现代控制理论期末复习重点题目
现代控制理论_长安大学中国大学mooc课后章节答案期末考试题库2023年

现代控制理论_长安大学中国大学mooc课后章节答案期末考试题库2023年1.线性系统的状态空间表达式如下,则系统能控能观子空间为()维系统。
【图片】答案:22.已知线性定常系统的状态方程如下,状态反馈阵【图片】()使闭环系统极点配置为【图片】。
【图片】答案:3.下列语句中,正确的是()。
答案:系统状态空间实现中选取状态变量不是唯一的,其状态变量的个数是唯一的。
4.线性系统的状态空间表达式为如下,则系统的模拟结构图为()。
【图片】答案:5.系统方框图,如下图所示,则根据系统方框图建立的状态空间表达式为()。
【图片】答案:6.已知机械系统如下图所示。
其中质量块m受到外力u(t)的作用产生位移y(t),质量块m与地面之间无摩擦。
以外力 u(t)为输入信号,位移y(t)为输出量,系统状态空间模型为()。
【图片】答案:7.若A、B是方阵,则必有【图片】。
答案:错误8.已知单输入单输出系统的传递函数为【图片】,则系统状态空间表达式为()。
答案:9.已知系统的传递函数为【图片】,则系统状态空间表达式为()。
答案:10.原系统传递函数阵的阶数一定高于能控能观子系统传递函数的阶数。
答案:错误11.带状态观测器的状态反馈系统和直接状态反馈系统具有相同的传递函数矩阵。
答案:正确12.带状态观测器的状态反馈系统,观测器的极点会全部被闭环系统的零点相消。
答案:正确13.单输入-单输出线性时不变系统状态空间表达式的矢量矩阵形式为()。
答案:14.系统方框图如下所示,则系统的状态空间表达式为()。
【图片】答案:;15.RLC电路网络如下图所示,其中【图片】为输入电压, 【图片】为输出电压。
选择状态变量【图片】,则系统状态空间表达式为()。
【图片】答案:16.已知单输入单输出系统的微分方程为【图片】,则系统状态空间模型为()。
答案:17.已知系统的传递函数为【图片】,则系统状态空间表达式的对角型实现为()。
答案:18.已知非线性系统的微分方程为【图片】,则利用近似线性化方法得到系统的局部线性化状态方程是()。
现代控制理论总复习

2 1 2 1 3 1
1 0 0
0 3 2 0 1 0
1 3 0
0 0 1
第二章
一、基本概念 1)线性定常连续系统非齐次状态方程的解分为 零输入的状态转移和零状态的状态转移;系统的输 出响应由零输入响应和零状态响应两部分组成。
3. 可逆性
(t, t0 ) (t0 , t )
1
例 已知系统状态方程,试确定该系统在输入作用分别为单位脉 冲函数、单位阶跃输入及单位斜坡函数时的状态响应。
能观标准Ⅱ型
a0 x1 c0 a1 x2 c1 a2 x3 c2 u an 1 xn cn 1 x1 x 2 1 bn u xn 1 xn
p21 1 p2 p22 0 p23 0
3 p3 Ap3
p31 4 p 1 32 p33 1
1 0 1
2 p31 2 p32 3 p33
2 s 2 11s 6 W ( s) 3 s 8s 2 17 s 10
2)能观标准Ⅱ型
x1 0 x2 0 x3 10 y 6 11 1 0 17 x1 2 x2 x3 0 x1 0 1 x2 0 u 8 x3 1
能控标准Ⅰ型
x1 0 0 10 x1 6 x2 1 0 17 x2 11 u x3 0 1 8 x3 2 x1 y 0 0 1 x2 x3
最新现代控制理论复习题级

最新现代控制理论复习题级 现代控制理论复习题 一、选择题 ( )1、下列叙述正确的是 A 、 若系统矩阵A 的特征值有相同的,则系统能控性充要条件是控制矩阵T -1 B 的各行元 素没有全为0的。 B 、 若系统矩阵A 的特征值互异,则系统能控性充要条件是控制矩阵TB 的各行元素没 有全为0的。 C 、 系统的线性交换会改变系统的能控性条件。 D 、 若系统矩阵A 的特征值互异,则其对应的特征矢量必然互异。 ( )2、下列叙述不正确的是 A 、 若系统矩阵A 的特征值有相同的,则系统能控性充要条件是控制矩阵T -1 B 的各行元 素没有全为0的。 B 、若系统矩阵A 的特征值互异,则系统能控性充要条件是控制矩阵T -1B 的各行元素没 有全为0的。 C 、系统的线性交换不改变系统的能控性条件。 