 3 +10s 2 + 31s + 30 (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) (s + 1) (s + 2) (s + 3) = (1)..=.(1).=.(1)对应的状态方程为:(4) 并联分解实现有无数种,其中之三为: 〔3〕直接分解 〔4〕能观测规 X 型 (10) 结构图第二章题 B 卷第一题:判断题,判断下例各题的正误,正确的打√ ,错误的打× 〔每小题 1 分,共 10 分〕 1、状态空间模型描述了输入-输出之间的行为,而且在任何初始条件下都能揭示系统的内部 行为〔 √〕2、状态空间描述是对系统的一种彻底的描述,而传递函数则只是对系统的一种外部描述〔√〕3、任何采样周期下都可以通过近似离散化方法将连续时间系统离散化〔×〕4、对于一个线性系统来说,经过线性非奇妙状态变换后,其状态能控性不变〔 √〕5、系统状态的能控所关心的是系统的任意时刻的运动〔×〕6、能观〔能控〕性问题可以转化为能控〔能观〕性问题来处理〔√〕7、一个系统的传递函数所表示的是该系统既能控又能观的子系统〔√〕8、一个系统的传递函数若有零、 极点对消现象,则视状态变量的选择不同,系统或者是不能控的Y(s) s 3 +10s 2 + 31s + 32U (s) (s 2 + 5s + 6)(s + 1)或者是不能观的〔 √〕9、对于一个给定的系统,李雅普诺夫函数是惟一的〔 ×〕 10、若系统对所有有界输入引起的零状态响应的输出是有界的,则称该系统是外部稳定的〔√〕 第二题: 求以下 RLC 网络系统的状态空间模型, 并绘制其结构图.取电压 e_i 为输入,e_o 为输 出.其中 R 1 、R 2 、C 和 L 为常数.第二题图答案:解: 〔状态变量可以另取〕定义状态变量: x 1 为电阻两端电压 v,x 2 为通过电感的电流 i.输入 u 为 e_i ,输出 y 为e_o .使用 基尔霍夫电流定理列 R 1 和 R 2 间节点的电流方程:使用基尔霍夫电压定理列出包含 C 、R 2 、L 回路的电压方程: 最后,输出电压的表达式为: 得到状态空间模型: 结构图为:第三题: 如图所示,系统的输入量为 u 1 和 u 2、输出量为 y 和请选择适当的状态变量,并写出系 统的状态空间表达式,根据状态空间表达式求系统的闭环传递函数:第三题图 解:状态变量如下图所示〔3 分〕从方框图中可以写出状态方程和输出方程〔4〕 状态方程的矩阵向量形式: 系统的传递函数为〔3 分〕:. 解:由电路图可知:图1 :RC 无源网络可得:选,,=所以可以得到:解:运用公式可得:可得传递函数为:解:先求出系统的.可得:令,X<k>+解:计算算式为:所以:解:由于 A 无特定形式,用秩判据简单.因此,不管 a 去何值都不能够联合彻底能控和彻底能观测解:〔1〕选取李雅普若夫函数V<x>,取,可知:V<0>=0,即〔2〕计算基此可知:即:〔3〕判断和出:为正定.并判断其定号性.对取定和系统状态方程,计算得到:为负半定..对此, 只需判断的不为系统状态方程的解.为此,将带入状态方程, 导表明,状态方程的解只为, 不是系统状态方程的解.通过类似分析也可以得证不是系统状态方程的解. 基此, 可知判断.〔4〕综合可知,对于给定非线性时不变系统,可构造李雅普若夫函数判断满足:V<x>为正定, 为负定;对任意,当,有基此,并根据李雅普若夫方法渐近稳定性定理知:系统原点平衡状态为大X 围渐近稳定.解:可知,系统彻底可控,可以用状态反馈进行任意极点配置. 由于状态维数为 3 维.所以设.系统期望的特征多项式为:而令,二者相应系数相等.得:5 3 ]即: 验证:A 卷二、基础题〔每题 10 分〕1、给定一个二维连续时间线性定常自治系统 = A , t > 0 .现知,对应于两个不同初态的状 态响应分别为试据此定出系统矩阵 A .解: x(t) = e At x(0) 2 分可得e At = 4 4「| 1 (e -t + e 3t )4 分4 e -t + 4 e 3t |「 1 -5 e -t + 3 e 3t |L -1 1 1 ] 21 (e -t + e 3t )」2 ]-1 「| 43 e -t + 41 e 3t -1」| = - 23 e -t + 21e 3t45 e -t + 43e 3t ]|「-1 - 25 e -t + 23e 3t 」 |L 1-2] 1 」| A ==-te3t14-43t =0 = 41 11 2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化. 