《弹性力学》习题库
弹性力学习题库

(2)沿与水平面成30°倾角的微面上的全应力和正 应力。
l30o 1/ 2, m30o 3 / 2
px xl xym py xyl ym
px
2 2
30, py
1 2
0
y
C
0
30
O
° 0
0
B 45°
0
x
A
n l2 x m2 y 2lm xy
n
1 2
30
例 2.4.1
例2.4.1:当应变为常量时,ex =a, ey =b , gxy =c ,试求对应的位移分量。
x2 y2
f
(x)
(2)将 x代y 入平衡微分方程第二式
xy
3q0 h3l
x2 y2
f
(x)
y
y
xy
x
fy
0
y
2q0 h3l
xy3
f
(x) y
g(x)
例 2.3.1
例2.3.1:在负载结构中,某点O处的等厚平行四面体各面的 受力情况如图所示(平面应力状态)。试求(1)主应力的 大小及方向(2)沿与水平面成30°倾角的微面上的全应力 和正应力。
先求应力分量 x , y , xy :
y
C
0
30
O
° 0
0
B 45°
0
x
A
CB面上
y 0, xy 0
例 2.3.1
先求应力分量 x , y , xy :
AB面上: 方向向量:
2
2
l45o 2 , m45o 2
y
C
0
30
O
° 0
n lm(σ y σx ) (l 2 m2 ) xy
弹性力学试题及答案

弹性力学试题及答案一、选择题(每题10分,共40分)1. 在弹性力学中,下列哪个物理量表示应变能密度?A. 应力B. 应变C. 位移D. 应力能密度答案:D2. 在平面应力状态下,下列哪个方程是正确的?A. σ_x + σ_y = 0B. σ_x + σ_y = σ_zC. σ_x + σ_y = τ_xyD. σ_x + σ_y = 0答案:D3. 在弹性体中,应力与应变之间的关系可以用下列哪个关系式表示?A. σ = EεB. σ = GγC. τ = μγD. σ = λε答案:A4. 在弹性力学中,下列哪个方程表示平衡方程?A. σ_x + σ_y + σ_z = 0B. ε_x + ε_y +ε_z = 0 C. τ_xy = τ_yx D. σ_x + σ_y + σ_z = F答案:D二、填空题(每题10分,共30分)1. 弹性力学中的基本假设有:连续性假设、线性假设和________假设。
答案:各向同性2. 在三维应力状态下,应力分量可以表示为:σ_x, σ_y, σ_z, τ_xy, τ_xz, τ_yz。
其中,τ_xy表示________面上的切应力。
答案:xOy3. 在弹性力学中,位移与应变之间的关系可以用________方程表示。
答案:几何方程三、计算题(每题30分,共90分)1. 已知一弹性体在平面应力状态下的应力分量为:σ_x = 100 MPa,σ_y = 50 MPa,τ_xy = 25 MPa。
弹性模量E = 200 GPa,泊松比μ = 0.3。
求应变分量ε_x, ε_y, γ_xy。
解:首先,利用胡克定律计算应变分量:ε_x = σ_x / E = 100 MPa / 200 GPa = 0.0005ε_y = σ_y / E = 50 MPa / 200 GPa = 0.00025γ_xy = τ_xy / G = 25 MPa / (E / 2(1 + μ)) = 25 MPa / (200 GPa / 2(1 + 0.3)) = 0.000375答案:ε_x = 0.0005,ε_y = 0.00025,γ_xy = 0.0003752. 一弹性体在三维应力状态下的应力分量为:σ_x = 120 MPa,σ_y = 80 MPa,σ_z = 40 MPa,τ_xy = 30 MPa,τ_xz = 20 MPa,τ_yz = 10 MPa。
弹性力学试题及答案

弹性力学试题及答案一、选择题(每题5分,共20分)1. 弹性力学中,描述材料弹性特性的基本物理量是()。
A. 应力B. 应变C. 弹性模量D. 泊松比答案:C2. 在弹性力学中,下列哪项不是胡克定律的内容?()A. 应力与应变成正比B. 材料是均匀的C. 材料是各向同性的D. 材料是线性的答案:B3. 弹性模量E和泊松比ν之间的关系是()。
A. E = 2(1 + ν)B. E = 3(1 - 2ν)C. E = 3(1 + ν)D. E = 2(1 - ν)答案:D4. 根据弹性力学理论,下列哪种情况下材料会发生塑性变形?()A. 应力小于材料的弹性极限B. 应力达到材料的弹性极限C. 应力超过材料的屈服强度D. 应力小于材料的屈服强度答案:C二、填空题(每题5分,共20分)1. 弹性力学中,应力的定义是单位面积上的______力。
