华东数学七年级下册复习

合集下载

华东师范大学出版社七年级(下册)数学知识点总结

华东师范大学出版社七年级(下册)数学知识点总结

七年级数学下期期末复习提纲第六章 一元一次方程一、基本概念(一)方程的变形法则法则1:方程两边都 或 同一个数或同一个 ,方程的解不变。

例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。

在方程6x=-2x-6左右两边都加上4x ,得到新方程:8x=-6。

移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。

例如:(1)将方程x -5=7移项得:x =7+5 即 x =12(2)将方程4x =3x -4移项得:4x -3x =-4即 x =-4法则2:方程两边都除以或 同一个 的数,方程的解不变。

例如: (1)将方程-5x =2两边都除以-5得:x=-52(2)将方程32 x =13 两边都乘以32得:x=92 这里的变形通常称为“将未知数的系数化为1”。

注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。

(2)不论上一乘以或除以数时,都要注意结果的符号。

方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。

求不方程的解的过程,叫做解方程。

(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是 ,未知数的次数是,这样的方程叫做一元一次方程。

例如:方程7-3x=4、6x=-2x-6都是一元一次方程。

而这些方程5x2-3x+1=0、2x+y=l-3y、1x-1=5就不是一元一次方程。

2.一元一次方程的一般式为:ax+b=0(其中a、b为常数,且a≠0)一元一次方程的一般式为:ax=b(其中a、b为常数,且a≠0)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。

注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。

数学华东师大版七年级下册第七章复习

数学华东师大版七年级下册第七章复习
答案:由题可得: |n | -1=1,m ≠3,m2-8=1,n ≠-2. 解得:m=-3,n=2.
专题复习
专题二 二元一次方程与二元一次方程组的解
ax-2y=3
【例2】已知x=1,y=-2是二元一次方程组
的解,
求a,b的值.
x-by=4
答案:把x=1,y=-2代入二元一次方程组得 解得:a=-1,b=3/2.
y=2
专题复习
【归纳拓展】代入法消元法是将其中的一个方程写成“y=” 或“x=”的形式,并把它代入另一个方程,得到一个关于x 或y的一元一次方程求得x或y值。加减消元法是通过两个方 程两边相加(或相减)消去一个未知数,把二元一次方程组 转化为一元一次方程。
专题复习
专题四 二元一次方程组的实际应用
把③代入①可得
y=5
答:原有汽车16辆,原规定完成的天数为5天。
专题复习
【归纳拓展】利用方程的思想解决实际问题时,首先要找准 等量关系式,找等量关系式前要注意题干中提到的等量关系 的语句,根据等量关系列得方程。主要步骤是 “找”“设”“列”“解”“答”,一步都不能少。
专题复习
【迁移应用5】某校七年级安排宿舍,若每间宿舍住6人,则 有4人住不下,若每间住7人,则有1间只住3人,且空余11间 宿舍,求该年级寄宿学生有多少人?宿舍有多少间? 答案:设该年级寄宿学生有x人,宿舍有y间。根据题意可
的解是
由③代入②得 5x+2(3x-7)=8 x=2
解得x=2,把x=2代入③得
y=-1
y=-1.
专题复习
【例4】用加减消元法解方程组
3(x-1)=4(y-4) 5(y-1)=3(x+5)
答案:化简整理得 3x-3=4y-16 ①

华东师大版数学七年级 下第9章多边形知识点复习讲解(全)

华东师大版数学七年级 下第9章多边形知识点复习讲解(全)

认识三角形三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.有关三角形的概念:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.④三角形的外角:三角形的角的一边与另一边的反向延长线组成的角叫做三角形的外角.注意:(1)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”.三角形外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.注意:(1)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.三角形的分类:按角分⎩⎨⎧直角三角形斜三角形⎩⎨⎧锐角三角形钝角三角形按边分⎩⎨⎧不等边三角形(不规则三角形)等腰三角形⎩⎨⎧只有两条边相等的等腰三角形等边三角形锐角三角形 直角三角形 钝角三角形三个角都是锐角 有一个角为直角 有一个角是钝角不等边三角形 等腰三角形 等边三角形 三边不相等 有两条边相等 三条边都相等①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形; ③直角三角形:有一个角为90°的三角形。