解:① 首先计算矩阵指数.采用拉氏变换法:e t = L -1 (s -)-1 = L -1〈-1= L -122)=3 分② 进而计算离散时间系统的系数矩阵.= e T =「|1 0.5 (1- e -2T )] T 「14 分0.4323] 0.1353」|2 分 「3 e -t + 1 e 3t |L 0 e -2T 」|| 将T = 1s 代入得 = e = |L 0 - 4 e -t + 4 e 3t| |- 3 e -t + 1 e 3t |L 2 2 = | 2||L -e -t + e 3t2 2 」|=(j T)B =〈(|j T「|10 |l 0 |L00.5(1- e-2t)] )|「0]「0.5T + 0.25e-2T - 0.25]=|L -0.5e-2T + 0.5 」|「1.0789]= | |③故系统离散化状态方程为xx21 = xx21kk+ u (k ) 2 分3、已知系统的传递函数为〔1〕试确定a 的取值,使系统成为不能控,或者为不能观测;〔2〕在上述a 的取值下,写出使系统为能控的状态空间表达式,判断系统的能观测性;〔3〕若a = 3 ,写出系统的一个最小实现.〔10 分〕解:〔1〕因为因此当a = 1 或者a = 2 或者a = 3 时, 浮现零极点对消现象,系统就成为不能控或者不能观测的系统 3 分〔2〕可写系统的能控标准形实现为此问答案不惟一x =-x + u y =[2a 2 0]x3 分存在零极相消,系统不能观 1 分〔3〕a = 3 ,则有G(s) =可写出能控标准形最小实现为此问答案不惟一,可有多种解三、已知系统的状态空间表达式为3 分〔1〕判断系统的能控性与能观测性;〔2〕若不能控,试问能控的状态变量数为多少?〔3〕试将系统按能控性进行分解;〔4〕求系统的传递函数.〔10 分〕解:〔1〕系统的能控性矩阵为UC= [b Ab]=1-2, det UC= 0, rankUC= 1 < 23 分L0.4323」|dt卜||e-2t 」| J|L 1」故系统的状态不能控系统的能观测性矩阵为「 c ] 「 2 5 ] U O= | | = | | ,detU = -115 丰 0, rankU = 2 C O4 分〔2〕 rankU = 1 , 因此能控的状态变量数为 1 1 分 C〔3〕由状态方程式可知是x 能控的, x 是不能控的 2 分3 分B 卷二、基础题〔每题 10 分〕1、给定一个连续时间线性定常系统, 已知状态转移矩阵个(t) 为 试据此定出系统矩阵 A .解:A =〈dt d(t) 卜Jt =0=t =0「 0 2 ] = | |2、设线性定常连续时间系统的状态方程为取采样周期T = 1s ,试将该连续系统的状态方程离散化.解:① 首先计算矩阵指数.采用拉氏变换法: ② 进而计算离散时间系统的系数矩阵.「 1 T ] 「1 1]= e T = |L 0 1」|将T = 1s 代入得 = e T = |L 0 1」| ③ 故系统离散化状态方程为 3、已知系统的传递函数为试写出系统的能控标准形实现.〔10 分〕解:系统的能控标准形实现为三、试确定下列系统当 p 与 q 如何取值系统既能控又能观.〔10 分〕 解:系统的能控性矩阵为其行列式为 det [b Ab ]= p 2 + p - 12根据判定能控性的定理 , 若系统能控 , 则系统能控性矩阵的秩为 2,亦即行列式值不为2 1〔4〕系统的传递函数为G(s) = c (sI - A )-1 b = c (sI - A )-1 b = 5 只与能控子系统有关2 2 2s + 2L -1 -3」L cA 」 L 19 -10」 故系统的状态不能观测[b Ab]= p2+ p - 12 丰00 , det因此当p 丰3,-4 时系统能控系统能观测性矩阵为其行列式为根据判定能观性的定理, 若系统能观, 则系统能观性矩阵的秩为2, 亦即「c ]det | | = 12q2 - q - 1 丰0L cA」1 1因此当q 丰, - 时系统能观3 41 1综上可知, 当p 丰3, -4 , q 丰, - 时系统既能控又能观3 4。