D 、若系统矩阵A 的特征值互异,则其对应的特征矢量必然互异。 ( )3、线性连续定常单输入系统:bu Ax x += ,其完全能控的充分必要条件是由A 、b 构成的能控性矩阵的秩为 A 、 大于n B 、等于n C 、小于n D 、以上叙述均不正确 ( )4、线性时不变系统的状态空间表达式为:Cx y x t x Ax x ===,)(,00 ,其完全能 观的充分必要条件是由A 、C 构成的能观性矩阵的秩为 A 、大于n B 、等于n C 、小于n D 、以上叙述均不正确 ( )5、系统Σ1=(A 1,B 1,C 1)和Σ2=(A 2,B 2,C 2)是互为对偶的两个系统,下列 叙述正确的是 A 、Σ1的能控性等价于Σ2的能控性 B 、Σ1的能观性等价于Σ2的能观性 C 、Σ1的能控性等价于Σ2的能观性 D 、上述观点均不正确 ( )6、系统Σ1=(A 1,B 1,C 1)和Σ2=(A 2,B 2,C 2)是互为对偶的两个系统,下列 叙述正确的是 A 、Σ1的能控性等价于Σ2的能控性 B 、Σ1的能观性等价于Σ2的能观性 C 、Σ1的能控性等价于Σ2的能观性 D 、上述观点均不正确 ( )7、传递函数W(s)=c(sI-A)-1b 的分子分母间没有零极点对消是一个单输入单输出系 统Σ(A ,b ,c )欲使其是能控并能观的 A 、充分条件 B 、必要条件 C 、充分必要条件 D 、上述全不正确 ( )8、传递函数W(s)=c(sI-A)-1b 的分子分母间没有零极点对消是一个单输入单输出系 统Σ(A ,b ,c )欲使其是能控并能观的 A 、充分条件 B 、必要条件 C 、充分必要条件 D 、上述全不正确( ) 9、设P 为n n ?实对称方阵,Px x x V T =)(为由P 所决定的二次型函数,若 V (x )正定,则称P 为 A 、正定 B 、负定 C 、非正定 D 、非负定 ( )10、设P 为n n ?实对称方阵,Px x x V T =)(为由P 所决定的二次型函数,若 V (x )负定,则称P 为 A 、正定 B 、负定 C 、非正定 D 、非负定 ( )11、下述状态转移矩阵的基本性质中,错误的是( ) A 、)t ()()t τΦτΦΦ+=( B 、I )t t (=-Φ C 、[])t ()t (ΦΦ=-1 D 、A )t ()t (A )t (ΦΦΦ == ( )12、下述状态转移矩阵的基本性质中,错误的是( ) A 、)t ()()t τΦτΦΦ-=( B 、I )t t (=-Φ C 、[])t ()t (-=-ΦΦ1 D 、A )t ()t (A )t (ΦΦΦ == ( )13、线性连续定常单输入单输出系统:Cx y bu Ax x =+= ,其能观的充分必要条件 是其能观性矩阵N 满秩,即rankN=n 。其能观性矩阵N=( ) A 、)b A ,,b A ,Ab ,b (N n 12-= B 、T n )b A ,,b A ,Ab ,b (N 12-= C 、)CA ,,CA ,CA ,C (N n 12-= D 、T n )CA ,,CA ,CA ,C (N 12-= ( )14、线性连续定常单输入单输出系统:Cx y bu Ax x =+= ,其能观的充分必要条 件是其能控性矩阵M 满秩,即rankM=n 。其能控性矩阵M=( ) A 、T n )CA ,,CA ,CA ,C (M 12-= B 、T n )b A ,,b A ,Ab ,b (M 12-= C 、)CA ,,CA ,CA ,C (M n 12-= D 、)b A ,,b A ,Ab ,b (M n 12-= ( )15、线性定常系统Σ:(A,b,c )输出稳定的充要条件是( ) A 、其传递函数:b )A sI (c )s (W 1--=的极点全部位于s 的左半平面; B 、矩阵A 的所有特征值均具有负实部; C 、其传递函数:b )A sI (c )s (W 1--=的分子分母间没有零极点对消。 ( )16、线性定常系统Σ:(A,b,c )平衡状态x e =0渐近稳定的充要条件是( ) A 、其传递函数:b )A sI (c )s (W 1--=的极点全部位于s 的左半平面; B 、矩阵A 的所有特征值均具有负实部; C 、其传递函数:b )A sI (c )s (W 1--=的分子分母间没有零极点对消。 ( )17、采用下述( )反馈对系统Σ0=(A,b,c )任意配置极点的充要条件是Σ0完全能控。 A 、状态反馈 B 、输出反馈 C 、从输出到x 反馈 ( )18、采用下述( )反馈对系统Σ0=(A,b,c )实现闭环极点任意配置的充要条件是Σ0完全能观。 A 、状态反馈 B 、输出反馈 C 、从输出到x 反馈 ( )19、对系统Σ0=(A,B,C ),采用( )反馈能镇定的充要条件是其不能控子系统为渐近稳定。 A 、状态反馈 B 、输出反馈 C 、从输出到x 反馈 ( )20、对系统Σ0=(A,B,C ),采用( )反馈能镇定的充要条件是其不能观子系统为渐近稳定。 A 、状态反馈 B 、输出反馈 C 、从输出到x 反馈 二、判断题 (√)1. 相比于经典控制理论,现代控制理论的一个显著优点是可以用时域法直接进行系统的分析和设计。 (√)2. 传递函数的状态空间实现不唯一的一个主要原因是状态变量选取不唯一。(×)3. 状态变量是用于完全描述系统动态行为的一组变量,因此都是具有物理意义。(×)4. 输出变量是状态变量的部分信息,因此一个系统状态能控意味着系统输出能控。(√)5. 等价的状态空间模型具有相同的传递函数。 (×)6. 互为对偶的状态空间模型具有相同的能控性。 (×)7. 一个系统的平衡状态可能有多个,因此系统的李雅普诺夫稳定性与系统受扰前所处的平衡位置无关。 (√)8. 若一线性定常系统的平衡状态是渐近稳定的,则从系统的任意一个状态出发的状态轨迹随着时间的推移都将收敛到该平衡状态。 (×)9. 反馈控制可改变系统的稳定性、动态性能,但不改变系统的能控性和能观性。(×)10. 如果一个系统的李雅普诺夫函数确实不存在,那么我们就可以断定该系统是不稳定。 (×)11. 具有对角型状态矩阵的状态空间模型描述的系统可以看成是由多个一阶环节串联组成的系统。 (×)12. 要使得观测器估计的状态尽可能快地逼近系统的实际状态,观测器的极点应该比系统极点快10倍以上。 (×)13. 若传递函数G(s)=C(sI-A)-1B存在零极相消,则对应状态空间模型描述的系统是不能控的。 (√)14. 若线性系统是李雅普诺夫意义下稳定的,则它是大范围渐近稳定的。 (×)15. 对一个系统,只能选取一组状态变量。 (√)16. 由状态转移矩阵可以决定系统状态方程的状态矩阵,进而决定系统的动态特性。(×)17. 若传递函数G(s)=C(sI-A)-1B存在零极相消,则对应的状态空间模型描述的系统是不能控不能观的。 (×)18. 若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的。; (√)19. 状态反馈不改变系统的能控性。 (√)20. 由一个状态空间模型可以确定惟一一个传递函数。 (×)21. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。 三、分析、计算题 1、介绍两种求解线性定常系统状态转移矩阵的方法。 2、解释系统状态能控性的含义;给出能控性的判别条件。 (1)对一个能控的状态,总存在一个控制律,使得在该控制律作用下,系统从此状态出发,经有限时间后转移到零状态。 (2)通过检验能控性判别矩阵[]B B n1- A AB 是否行满秩来判别线性时不变系统的能控性。若能控性判别矩阵是行满秩的,则系统是能控的。 3、定常系统状态能观性的判别方法有几种;给出根据能观性矩阵判别系统能观性的判别条件。 (1)定常系统能观性的判别有两种方法:一是对系统进行坐标变换,将系统的状态空间表达式变换为约旦标准型,然后根据标准型下的C阵,判别系统的能观性;二是直接根据A 阵和C 阵进行判别。
哈工大现代控制理论复习题

哈工大现代控制理论复习题集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]《现代控制理论》复习题1一、(10分,每小题2分)试判断以下结论的正确性,若结论是正确的,则在其左边的括号里打√,反之打×。
( √ )1. 由一个状态空间模型可以确定惟一一个传递函数。
( × )2. 若一个对象的连续时间状态空间模型是能控的,则其离散化状态空间模型也一定 是能控的。