①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角; ③等边三角形:三边都相等的三角形。

三角形的三线:三角形的中线:三角形的一个顶点与它的对边中点的连线叫三角形的中线.这个角的顶点与交点之间的线段.三角形的角平分线:三角形内角的平分线与对边的交点和这个内角顶点之间的线段叫三角形的角平分线.三角形的高:过三角形顶点作对边的垂线,垂足与顶点间的线段叫做三角形的高.注意:(1)三角形分别有三条高线,三条中线,三条角平分线;(2)任意三角形三条角平分线,三条中线,分别交于一点,且都在三角形的内部;(3)直角三角形的三条高线的交点就是直角顶点,钝角三角形的三条高线的交点在三角形的外部,锐角三角形的三条高线在三角形的内部。

第8章 一元一次不等式(提高篇)-七年级数学下册阶段性复习精选精练(华东师大版)

第8章 一元一次不等式(提高篇)-七年级数学下册阶段性复习精选精练(华东师大版)

第8章 一元一次不等式(提高篇)一、单选题(本大题共10小题,每小题3分,共30分)1.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+2.若x 的一半不小于5,则不等关系表示正确的式子是( )A .152x ≤B .152x ≥C .152x >D .152x <3.如图,用不等式表示数轴上所示不等式组的解集,正确的是( )A .1x <-或3x ≥-B .1x ≤-或3x >C .13x -≤<D .13x -<≤4.若不等式5(2)86(1)7x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为( )A . 3.5a =B .3a =C . 2.5a =D .2a =5.两个数2m -和1-在数轴上从左到右排列,那么关于x 的不等式()22m x m -+>的解集是( )A .1x >-B .1x <-C .1x >D .1x <6.方程组2420x ky x y +=⎧⎨-=⎩的解为正数,则k 的取值范围是( )A .k >4B .k ≥4C .k >0D .k >﹣47.若11x x -+=,则x 一定满足( ) A .1x <B .1x >C .1x ≤D .1x ≥8.下面是两位同学在讨论一个一元一次不等式.不等式在求解的过程中需要改变不等号的方向.不等式的解集为5x ≤.根据上面对话提供的信息,他们讨论的不等式可以是( ) A .210x -≥-B .210x ≤C .210x -≥D .210x -≤-9.若关于x 的不等式组51222x x x x a+⎧<-⎪⎨⎪+<+⎩只有4个整数解,则a 的取值范围是( )A .13a ≥B .1314a <<C .1314a ≤<D .1314a <≤10.某品牌洗地机的进价为2000元,商店以2400元的价格出售.元旦期间,商店为让利于顾客,计划以利润率不低于10%的价格降价出售,则该洗地机最多可降价多少元?若设洗地机可降价x 元,则可列不等式为( )A .2400200010%2000x--≥B .2400200010%2000x--≤C .2400200010%2400x--≥D .2400200010%2400x--≤二、填空题(本大题共8小题,每小题4分,共32分)11.若1(2)60k k x -++>是关于x 的一元一次不等式,则k 的值为____________. 12.比较大小:“>”,“=”“<”).13.当m ______时,关于x 的方程()21653x m x m -=+-的解是非负数.14.已知不等式2x ,x 的最小值是a ;6y -,y 的最大值是b ,则a b +=___________. 15.已知关于x 的不等式7xa <的解也是不等式27152x a a ->-的解,则常数a 的取值范围是_____.16.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为_______元/千克.17.已知关于x 的不等式组0521x a x -≥⎧⎨->⎩有解,则实数a 的取值范围是___________.18.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数; (2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数; (3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为_____. 三、解答题(本大题共6小题,共58分)19.(8分)解下列不等式(组),并把解集表示在数轴上. (1) 211146x x-+-≥(2) ()52315x x x x +⎧>⎪⎨⎪--≤⎩.20.(8分)如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围;(2)数轴上表示数2x -+的点应落在( )A .点A 的左边B .线段AB 上C .点B 的右边21.(10分)阅读求绝对值不等式子3x <解集的过程:因为3x <,从如图所示的数轴上看:大于3-而小于3的数的绝对值是小于3的,所以3x <的解集是33x -<<,解答下面的问题:(1) 不等式()0x a a <>的解集为______;(2) 求53x -<的解集实质上是求不等式组______的解集,求53x -<的解集.22.