现代控制理论试题

现代控制理论试题

现代控制理论试题(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除现代控制理论试题一、名词解释(15分)1、能控性2、能观性3、系统的最小实现4、渐近稳定性二、简答题(15分)1、连续时间线性时不变系统(线性定常连续系统)做线性变换时不改变系统的那些性质?2、如何判断线性定常系统的能控性如何判断线性定常系统的能观性3、传递函数矩阵的最小实现A、B、C和D的充要条件是什么?4、对于线性定常系统能够任意配置极点的充要条件是什么?5、线性定常连续系统状态观测器的存在条件是什么?三、计算题(70分)1、RC无源网络如图1所示,试列写出其状态方程和输出方程。

其中,为系统的输入,选两端的电压为状态变量,两端的电压为状态变量,电压为为系统的输出y。

图1:RC无源网络2、计算下列状态空间描述的传递函数g(s)3、求出下列连续时间线性是不变系统的时间离散化状态方程:其中,采样周期为T=2.4、求取下列各连续时间线性时不变系统的状态变量解和5、确定是下列连续时间线性时不变系统联合完全能控和完全能观测得待定参数a的取值范围:6、对下列连续时间非线性时不变系统,判断原点平衡状态即是否为大范围渐近稳定:7、给定一个单输入单输出连续时间线性时不变系统的传递函数为试确定一个状态反馈矩阵K,使闭环极点配置为,和。

现代控制理论试题答案一、概念题1、何为系统的能控性和能观性?2、答:(1)对于线性定常连续系统,若存在一分段连续控制向量u(t),能在有限时间区间[t0,t1]内将系统从初始状态x(t0)转移到任意终端状态x(t1),那么就称此状态是能控的。

(2)对于线性定常系统,在任意给定的输入u(t)下,能够根据输出量y(t)在有限时间区间[t0,t1]内的测量值,唯一地确定系统在t0时刻的初始状态x(t),就称系统在t0时刻是能观测的。

若在任意初始时刻系统都能观测,则0称系统是状态完全能观测的,简称能观测的。

华南农业大学期末考试试卷(A卷)

华南农业大学期末考试试卷(A卷)

华南农业大学期末考试试卷(A卷)2005学年第一学期考试科目:管理信息系统考试类型:闭卷考试时间:120分钟学号姓名年级专业一、选择题。

给下列每题空格处的4个备选答案中选出1个正确答案,将答案的正确号码填在题后的空格内。

(每题1分,共20分)1.管理信息系统是一些功能子系统的联合。

每个子系统包含四个信息处理单元,它为四个不同管理层次服务。

按区域,按产品,按顾客的销售数量进行定期分析等,是属于。

A.业务处理 B.运行控制 C.管理控制 D.战略计划2.制造资源计划(MRPII)理论相对于闭环物料需求计划理论解决了问题A. 物料的相对需求B. 能力需求计划C.资金流及成本核算D. 整个供应链资源配置3.下列哪些特性描述不属于JIT(准时制生产)方式特点。