答案:内2. 弹性力学的基本假设之一是______连续性假设。
答案:材料3. 弹性力学中,应变的量纲是______。
答案:无4. 弹性力学中,当外力撤去后,材料能恢复原状的性质称为______。
答案:弹性三、简答题(每题10分,共30分)1. 简述弹性力学中应力和应变的区别。
答案:应力是描述材料内部单位面积上受到的内力,而应变是描述材料在受力后形状和尺寸的变化程度。
2. 解释弹性力学中的杨氏模量和剪切模量。
答案:杨氏模量(E)是描述材料在拉伸或压缩过程中应力与应变比值的物理量,反映了材料的刚度;剪切模量(G)是描述材料在剪切应力作用下剪切应变与剪切应力比值的物理量,反映了材料抵抗剪切变形的能力。
3. 弹性力学中,如何理解材料的各向异性和各向同性?答案:各向异性是指材料的物理性质(如弹性模量、热膨胀系数等)在不同方向上具有不同的值;而各向同性则是指材料的物理性质在各个方向上都是相同的。
四、计算题(每题15分,共30分)1. 已知一圆柱形试件,其直径为50mm,长度为100mm,材料的弹性模量E=210GPa,泊松比ν=0.3。
(完整版)《弹性力学》试题参考答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, 的物理意义是 杆端截面上剪应力对转轴的矩等于M dxdy D=⎰⎰2ϕ杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数在边界上值的物理意义为 边界上某一点(基准ϕ点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为: ,。
0,=+i j ij X σ)(21,,i j j i ij u u +=ε二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数的分离变量形式。
ϕ题二(2)图(a ) (b )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x ⎩⎨⎧=+++= )(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。
试求薄板面积的改变量。
S∆题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为。
由得,l ∆q E)1(1με-=)1(2222με-+=+=∆Eb a q b a l 设板在力P 作用下的面积改变为,由功的互等定理有:S ∆lP S q ∆⋅=∆⋅将代入得:l ∆221b a P ES +-=∆μ显然,与板的形状无关,仅与E 、、l 有关。
弹性力学教材习题及解答(供参考)

1 —1.选择题a. 下列材料中,_D_属于各向同性材料。
A. 竹材;B. 纤维增强复合材料;C. 玻璃钢;D. 沥青。
b. 关于弹性力学的正确认识是_A_。
A•计算力学在工程结构设计的中作用日益重要;B. 弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设;C. 任何弹性变形材料都是弹性力学的研究对象;D. 弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析。
c. 弹性力学与材料力学的主要不同之处在于_B_。
A. 任务;B. 研究对象;C. 研究方法;D. 基本假设。
d. 所谓完全弹性体”是指_B_。
A. 材料应力应变关系满足胡克定律;B. 材料的应力应变关系与加载时间历史无关;C. 本构关系为非线性弹性关系;D. 应力应变关系满足线性弹性关系。
2—1.选择题a. 所谓应力状态”是指_B_。
A. 斜截面应力矢量与横截面应力矢量不同;B. 一点不同截面的应力随着截面方位变化而改变;C. 3个主应力作用平面相互垂直;D. 不同截面的应力不同,因此应力矢量是不可确定的。
2—2.梯形横截面墙体完全置于水中,如图所示。
已知水的比重为,试写出墙体横截面边界AA', AB, BB'的面力边界条件。
在AA1,叭=一砂卫*刁0,在AB ±3 aaj十z趴豹=-jy sin. a、在2—3.作用均匀分布载荷q的矩形横截面简支梁,如图所示。
根据材料力学分析结果,该梁er, = —y r^.=—横截面的应力分量为试检验上述分析结果是否满足平衡微分方程和面力边界条件。
由此,只有当仃卩确罡.材料力学中所得轲的解答才能满足平衡方程和边界 条件’即芮満足弹性力学基本方程的解. 2 - 4.单位厚度的楔形体,材料比重为,楔形体左侧作用比重为的液体,如图所示。