( × )3. 对一个给定的状态空间模型,若它是状态能控的,则也一定是输出能控的。
( √ )4. 对系统Ax x= ,其Lyapunov 意义下的渐近稳定性和矩阵A 的特征值都具有负实部是一致的。
二、(15分)考虑由下式确定的系统: 233)(2+++=s s s s G 试求其状态空间实现的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。
解: 能控标准形为能观测标准形为对角标准形为三、(10分)在线性控制系统的分析和设计中,系统的状态转移矩阵起着很重要的作用。
对系统 求其状态转移矩阵。
解:解法1。
容易得到系统状态矩阵A 的两个特征值是2,121-=-=λλ,它们是不相同的,故系统的矩阵A 可以对角化。
矩阵A 对应于特征值2,121-=-=λλ的特征向量是取变换矩阵 []⎥⎦⎤⎢⎣⎡--==-1112121ννT , 则 ⎥⎦⎤⎢⎣⎡--=-21111T 因此, ⎥⎦⎤⎢⎣⎡--==-20011TAT D 从而,解法2。
拉普拉斯方法由于故 ⎥⎦⎤⎢⎣⎡+-+---=-==Φ----------t t t t t t tt At e e e e e e e e A sI L e t 2222112222])[()( 解法3。
凯莱-哈密尔顿方法将状态转移矩阵写成 A t a I t a e At )()(10+=系统矩阵的特征值是-1和-2,故 )(2)()()(10210t a t a e t a t a e t t -=-=-- 解以上线性方程组,可得 t t tt e e t a e e t a 2120)(2)(-----=-= 因此, ⎥⎦⎤⎢⎣⎡+-+---=+==Φ--------t t t t t t tt At e e e e e e e e A t a I t a e t 2222102222)()()(四、(15分)已知对象的状态空间模型Cx y Bu Ax x =+=, ,是完全能观的,请画出观测器设计的框图,并据此给出观测器方程,观测器设计方法。
现代控制理论试题(详细答案)

现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是cvcvx ,能观测的状态变量个数是。
2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个)解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。
状态变量个数是2。
…..(4分)2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分)12233131835x x x x x x x u y x ===--+= …..….…….(1分)写成010*********x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦…..….…….(1分)[]100y x = …..….…….(1分)二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。
(3分)2已知系统[]210 020,011003x x y x ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。
若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
…..….…….(3分) 2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分)[][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分) rank 2O U n =<,所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为2122211(),()3232s s g s g s s s s s -+==++-+求两系统串联后系统的最小实现。
现代控制理论习题及答案