A. 致力于追求零库存B. 严格执行预定生产计划C. 充分发挥工人主观能动性D.强调供应链合作与优化4.在数据库的规范化理论中,第三范式意味着,关系中消除了所有非主属性对主属性的。

A. 传递依赖B. 局部依赖C. 不完全依赖D. 有条件依赖5.下列特性不属于浏览器/服务器(B/S)计算模式相对于客户机/服务器计算模式的优点。

A. 系统升级维护更加方便B. 系统可移植性好C. 系统安全性更好D. 降低了客户端硬件性能要求6.诺兰模型描述了。

A. 企业成长过程中信息系统建设规律B. 企业过程与数据类之间的“产生”和“利用”关系C. 系统分析过程中建立的逻辑模型D. 系统设计过程中建立的物理模型7.不是原型法开发系统过程特点的是A. 循环往复的反馈B. 开发周期短C. 能较好满足需求D. 整体性强8.软件项目的进度管理有许多方法,不仅能表达子任务的依赖关系,还可以找出关键任务。

A. 关键时间表B. 甘特图C. 网络图D. 时标网状图9.面向对象的基本思想是通过建立和客观实际相对应的对象,并通过这些对象的组合来创建具体应用。

对象是。

A. 数据结构的封装体B. 数据以及在其上操作的封装体C. 程序功能模块的封装体D. 一组有关事件的封装体10. 发展CASE的目的是提高。

现代控制理论试卷及答案

现代控制理论试卷及答案

现代控制理论试卷一、简答题(对或错,10分)(1)描述系统的状态方程不是唯一的。

(2)用独立变量描述的系统状态向量的维数不是唯一的。

(3)对单输入单输出系统,如果1()C sI A B --存在零极点对消,则系统一定不可控或者不可观测。

(4)对多输入多数出系统,如果1()sI A B --存在零极点对消,则系统一定不可控。

(5)李雅普诺夫直接法的四个判定定理中所述的条件都是充分条件。

(6)李雅普诺夫函数是正定函数,李雅普诺夫稳定性是关于系统平衡状态的稳定性。

(8)线性定常系统经过非奇异线性变换后,系统的可控性不变。

(9)用状态反馈进行系统极点配置可能会改变系统的可观测性。

(10)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时可控和可观测。

对一个线性定常的单输入单输出5阶系统,假定系统可控可观测,通过设计输出至输入的反馈矩阵H 的参数能任意配置系统的闭环极点。

二、试求下述系统的状态转移矩阵()t Φ和系统状态方程的解x 1(t)和x 2(t)。

(15分)1122()()012()()()230x t x t u t x t x t ⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦12(0)0,(),0(0)1tx u t e t x -⎡⎤⎡⎤==≥⎢⎥⎢⎥⎣⎦⎣⎦ 三、设系统的传递函数为()10()(1)(2)y s u s s s s =++。

试用状态反馈方法,将闭环极点配置在-2,-1+j ,-1-j 处,并写出闭环系统的动态方程和传递函数。

(15分) 四、已知系统传递函数2()2()43Y s s U s s s +=++,试求系统可观标准型和对角标准型,并画出系统可观标准型的状态变量图。

(15分)五、已知系统的动态方程为[]211010a x x uy b x ⎧⎡⎤⎡⎤=+⎪⎢⎥⎢⎥⎨⎣⎦⎣⎦⎪=⎩,试确定a ,b 值,使系统完全可控、完全可观。