(10分)已知关于x 、y 的方程组21258x y x y a -=-⎧⎨+=-⎩的解都为非负数.(1) 求a 的取值范围;(2) 已知21a b -=,求a b +的取值范围;(3) 已知a b m -=(m 是大于1的常数),且1b ≤.求2a b +的最大值.(用含m 的代数式表示)23.(10分)为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元/吨,乙物资单价为2万元吨,采购两种物资共花费1380万元.(1)求甲、乙两种物资各采购了多少吨?(2)现在计划安排,A B两种不同规格的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B型卡车.按此要求安排,A B两型卡车的数量,请问有哪几种运输方案?24.(12分)一个进行数值转换的运行程序如图所示,从“输入有理数x”到“结果是否大于0”称为“一次操作”(1)下面命题是真命题有______________.x后,程序操作仅进行一次就停止.①当输入=3x-后,程序操作仅进行一次就停止.①当输入=1①当输入x为负数时,无论x取何负数,输出的结果总比输入数大.x<,程序操作仅进行一次就停止.①当输入3(2)探究:是否存在正整数x,使程序只能进行两次操作,并且输出结果小于12?若存在,请求出所有符合条件的x的值;若不存在,请说明理由.参考答案1.D【分析】依据点在数轴上的位置,不等式的性质,绝对值的意义,有理数大小的比较法则对每个选项进行逐一判断即可得出结论.解:由题意得:a <0<b ,且a <b , ①0a b +>,①A 选项的结论不成立;0b a ->,①B 选项的结论不成立;22a b <,①C 选项的结论不成立; 22a b +<+,①D 选项的结论成立.故选:D .【点拨】本题主要考查了不等式的性质,有理数大小的比较法则,利用点在数轴上的位置确定出a ,b 的取值范围是解题的关键.2.B【分析】根据题意,列出不等式即可.解:由题意,得:152x ≥;故选B .【点拨】本题考查列不等式.熟练掌握表示不等关系的词的含义,是解题的关键. 3.D【分析】由图可知不等式的解集表示1-与3之间的部分,其中不包含1-,而包含3. 解:由图示可看出,从1-出发向右画出的折线且表示1-的点是空心圆,表示1x >-; 从3出发向左画出的折线且表示3的点是实心圆,表示3x ≤所以这个不等式组为13x -<≤故选:D .【点拨】此题主要考查利用数轴上表示的不等式组的解集来写出不等式组.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来>≥(,向右画;<≤,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.A【分析】先求出不等式5(2)86(1)7x x -+<-+的最小整数解,代入方程23x ax -=,求出a 的值即可.解:①解不等式5(2)86(1)7x x -+<-+得,3x >-, ①其最小整数解为2-, ①423a -+=, 解得 3.5a =. 故选:A .【点拨】本题考查的是一元一次不等式组的整数解,解决此类问题的关键在于正确解得不等式组或不等式的解集,再根据得到的条件进而求得不等式组的整数解.也考查了一元一次方程的解法.5.B【分析】先根据题意判断出21m -<-,即20m -<,再根据不等式的基本性质求解即可.解:由题意知21m -<-,()22m x m -+>,移项,得:()22m x m ->-, 化系数为1得:1x <-.则关于x 的不等式()22m x m -+>的解集为1x <-, 故选:B .【点拨】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.6.D【分析】把k 当作已知表示出x 、y 的值,再根据x 、y 为正数求出k 的取值范围即可.解:2420x ky x y +=⎧⎨-=⎩①② ,①﹣①×2得,(k +4)y =4,解得y =44k + , 代入①得,x =84k +,①此方程组的解为正数,即404804k k ⎧⎪⎪+⎨⎪⎪+⎩>> ,①k +4>0,解得k >﹣4. 故选D .【点拨】本题考查的是解二元一次方程组的方法,在解此方程组时要把k 当作已知表示出另外两个未知数,再根据题目中所给的条件列出不等式组,求出k 的取值范围即可.7.C【分析】利用绝对值的定义计算即可. 解:11x x -+=,11x x ∴-=-, 10x ∴-≤, 1x ∴≤,故选:C .【点拨】本题考查了绝对值,解一元一次不等式,解题的关键是掌握绝对值的意义. 8.A【分析】找到未知数系数为负数,并且不等式的解为5x ≤的即为所求. 解:A 选项210x -≥-,解得5x ≤,符合题意;B 选项210x ≤,未知数的系数为正数,求解时不需要改变不等号的方向,不符合题意;C 选项210x -≥,解得5x ≤-,不符合题意;D 选项210x -≤-,解得5x ≥,不符合题意. 故选A .【点拨】本题考查了解一元一次不等式,根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;①去括号;①移项;①合并同类项;①化系数为1.