试~ a x cos os - sin a,~ cos tz - tr^ sin tz y^y sin a 0 cos /? - sm 0=6 厂期cos 』一 cr 尸血厅=0.2- 5.已知球体的半径为r ,材料的密度为 1,球体在密度为 i ( 1 > 1)的液体中漂浮,如沉入複体割分 yj 面力F = -p 3g (z 0 - z ) 1边界条件为舌匕一卩”严严+ @ 一厂)% = 0-X% 十丁〔巧-51) +(z-f )r v = 0.肚迄+严疋*("尸)(务一耳)a 也来沉人液郎中的部分(珂 < 立< 2尸),边畀条件为开T ■*■尸欣斗仗一町% = °, f 十十住-尸打中=①6 +y^ 十仗“门口丁 550*写出楔形体的边界条件。
弹性力学网考考试题及答案

弹性力学网考考试题及答案一、单项选择题(每题2分,共20分)1. 弹性力学中,应力状态的基本方程是()。
A. 平衡方程B. 几何方程C. 物理方程D. 相容方程答案:A2. 弹性力学中,平面应力问题是指()。
A. 应力分量σx、σy、τxy均不为零B. 应力分量σx、σy、τxy中有一个为零C. 应力分量σx、σy、τxy中有两个为零D. 应力分量σx、σy、τxy中有三个为零答案:C3. 在弹性力学中,圣维南原理适用于()。
A. 静力平衡问题B. 热弹性问题C. 动力学问题D. 流体力学问题答案:A4. 弹性力学中,平面应变问题是指()。
A. 应变分量εx、εy、γxy均不为零B. 应变分量εx、εy、γxy中有一个为零C. 应变分量εx、εy、γxy中有两个为零D. 应变分量εx、εy、γxy中有三个为零答案:B5. 弹性力学中,主应力和主应变之间的关系是()。
A. 线性关系B. 非线性关系C. 没有关系D. 取决于材料的性质答案:A6. 弹性力学中,莫尔圆在σ-τ平面上表示的是()。
A. 应力状态B. 应变状态C. 位移场D. 速度场答案:A7. 弹性力学中,平面应力问题和平面应变问题的区别在于()。
A. 应力分量的数量B. 应变分量的数量C. 位移分量的数量D. 材料的性质答案:B8. 弹性力学中,三向应力状态下的应力分量不包括()。
A. σxB. σyC. σzD. τxy答案:D9. 弹性力学中,应力集中现象通常发生在()。
A. 光滑表面B. 尖锐转角C. 平坦区域D. 均匀区域答案:B10. 弹性力学中,弹性模量E和泊松比μ之间的关系是()。
A. E = 2G(1+μ)B. E = 3G(1-2μ)C. E = 3G(1+2μ)D. E = 2G(1-μ)答案:A二、多项选择题(每题3分,共15分)11. 弹性力学中,下列哪些方程是基本方程?()A. 平衡方程B. 几何方程C. 物理方程D. 相容方程答案:ABCD12. 弹性力学中,下列哪些因素会影响材料的弹性模量E?()A. 材料种类B. 温度C. 应力状态D. 应变状态答案:AB13. 弹性力学中,下列哪些是平面应力问题的特点?()A. 应力分量σz为零B. 应变分量εz不为零C. 位移分量w为零D. 位移分量u和v不为零答案:AC14. 弹性力学中,下列哪些是平面应变问题的特点?()A. 应变分量εz为零B. 应力分量σz不为零C. 位移分量w不为零D. 位移分量u和v不为零答案:AD15. 弹性力学中,下列哪些是应力集中现象的影响因素?()A. 材料性质B. 几何形状C. 载荷类型D. 边界条件答案:BCD三、判断题(每题2分,共20分)16. 弹性力学中,平衡方程是描述物体内部力的平衡状态的方程。
弹性力学期末考试试题及答案

弹性力学期末考试试题及答案一、名词解释(每题5分,共25分)1. 弹性力2. 弹簧常数3. 应力4. 应变5. 胡克定律6. 弹性模量7. 弹性体的形变8. 弹性位移9. 弹性能量10. 弹性碰撞二、选择题(每题2分,共20分)1. 以下哪种材料不属于弹性材料?A. 钢铁B. 橡胶C. 玻璃D. 水2. 在弹性限度内,弹性力与形变量之间的关系遵循哪一定律?A. 平方律B. 立方律C. 直线律D. 反比律3. 一弹簧的弹簧常数为50N/m,当一个力作用于弹簧上使其压缩0.1m时,弹簧的弹性势能为多少?A. 0.5JB. 1JC. 2JD. 5J4. 下列哪种情况下,弹簧的弹性力最大?A. 弹簧处于自然长度时B. 弹簧被压缩时C. 弹簧被拉伸时D. 弹簧被压缩或拉伸到极限时5. 两个相同的弹性球碰撞,如果它们的弹性系数不同,那么碰撞后它们的速度关系是?A. 速度大小不变,方向相反B. 速度大小不变,方向相同C. 速度大小发生变化,方向相反D. 速度大小发生变化,方向相同三、填空题(每题5分,共25分)1. 一弹性体的形变是指其_________的变化。
2. 在弹性碰撞中,两个物体的速度满足_________定律。