(完整版)现代控制理论期末试卷

(完整版)现代控制理论期末试卷

一、(10分,每小题1分)1、任一线性连续定常系统的系统矩阵均可对角形化。

(×)2、对SISO 线性连续定常系统,传递函数存在零极点对消,则系统一定不能观且不能控制。

(×)3、对线性连续定常系统,非奇异变换后的系统特征值不变。

(√)4、对于线性连续定常系统的最小实现是唯一的。

(×)5、稳定性问题是相对于某个平衡状态而言的。

(√)6、Lyapunov 第二法只给出了判定稳定性的充分条件。

(√)7、对于SISO 线性连续定常系统,状态反馈后形成的闭环系统零点与原系统一样。

(√)8、对于一个系统,只能选取一组状态变量。

(×)9、对于一个n 维的线性定常连续系统,若其完全能观,则利用状态观测器实现的状态反馈闭环系统是2n 维的。

(√)10、对线性定常系统,其Lyapunov 意义下的渐近稳定性和矩阵特征值都具有负实部是一致的。

(√)二(10分,每小题5分)(1)简述平衡状态及平衡点的定义。

(2)简述状态方程解的意义。

解:(1)状态空间中状态变量的导数向量为零向量的点。

由平衡状态在状态空间中所确定的点称之为平衡点。

(2)线性连续定常系统状态方程的解由两部分组成,一部分是由初始状态所引起的自由运动即零输入响应,第二部分是由输入所引起的系统强迫运动,与输入有关称为零状态响应。

三、(10分)考虑如图的质量弹簧系统。

其中,m 为运动物体的质量,k 为弹簧的弹性系数,h 为阻尼器的阻尼系数,f 为系统所受外力。

取物体位移为状态变量x 1,速度为状态变量x 2,并取位移为系统输出y ,外力为系统输入u ,试建立系统的状态空间表达式。

解:……………………………….……1分f ma =令位移变量为x 1,速度变量为x 2,外力为输入u ,有………………………………2分122u kx kx mx--= 于是有………………………………..……………1分12xx = ……….….……………….2分2121k h x x x u m m m=--+再令位移为系统的输出y ,有…………………………….……….1分1y x =写成状态空间表达式,即矩阵形式,有………..……………..2分11220101x x u k h x x m m m ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦……………………..……….……….2分[]1210x y x ⎡⎤=⎢⎥⎣⎦四、(15分)求以下系统的状态响应0120()()(),(0),()e 2301t x t x t u t x u t -⎡⎤⎡⎤⎡⎤=+==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦解: 由得012,230A b ⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦…………….……………………………………2分123s sI A s -⎡⎤-=⎢⎥+⎣⎦……………….………2分121111212()22212121s s s s sI A s s s s -⎡⎤--⎢⎥++++-=⎢⎥⎢⎥--⎢⎥++++⎣⎦ …………….………….………2分22222e e e e e 2e e e 2e t tt t At t t t t --------⎡⎤--=⎢⎥-+-+⎣⎦…………….………………2分()0()e (0)e ()()t At A t s x t x B s u s ds -=+⎰ …………….………………...…………1分21(41)e et t x t --=-+ …………….…………..………………1分22(34)e 2e t t x t --=--五、(10分)令为二阶单位矩阵。

华南农业大学期末考试试卷

华南农业大学期末考试试卷

华南农业大学期末考试试卷-----------------------作者:-----------------------日期:华南农业大学期末考试试卷(A 卷)一、 填空题(每题2分,10题共20分)1. 通常取晶闸管的断态重复峰值电压 UDRM 和反向重复峰值电压 URRM 中 较小的标值作为该器件的额定电压。

选用时,额定电压要留有一点裕量,一般取额定电压为正常工作时的晶闸管所承受峰值电压的2~3倍。

2. 晶闸管额定电流为100A ,通过半波交流电时,电流的波形系数为K f =1.57,电流的有效值计算为/2m I ,则通过电流最大值m I 为 314 A 。

3. 单相全波可控整流电路中,晶闸管承受的最大反向电压为 1.41 U 2 。

三相半波可控整流电路中,晶闸管承受的最大反向电压为 2.45U 2 。

(电源相电压为U 2)4. 要使三相全控桥式整流电路正常工作,对晶闸管触发方法有两种,一是用 宽脉冲 触发;二是用 双窄脉冲 触发。

5. 单相交流调压电阻性负载电路的移相范围在 0度~ 180度 内,在阻感性负载时移相范围在 功率因素角 ~ 180度 内。

6. 交流调压电路和交流调功电路异同点: 电路结构相同,控制方式不同,(交流调压电路采用移相触发对一个周期内导通角控制,调功电路对导通周波数与阻断周波数的比值进行控制) 。