以上步骤中,只有①去分母和①化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.9.D【分析】先求出不等式组的解集,再根据题意求a 的取值范围即可.解:51222x x x x a +⎧<-⎪⎨⎪+<+⎩①②,解①得7x >, 解①得2x a <-,所以不等式组的解集为72x a <<-, 因为不等式组只有4个整数解, 所以11212a <-≤, 所以1314a <≤. 故选:D .【点拨】本题考查了求不等式组的解集和根据解集求取值范围,正确求出2a -的取值范围是解题的关键.10.A【分析】根据“以利润率不低于10%的价格降价出售”列一元一次不等式,求解即可. 解:根据题意,得2400200010%2000x--≥.故选:A .【点拨】本题考查了一元一次不等式的应用,理解题意并根据题意建立一元一次不等式是解题的关键.11.2【分析】根据一元一次不等式的定义,||11k -=且20k +≠,分别进行求解即可. 解:不等式1(2)60k k x-++>是一元一次不等式,∴1120k k ⎧-=⎨+≠⎩,解得:2k =, 故答案为:2.【点拨】本题主要考查一元一次不等式定义的“未知数的最高次数为1次”这一条件;还要注意,未知数的系数不能是0.12.<【分析】根据不等式的性质即可解答. 解:3<5∴故答案为:<【点拨】本题考查了不等式的性质,熟练掌握和运用不等式的性质是解决本题的关键. 13.1≤-【分析】先解一元一次方程求出解,根据方程的解是非负数,得到33013m +-≥,求解即可.解:()21653x m x m -=+-216553x m x m -=+- 256513x x m m -=-+ 1313x m -=+ 3313m x +=-, ①方程()21653x m x m -=+-的解是非负数,①33013m +-≥, 解得1m ≤-, 故答案为:1≤-.【点拨】此题考查了解一元一次方程,和解一元一次不等式,正确理解题意及掌握各解法是解题的关键.14.4-【分析】解答此题要理解“≥”“ ≤”的意义,判断出a 和b 的最值即可解答. 解:因为2x ≥的最小值是a ,2a =;6x ≤-的最大值是b ,则6b =-;则264a b +=-=-, 所以4a b +=-. 故答案为:4-.【点拨】本题考查了不等式的定义,解答此题要明确,2x ≥时,x 可以等于2;6x ≤-时,x 可以等于6-.15.1009a -≤< 【分析】先把a 看作常数求出两个不等式的解集,再根据同小取小列出不等式求解即可. 解:关于x 的不等式27152x a a ->-, 解得:19542x a >-, 关于x 的不等式7x a <的解也是不等式27152x a a ->-的解, ∴0a <, ∴不等式7x a<的解集是7x a >, ∴195742a a ≥-,解得:109a ≥-, 0a <,1009a ∴-≤<, 故答案为:1009a -≤<. 【点拨】本题考查了一元一次不等式的解法,解题的关键是分别求出两个不等式的解集,再根据同小取小列出关于a 的不等式,注意在不等式两边都除以一个负数时,应只改变不等号的方向.16.10.解:设售价至少应定为x 元/千克,依题可得方程x (1-5%)×80≥760,解得x≥10故答案为10.【点拨】本题考查一元一次不等式的应用.17.2a <##2a >【分析】先求出不等式组的解集,再根据不等式组有解的情况得到关于a 的不等式,即为a 的取值范围.解:0521x a x -≥⎧⎨->⎩, 解不等式组可得:2a x ≤<,不等式组有解,2a ∴<,故答案为:2a <.【点拨】本题考查了求不等式组的解集,正确得出不等式组的解集,逆推参数是解题关键.18.6【分析】根据题中给出阅读过《三国演义》的人数,则先代入条件(3)可得出阅读过《西游记》的人数的取值范围,然后再根据条件(1)和(2)再列出两个不等式,得出阅读过《水浒传》的人数的取值范围,即可得出答案.解:设阅读过《西游记》的人数是a ,阅读过《水浒传》的人数是b ,(,a b 均为整数)依题意可得:48a b b a >⎧⎪>⎨⎪<⎩且,a b 均为整数可得:47b <<,b ∴最大可以取6;故答案为6.【点拨】本题考查不等式的实际应用,注意题中的两个量都必须取整数是本题做题关键,求b 的最大值,则可通过题中不等关系得出b 是小于哪个数的,然后取小于这个数的最大整数即可.19.(1)174x ≥见分析 (2)15x -≤<,见分析 【分析】(1)按照不等式的性质求解,并在数轴上表示出来即可;(2)先分别解不等式①和①,由不等式组解集的取法得不等式组的解集,并在数轴上表示出来即可.解:(1)去分母得:()()3212112x x --+≥,去括号得:632212x x ---≥,移项得:621232x x -≥++,合并同类项得:417x ≥,把x 的系数化为1得:174x ≥;(2)()52315x x x x +⎧>⎪⎨⎪--≤⎩①②,由①得:5x <,由①得:1x ≥-,不等式组的解集为:15x -≤<.【点拨】本题考查了解不等式和解不等式组,以及在数轴上表示其解集,牢固掌握不等式的性质,明确不等式组解集的取法,是解题的关键.20.(1)1x <;(2)B .【分析】(1)根据点B 在点A 的右侧,列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.解:(1)根据题意,得231x -+>,解得1x <,(2)①x<1,①-x>-1,①-x+2>1,故选B .