现代控制理论习题及答案现代控制理论习题及答案现代控制理论是控制工程领域的重要分支,它研究如何设计和分析控制系统,以实现对动态系统的稳定性、响应速度、精度等方面的要求。
在学习现代控制理论过程中,习题是一个非常重要的环节,通过解答习题可以帮助我们巩固理论知识,提高问题解决能力。
本文将介绍一些常见的现代控制理论习题及其答案,希望对读者有所帮助。
1. 题目:给定一个开环传递函数 G(s) = 10/(s+5),求其闭环传递函数 T(s) 和稳定性判断。
解答:闭环传递函数 T(s) 可以通过公式 T(s) = G(s) / (1 + G(s)) 计算得到。
代入G(s) 的表达式,得到 T(s) = 10/(s+15)。
稳定性判断可以通过判断开环传递函数G(s) 的极点是否在左半平面来进行。
由于 G(s) 的极点为 -5,位于左半平面,因此系统是稳定的。
2. 题目:给定一个系统的状态空间表达式为 dx/dt = Ax + Bu,其中 A = [[-1, 2], [0, -3]],B = [[1], [1]],求系统的传递函数表达式。
解答:系统的传递函数表达式可以通过状态空间表达式进行求解。
首先,计算系统的特征值,即矩阵 A 的特征值。
通过求解 det(sI - A) = 0,可以得到系统的特征值为 -1 和 -3。
然后,将特征值代入传递函数表达式的分母,得到传递函数的分母为 (s+1)(s+3)。
接下来,计算传递函数的分子,可以通过求解 C = D(sI - A)^(-1)B 得到,其中 C 和 D 分别为输出矩阵和输入矩阵。
代入给定的 A、B 矩阵,计算得到 C = [1, 0] 和 D = [0]。
因此,系统的传递函数表达式为 G(s) = C(sI - A)^(-1)B = [1, 0] * [(s+1)^(-1), -2(s+3)^(-1); 0, (s+3)^(-1)] * [1; 1] =(s+1)^(-1) + 2(s+3)^(-1)。
现代控制理论复习

现代控制理论复习(*为重点)第一章一、*线性定常连续系统如何建立状态空间表达式:状态方程,输出方程1.*实际系统,运动方程状态方程:状态变量的一阶导数构成的方程组输出方程:状态变量的个数与独立储能元件有关2.*模拟结构图,方框图状态变量从右往左设,每个积分器的输出为一个状态变量,输入为状态变量的导数。
3.*传递函数,微分方程(有无数种)典型的状态空间表达式(为了研究方便):能控标准型(两种),能观标准型(两种),约旦标准型。
其中任意两种状态空间表达式都是状态变量线性变换的关系。
1)能控标准I型:A:友矩阵b:(0,0,1)c:(b0,b1,b2)d:(传递函数分子分母阶次相同时有)2)能观标准I型:A:b:(长除法)c:根据对偶原理写出:能控标准II型/能观标准II型3)约旦标准型模拟结构图并联形式无重根,有重根*如何变换成约旦阵(对角阵)?如何构成线性变换阵T?1.无重根1)代数余子式(参考)2)定义(特征值,特征矢量):T=(p1,p2…)2.有重根广义特征矢量:T=(p1,p2…)*状态空间表达式求传递函数W(s)=公式二、*非线性系统线性化处理给平衡状态进行线性化处理三、线性定常离散系统:G(z) G H*求传递函数G(z)=四、时变系统,传递函数阵不考第二章*线性定常系统方程求解一、状态转移矩阵的性质二、*四种方法求状态转移矩阵:1.定义法(展开):开放形式2.*拉式反变换3.*对角阵/对角化4.凯莱哈密顿定理三、离散系统定义,*z反变换*线性定常连续系统离散化直接离散,近似离散时变,非线性系统不考第三章判定系统的能控性:1.模拟结构图2.对角阵/约旦阵(A,B)3.*能控判定阵M4.*能控标准型5.部分传递函数(sI-A)^(-1)B无零极点对消判定系统的能观性1.模拟结构图2.对角阵/约旦阵(A,C)3.*能观判定阵N4.*能观标准型5.部分传递函数C(sI-A)^(-1)无零极点对消线性定常系统的对偶关系*能控能观分解1.能控判定阵的秩→判断有几个变量能控→使线性变换阵非奇异的(n-m)个列矢量2.能观判定阵的秩→同上3.如果一个状态空间表达式能控则能变换成能控标准型(*能控II 简单)4.如果一个状态空间表达式能观则能变换成能观标准型(*能观I 简单)*最小实现所有状态变量既能控又能观如何寻找?1.