7. 电压型逆变电路中的反馈二极管的作用是 给交流侧向直流侧反馈的无功能量提供通道 。

8. 变流电路的换流方式有 器件换流 、 电网换流 、 负载换流 、 强迫换流 等四种。

9. 180°导电型三相桥式逆变电路,晶闸管换相是在 同一相上下两个桥臂 元件之间进行;而120º导电型三相桥式逆变电路,晶闸管换相是在 上桥臂或者下桥臂组内 上的元件之间进行的。

10. PWM 逆变电路的控制方法有 计算法 、调制法和 规则采样法 三种。

其中调制法又可分为 同步调制法 、 异步调制法 两种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南农业大学期末考试试卷(A卷)2007 学年第1 学期考试科目:自动控制原理II考试类型:闭卷考试时间:120 分钟学号年级专业题号 1 2 3 4 5 6 7 8 9 10 总分得分评阅人1、已知下图电路,以电源电压u(t)为输入量,求以电感中的电流和电容中的电压作为状态变量的状态方程,和以电阻R2上的电压为输出量的输出方程。

并画出相应的模拟结构图。

(10分)解:(1)由电路原理得:112212111122211111LL cLL ccL Ldi Ri u udt L L Ldi Ri udt L Ldui idt c c=--+=-+=-222R Lu R i=1122111122210110011L LL Lc cRi iL LLRi i uL Lu uc c⎡⎤--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦ggg[]122200L R L c i u R i u ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦2、建立下列输入-输出高阶微分方程的状态空间表达式。

(8分)322y y y y u u u +++=++&&&&&&&&&解:方法一:12301233,2,10,1,2,1a a ab b b b =======()001110221120331221300130123120113121102b b a b a a b a a a ββββββββββ===-=-⨯==--=-⨯-⨯=-=---=-⨯--⨯-⨯=()010100111232100x x u y x ⎧⎛⎫⎛⎫⎪ ⎪ ⎪=+-⎪ ⎪ ⎪⎨ ⎪ ⎪---⎝⎭⎝⎭⎪⎪=⎩&方法二:()23221321s s g s s s s ++=+++系统的传递函数为()010000101231121x x uy x ⎧⎛⎫⎛⎫⎪ ⎪ ⎪=+⎪ ⎪ ⎪⎨ ⎪ ⎪---⎝⎭⎝⎭⎪⎪=⎩&能控型实现为()001110220131001x x uy x⎧-⎛⎫⎛⎫⎪ ⎪ ⎪=-+⎪ ⎪ ⎪⎨ ⎪ ⎪-⎝⎭⎝⎭⎪⎪=⎩&或能观型实现为3、将下列状态空间表达式化为对角标准型,并计算其传递函数(10分) 解:(1)[]11202ˆˆˆ013ˆˆ11P AP P Bu u y CP ---⎡⎤⎡⎤=+=+⎢⎥⎢⎥⎣⎦⎣⎦==x x x xx &(2)[]112114()()1023132s s G s C SI A B s s s ---⎡⎤⎡⎤-=-==⎢⎥⎢⎥---+⎣⎦⎣⎦4、求定常控制系统的状态响应(10分)()()()()()()0101,0,0,11210x t x t u t t x u t t ⎛⎫⎛⎫⎛⎫=+≥== ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭&解:11t t t At t tt t tt e te te e e t t te e te -------+⎛⎫+⎛⎫== ⎪ ⎪----⎝⎭⎝⎭ ()()()()0100t A t s Atx t e x ebu s ds -⎛⎫=+= ⎪⎝⎭⎰()011,10231x x u y x ⎛⎫⎛⎫=+= ⎪ ⎪--⎝⎭⎝⎭&5、设系统的状态方程及输出方程为110001010111x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦& []001y x = 试判定系统的能控性和能观性。