【点拨】本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.21.(1) a x a -<<; (2) 5353x x ->-⎧⎨-<⎩,28x <<. 【分析】(1)根据题中所给出的例子进行解答即可;(2)根据题中所给的实例列出关于x 的不等式组,求出其解集即可.(1)解:3x <的解集是33x -<<,∴不等式||(0)x a a <>的解集为:a x a -<<.故答案为:a x a -<<;(2)解:3x <的解集是33x -<<,∴求|5|3x -<的解集是353x -<-<,353x -<-<可化为5353x x ->-⎧⎨-<⎩, ∴求|5|3x -<的解集实质上是求不等式组5353x x ->-⎧⎨-<⎩, 解得28x <<.故答案为:5353x x ->-⎧⎨-<⎩. 【点拨】本题考查的是解一元一次不等式,根据题意利用数形结合求一元一次不等式的解集是解答此题的关键.22.(1) 2a ≥ (2) 5a b +≥ (3) 32m +【分析】(1)用a 表示出该方程的解,再根据关于x 、y 的该方程组的解都为非负数,即得出关于a 的方程组,解出a 的解集即可;(2)由21a b -=,得出12b a +=,再根据a 的取值范围,即可得出b 的取值范围,再求出a b +的取值范围即可;(3)由a b m -=,即得出a m b =+,由a 的取值范围,即可用m 表示出b 的取值范围.由b 的取值范围,即可用m 表示出a 的取值范围,即可求出2a b +的取值范围,即得出其最大值. 解:(1)解方程21258x y x y a -=-⎧⎨+=-⎩, 得:223x a y a =-⎧⎨=-⎩. ①关于x 、y 的该方程组的解都为非负数,即00x y ≥⎧⎨≥⎩, ①20230a a -≥⎧⎨-≥⎩, 解得:2a ≥;(2)①21a b -=,即12b a +=, ①122b +≥, 解得:3b ≥,①235a b +≥+=;(3)①a b m -=,即a m b =+,①2m b +≥,①2b m ≥-①1b ≤,1m >,①21m b -≤≤.①1b ≤,①21a m ≤≤+,①6232m a b m -≤+≤+,①2a b +的最大值为3+2m .【点拨】本题考查解二元一次方程,解一元一次不等式和解一元一次不等式组.掌握求解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解题关键.23.(1)甲物资采购了300吨,乙物质采购了240吨;(2)共有3种运输方案,方案1:安排25辆A 型卡车,25辆B 型卡车;方案2:安排26辆A 型卡车,24辆B 型卡车;方案3:安排27辆A 型卡车,23辆B 型卡车.【分析】(1)设甲物资采购了x 吨,乙物质采购了y 吨,根据“某省红十字会采购甲、乙两种抗疫物资共540吨,且采购两种物资共花费1380万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设安排A 型卡车m 辆,则安排B 型卡车(50-m )辆,根据安排的这50辆车一次可运输300吨甲物质及240吨乙物质,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出各运输方案.解:(1)设甲物资采购了x 吨,乙物质采购了y 吨,依题意,得:540321380x y x y +⎧⎨+⎩==, 解得:300240x y ⎧⎨⎩==.答:甲物资采购了300吨,乙物质采购了240吨.(2)设安排A 型卡车m 辆,则安排B 型卡车(50-m )辆,依题意,得:()()75503003750240m m m m ⎧+-≥⎪⎨+-≥⎪⎩, 解得:25≤m ≤2712.①m 为正整数,①m 可以为25,26,27,①共有3种运输方案,方案1:安排25辆A 型卡车,25辆B 型卡车;方案2:安排26辆A 型卡车,24辆B 型卡车;方案3:安排27辆A 型卡车,23辆B 型卡车.【点拨】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.24.(1) ①①; (2) 存在,x =2.【分析】(1)逐一计算,判断即可. (2)根据题意,建立不等式组3+603(3+6)+6123(3+6)+60x x x -≤----⎧⎪⎨⎪⎩<>,确定不等式组的整数解,有则存在;无则不存在.(1)解:根据题意,得代数式为36x -+,当=3x 时,,所以程序操作仅进行一次就停止不可能,故①不符合题意;当=1x -时,363(1)690x -+=-⨯-+=>,所以程序操作仅进行一次就停止,故①符合题意;当0x <时,所以30x ->,所以360x -+>6>,所以程序操作仅进行一次就停止,故①符合题意;当3x <时,360x -+<也可能360x -+>,所以程序操作仅进行一次就停止不可能,故①不符合题意;故答案为:①①.(2)存在,且2x =,理由如下:①程序只能进行两次操作,第一次计算的代数式是()36x -+,第二次输出的代数式是()()3366x -⨯-++,根据题意,得3+603(3+6)+6123(3+6)+60x x x -≤----⎧⎪⎨⎪⎩<>, 解得823x ≤<, ①x 为整数,所以2x =.【点拨】本题考查了程序计算,不等式组的应用,正确理解程序,建立正确的不等式组是解题的关键.。