3. 弹簧的弹簧常数_________,表示弹簧的_________。
4. 当一个力作用于弹性体上时,该力与弹性体的_________之比称为应力。
5. 弹性模量是衡量材料_________的物理量。
四、计算题(共40分)1. 一弹簧的弹簧常数为200N/m,当一个力作用于弹簧上使其压缩0.5m时,求弹簧的弹性势能。
(5分)2. 质量为2kg的物体从静止开始沿斜面滑下,斜面与水平面的夹角为30°,斜面长度为10m,摩擦系数为0.2。
求物体滑到斜面底部时的速度。
(5分)3. 两个弹性球A和B,质量分别为m1和m2,弹性系数分别为k1和k2。
它们从静止开始相互碰撞,求碰撞后A和B的速度。
弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟)一、填空题(每小题4分)1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。
2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。
3.等截面直杆扭转问题中, M dxdy D=⎰⎰2ϕ的物理意义是 杆端截面上剪应力对转轴的矩等于杆截面内的扭矩M 。
4.平面问题的应力函数解法中,Airy 应力函数ϕ在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。
5.弹性力学平衡微分方程、几何方程的张量表示为:0,=+i j ij X σ ,)(21,,i j j i ij u u +=ε。
二、简述题(每小题6分)1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。
(2)将次要的位移边界条件转化为应力边界条件处理。
2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数ϕ的分离变量形式。
题二(2)图(a )⎩⎨⎧=++= )(),(),(222θθϕϕf r r cy bxy ax y x (b )⎩⎨⎧=+++=)(),(),(33223θθϕϕf r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比已知。
试求薄板面积的改变量S ∆。
题二(3)图设当各边界受均布压力q 时,两力作用点的相对位移为l ∆。
由q E)1(1με-=得,)1(2222με-+=+=∆Eb a q b a l设板在力P 作用下的面积改变为S ∆,由功的互等定理有:l P S q ∆⋅=∆⋅将l ∆代入得:221b a P ES +-=∆μ显然,S ∆与板的形状无关,仅与E 、μ、l 有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
左边界: x h
l 1, m 0 f x 0 f y q
l( x )s m( xy )s fx m( y )s l( xy )s f y
1 ( x )s 0 ( xy )s 0 0 ( y )s 1 ( xy )s q
上端面: y 0
为次要边界,可由圣维南原理求解。
取图示微元体,由微元
F
体的平衡求得,
yx
Fx 0
y
x
y
h
h xy
dx F cos
y0
0
h
h ( yx )y0dx F cos
u f1y ax, v f2x by
u v c
y x
u , v c
y
x
例 2.4.1
例2.4.1:当应变为常量时,ex =a, ey =b , gxy =c ,试求对应的位移分量。
u f1y ax, v f2x by
0
xa
例 2.6.1
(3) y h,
l 0, m 1;
fx 0, f y q
x
yh 0
xy
(1) 0
yh
y
(1)
yh
xy
0 q
yh
q
h
hx a y
y
q
yh
yx
q
o
x
hh
a
y
x
0,
xh
xy
q
xh
例 2.6.2
上边界: y 0
l 0, m 1 f x q f y 0
l( x )s m( xy )s fx m( y )s l( xy )s f y
0 ( x )s 1 ( xy )s q 1 ( y )s 0 ( xy )s 0
x
xh
g
h
xy
0
xh
例2.7.1
上端面: y 0
为次要边界,可由圣维南原理求解。
取图示微元体,由微元
F
体的平衡求得,
yx
Fy 0
y
x
y
h
h
y
dx F sin
y0
0
hHale Waihona Puke h(y)
y
dx
0
F
sin
例2.7.1
u
y
f1y ax df1y
y
dy
v c
x
f2x by df2x c
x
dx