(10分)解:(1) 2c u BABA B ⎡⎤=⎣⎦012111101⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,秩为2, 系统状态不完全能控。

(2)2001011021o C u CA CA ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,秩为2 系统状态不完全能观。

6、已知系统 u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=110011&试将其化为能控标准型。

(10分)解:1210c u ⎡⎤=⎢⎥⎣⎦,1112201c u -⎡⎤=⎢⎥-⎣⎦[][][]1111221122010101c p u -⎡⎤===-⎢⎥-⎣⎦[][]11112122221100p p A ⎡⎤==-=⎢⎥⎣⎦11221112211,11P P --⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦能控标准型为u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=101010&7、应用Lyapunov 第一方法分析非线性系统在平衡状态的稳定性(10分)1132122x x x x x x =-=--&& 解:(1)求平衡点1200x x ==&&所以平衡点为:(0,0)(2)雅克比矩阵为11122110(,)113n T n n n f f x x f x t x x f f x x ∂∂⎡⎤⎢⎥∂∂⎢⎥-⎡⎤∂==⎢⎥⎢⎥∂--⎢⎥⎣⎦∂∂⎢⎥⎢⎥∂∂⎣⎦L M LM L 对平衡点(0,0),系数矩阵1011A -⎡⎤=⎢⎥-⎣⎦,其特征值为:-1,-1,所以平衡点(0,0)是渐进稳定的;8、已知系统的状态方程为0123⎡⎤=⎢⎥--⎣⎦x x & 试从亚普诺夫方程T PA A P I +=-解出矩阵P ,来判断系统的稳定性。

(10分)解:令1112122210,01p p I P p p ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦ 由T A P PA I +=-得 1112111212221222020110132301p p p p p p p p --⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ P 11=5/4,P 12=1/4,P 22=1/4,5/41/41/41/4P ⎡⎤⇒=⎢⎥⎣⎦ 125/41/45/40,1/401/41/4∆=>∆==>可知P 是正定的。

因此系统在原点处是大围渐近稳定的。

9、已知系统[]xy u x x 011100300100010=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=&求使系统极点配置到-1,-2,-3的状态反馈阵K 。

并说明其配置新极点后的状态能控性及能观测性。

(12分)解:(1)系统完全能控,可用状态反馈任意配置闭环极点。

期望特征多项式为6116)3)(2)(1(23*+++=+++=s s s s s s ∆状态反馈系统的特征方程为()12233321)3()3(1001det )(det k s k s k s k s k k s ss ++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--=--=bK A I K ∆ 比较以上二式得61=k ,112=k ,33=k 。

即[]3116=K(2)闭环状态空间表达式为[]0100()001061161110x A BK x Bv v y Cx ⎡⎤⎡⎤⎢⎥⎢⎥=-+=+⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦==&x x2001,,0161625Uc B AB A B ⎡⎤⎢⎥⎡⎤==-⎣⎦⎢⎥⎢⎥-⎣⎦,rank(Uc)=3,所以闭环系统能控。

21100116115C Uo CA CA ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦,rank(Uo)=2,所以闭环系统不完全能观。

10、设系统的状态空间表达式为[]xx x 01101012=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=y u & 试设计全维状态观测器的G 阵,使观测器的极点均为-2.5。

(10分)解:系统能观测性矩阵01021U ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦C CA 02rankU n ==系统能观测,故状态观测器存在。

期望状态观测器特征多项式为25.65)5.2()(22*++=+=s s s s f设⎥⎦⎤⎢⎣⎡=21g g G ,则状态观测器特征多项式为[])2()3(112det )(det )(211221g g s g s s g g s s s f +++++=⎥⎦⎤⎢⎣⎡+-++=--=GC A I 比较以上二式得21=g ,25.22=g 。

即⎥⎦⎤⎢⎣⎡=25.22G 系统的状态观测器为y u G b x GC A x++-=ˆ)(ˆ& 即y u ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡---=25.2210ˆ125.214ˆx x &。

相关文档
最新文档