2020-2021学年七年级数学华东师大版下册习题课件 第九章 单元复习(四) 多边形

2020-2021学年七年级数学华东师大版下册习题课件     第九章 单元复习(四) 多边形

2
2
1∠ACD-1∠ABC =1(∠ACD-∠ABC)=1∠A,即∠BEC =1∠BAC
2
2
2
2
2
(4)在(3)的条件下,若CE∥AB,求∠ACB的度数.
因为CE∥AB,所以∠A=∠ACE=50°,因为CE平分 ∠ACD,所以∠ACD=100°,所以∠ACB=180°- 100=80°
第9章 多边形
二、不能准确作出三角形的高 【例2】 数学课上,同学们在练习画△ABC中AC边上的高时,有一部分同学画 出如图所示四种图形,请你判断一下,正确的是( C )
分析:因没有理解三角形高的定义,认为AC边上的高要经过A点,并且要与AC 垂直,结果出现错误.
【对应训练】
2.如图,AC⊥BC,CD⊥AB,DE⊥BC,下列说法错误的是( C )
8.若三角形的两边长分别为7 cm和10 cm,则第三边的取值范围是多少?如果 第三边的取值是正整数,那么所取的边长有没有可能围成一个等腰三角形,此 时的三角形腰长应为多少?
因为此三角形的两边长分别为7 cm和10 cm,所以第三边长的取值范围是:10 -7=3<第三边<10+7=17.因为第三边为整数,所以第三边可以为:4,5 ,6,7,8,9,10,11,12,13,14,15,16,所以第三边长为7 cm或10 cm 时,为等腰三角形,腰长为7 cm或10 cm
2
x=4,
(2)若 x+1y=9, 解得 y=10.
2
因为 4+10>10,能构成三角形,所以此种情况成立.答:这个等腰三角形的底边长为 4 cm,
腰长为 10 cm
17.小刚准备用一段长50米的篱笆围成一个三角形形状的场地,用于饲养鸡,
已知第一条边长为m米,由于条件限制第二条边长只能比第一条边长的3倍少2