能控能观分解→能控能观2. (了解)传递函数→能控(观)标准型→按能观(控)性分解→找出能控能观第四章现代控制理论:平衡状态稳定性(平衡点可能不止一个)第一法(间接法)线性定常系统→看特征值→左半平面→稳定非线性系统线性化→看特征值→左半平面,右半平面,虚轴特征值和闭环极点在传递函数无零极点对消时是相同的第二法(直接法)李雅普诺夫稳定,渐进稳定,大范围渐进稳定,不稳定李雅普诺夫函数(能量函数)V判断初始状态要有能量(V>0)V通常取二次型形式比较简单渐进稳定:V>0,对V求导,求得后:1)V的导数小于02)V的导数小于等于0→判断在x不为0时,V的导数恒不为零3)判断是否大范围渐进稳定如何求平衡状态?x的导数=A*x=0 (不管b*x)李雅普诺夫方法在线性定常连续系统渐进稳定依据第五章三种反馈控制方式,相应性能,对能控能观的影响,改善系统性能极点任意配置:原系统完全能控→状态反馈任意极点配置输出反馈不能实现任意极点配置(特别是单输入输出)原系统完全能观→输出到x导数端反馈实现任意极点配置系统镇定(特征值均在左半平面)状态反馈:不能控子系统渐进稳定输出到x导数端反馈:不能观子系统渐进稳定输出反馈:解耦问题(能解耦标准形不考)*状态解耦,积分型解耦系统状态观测器状态重构状态观测器的输入?输出?能构建的条件:完全能观或不能观子系统渐进稳定如果完全能观:可以通过G调节x的估计值接近x的速度全维状态观测器:可实现极点配置降维状态观测器(不考)习题1.状态空间表达式求传递函数(或传递函数阵)零极点对消,说明该系统(不)能控(不)能观。
广西大学现代控制理论期末考试题库之填空题 含答案

1. 对任意传递函数00()m nj j j j j j G s b sa s ===∑∑,其物理实现存在的条件是 。
(传递函数为s 的真有理分式函数或m n ≤)2. 系统的状态方程为齐次微分方程x Ax =,若初始时刻为0,x (0)=x 0则其解为___________。
其中, _____称为系统状态转移矩阵。
(0()e ,0A x x t t t =≥;e A t )3. 对线性连续定常系统,渐近稳定等价于大范围渐近稳定,原因是___________________。
(线性系统的稳定性与初值无关,只与系统的特征根有关)4. 系统1111(,,)∑=A B C 和2222(,,)∑=A B C 是互为对偶的两个系统,若1∑使完全能控的,则2∑是__________的。
(能观)5. 能控性与能观性的概念是由__________提出的,基于能量的稳定性理论是由__________构建的。
(卡尔曼李亚普诺夫)6. 线性定常连续系统x Ax Bu =+,系统矩阵是___________,控制矩阵是__________。
(A ; B )7. 系统状态的可观测性表征的是状态可由 完全反映的能力。
(输出)8. 线性系统的状态观测器有两个输入,即_________和__________。
(原系统的输入和原系统的输出)状态空间描述包括两部分,一部分是_________,另一部分是__________。
(状态微分方程;输出方程)9. 系统状态的可控性表征的是状态可由 完全控制的能力。
(输入)10. 由系统的输入-输出的动态关系建立系统的_______________,这样的问题叫实现问题。
(状态空间描述)11. 某系统有两个平衡点,在其中一个平衡点稳定,另一个平衡点不稳定,这样的系统是否存在?__________。
(存在)12. 对线性定常系统,状态观测器的设计和状态反馈控制器的设计可以分开进行,互不影响,称为______原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 1 控制理论的发展过程:经典控制理论,现代控制理论,智能控制理论 .
2.现代控制理论研究的对象:线性系统,非线性系统,时变系统 ,多变量系统, 连续与离散系统。
3.建模:用数学模型描述被控对象,
4.分析:A定性:稳定性、能观能控性。B定量:时域指标、频域指标
5.设计:控制器设计、满足性能要求:结构设计,参数设计
6.实施:实现控制系统
7.设计一个控制系统所涉及的内容: 建模, 系统辨识,信号处理,控制方法的选择与确定。
8.
系统的状态空间描述为
系统的状态空间描述为
§5.1 状态反馈
7.3.李亚普诺夫稳定性