例 2.4.1
例2.4.1:当应变为常量时,ex =a, ey =b , gxy =c ,试求对应的位移分量。
u f1y ax, v f2x by
f1y ax df1y
y
dy
f1y u0 y
f2x by df2x c
x
dx
f2x v0 c x
u u0 ax y, v v0 by (c )x
例 2.6.1
q
试列出图示问题的边界条件。
y
C
0
30
O
° 0
0
B 45°
0
x
A
CB面上
y 0, xy 0
例 2.3.1
先求应力分量 x , y , xy :
AB面上: 方向向量:
2
2
l45o 2 , m45o 2
y
C
0
30
O
° 0
n lm(σ y σx ) (l 2 m2 ) xy
0
B 45°
0
0
1 2
(0
σx)
x
A
x 2 0
例 2.3.1
(1)求主应力的大小及方向
x 2 0 , y 0, xy 0
1 2
x
y
2
x
2
y
2
2 xy
tan 1
1 xy
x
y
C
0
答中,:可在以不受认任为何在面该力薄作层用的的上z 空下O间表y 体面x表都面无附面近力的,薄且层在 薄层内所有各点都有 z zx zy 0,只存在平
面应力分量 x , y , xy ,且它们不沿z方向变化,仅
为x、y的函数。可以认定此问题是平面应力问题。
图 2-14
例 2.1.3
h
(1) x 0,
hx a
ux0 0, vx0 0
y
(2) x a, l 1, m 0; fx 0, fy 0
l( x )xa m( xy )xa fx m( y )xa l( xy )xa f y
x
xa
0
xy
0
yh
(4) y h,
例 2.6.1
l 0, m 1;
y
fx 0, f y 0
x
yh 0
xy
(1) 0
yh
y
(1)
yh
xy
0 0
yh
q
h
hx a
y
0
yh
xy
0
yh
例 2.6.2
q
o
x
hh
a
y
y
y0 0, xy
q
y0
例 2.6.2
下边界:y a
u 0,v 0
ya
ya
q
o
x
hh
a
y
例 2.6.3
试列出图示问题的边界条件。
p(x)
p0
(1) AB段(y = 0):
A
l 0, m 1
y
fx
0,
《弹性力学》习题库
第1章 第2章 第3章
第1章 习题
✓1-2 ✓1-4 ✓1-7 ✓1-8
习题 1-2
• 一般的混凝土构件和钢筋混凝土构件能否 作为理想弹性体?一般的岩质地基和土质 地基能否作为理想弹性体?
答:一般的混凝土构件可以作为理想的弹性 体,而钢筋混凝土构件不可以作为理想的弹 性体;一般的岩质地基不可以作为理想弹性 体,而土质地基可以作为理想的 弹性体。
代入应力边界条件公式
l( x )s m( xy )s fx m( y )s l( xy )s f y
x xh 0
xy
0
xh
例2.7.1
右侧面: x h
l 1, m 0
fx g y, fy 0
代入应力边界条件公式,有
x
2q0 h3l
x3
y
,由平衡微分
解:(1)将 代x 入平衡微分方程第一式
x
2q0 h3l
x3 y
x
x
yx
y
fx
0
xy
3q0 h3l
x2 y2
f
(x)
(2)将 x代y 入平衡微分方程第二式
xy
3q0 h3l
x2 y2
f
(x)
y
y
xy
30
O
° 0
0
B 45°
0
x
A
1,2 (1 2)0
1 arctg( 2 1)
例 2.3.1
(2)沿与水平面成30°倾角的微面上的全应力和正 应力。
l30o 1/ 2, m30o 3 / 2
px xl xym py xyl ym
px
x
fy
0
y
2q0 h3l
xy3
f
(x) y
g(x)
例 2.3.1
例2.3.1:在负载结构中,某点O处的等厚平行四面体各面的 受力情况如图所示(平面应力状态)。试求(1)主应力的 大小及方向(2)沿与水平面成30°倾角的微面上的全应力 和正应力。
先求应力分量 x , y , xy :
• 试画出图1-4中矩形薄板的正的体力,面力 和应力的方向。
Oz
x
fy fx
fy
fy fx
fx
y
fx
fy fy fx
yx
x
xy
y
x y yx xy
习题 1-8
• 试画出图1-5中的三角形薄板的正的面力和 体力的方向。
x
fx
fy
fx
fx
fy
fy
fy fx
y
Oz
第2章 题库
✓例题 ✓习题
面力的符号规定:当面力的指向沿坐标轴的正方向 时为正,沿坐标轴的负方向时为负。
习题 1-4
• 应力和面力的符号规定有什么区别?试分别画出 正面和负面上的正的应力和正的面力的方向。
y y yx 正面
x
xy x f y
xy
x
fx
yx
负面
y
fy fx fy
fx
fy