华东师大版数学七年级下册期末复习综合练习题

华东师大版数学七年级下册期末复习综合练习题

期末复习综合练习题一.选择题1.下列方程:①y=x﹣7;②2x2﹣x=6;③m﹣5=m;④=1;⑤=1,其中是一元一次方程的有()A.2个B.3个C.4个D.以上答案都不对2.若x>y,则下列式子中正确的是()A.x﹣2>y﹣2 B.x+2<y+2 C.﹣2x>﹣2y D.3.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.4.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°5.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积是32,则图中阴影部分面积等于()A .16B .8C .4D .26.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=( )A .90°B .120°C .135°D .150°7.如图,在△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数为( )A .25°B .30°C .50°D .55°8.等腰三角形的两边长分别为3cm 和7cm ,则周长为( ) A .13cmB .17cmC .13cm 或17cmD .11cm 或17cm9.某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种边长相同、形状不同的正多边形地砖,与正三角形地砖作平面镶嵌,则该学校不应该购买的地砖是( ) A .正方形B .正六边形C .正八边形D .正十二边形10.如图,将△ABC 绕点A 按逆时针方向旋转100°,得到△AB 1C 1,若点B 1在线段BC 的延长线上,则∠BB 1C 1的大小为( )A .70°B .80°C .84°D .86°二.填空题11.若|x﹣y﹣5|与|2x+3y﹣15|互为相反数,则x+y=.12.如图,将直角三角形ABC沿AB方向平移AD长的距离得到直角三角形DEF,已知BE=5,EF=8,CG=3.则图中阴影部分面积.13.不等式组有2个整数解,则实数a的取值范围是.14.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE.设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=6,则S1﹣S2=.15.如图,将∠ACB沿EF折叠,点C落在C'处.若∠BFE=65°.则∠BFC'的度数为.三.解答题16.m为何值时,代数式的值与代数式的值的和等于5?17.解方程组:①②.18.解不等式组,并把它们的解在数轴上表示出来.19.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,3),B (2,5),C (4,2)(每个方格的边长均为1个单位长度)(1)将△ABC 平移,使点A 移动到点A 1,请画出△A 1B 1C 1;(2)作出△ABC 关于O 点成中心对称的△A 2B 2C 2,并直接写出A 2,B 2,C 2的坐标; (3)△A 1B 1C 1与△A 2B 2C 2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.20.如图,在平面直角坐标系xOy 中,点A (3,3),点B (4,0),点C (0,﹣1). (1)以点C 为中心,把△ABC 逆时针旋转90°,画出旋转后的图形△A ′B ′C ; (2)在(1)中的条件下, ①点A 经过的路径的长为 (结果保留π);②写出点B ′的坐标为 .21.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并证明.22.某校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球,一个篮球各需多少元?(2)根据学校的实际情况,需从该体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?23.已知,在△ABC中,∠A=∠C,点F和E分别为射线CA和射线BC上一点,连接BF和FE,且∠BFE=∠FEB.(1)如图1,当点F在线段AC上时,若∠FBE=2∠ABF,则∠EFC与∠FBE的数量关系为.(2)如图2,当点F在CA延长线上时,探究∠EFC与∠FBA的数量关系,并说明理由.(3)如图3在(2)的条件下,过C作CH⊥AB于点H,CN平分∠BCH,CN交AB于N,由N作NM⊥NC交CF于M,若∠BFE=5∠FBA,MN∥FB时,求∠ABC的度数.参考答案一.选择题1. A.2. A.3. C.4. C.5. B.6. C.7. C.8.B.9.C.10. B.二.填空11. 712..13. 8≤a<13.14. 115. 50°三.解答题16.解:根据题意得:+=5,去分母得:12m﹣2(5m﹣1)+3(7﹣m)=30,去括号得:12m﹣10m+2+21﹣3m=30,移项合并同类项得:﹣m=7,系数化1得:m=﹣7.17.解:①,①+②得:4x=8,解得:x=2,将x=2代入①得:2+2y=9,解得:y=,则方程组的解为;②方程组整理得:,①﹣②得:6y=27,解得:y=,将y=代入②得:3x﹣9=9,解得:x =6, 则方程组的解为.18.解:∵解不等式①得:x ≥﹣2, 解不等式②得:x <2,∴原不等式组的解为:﹣2≤x <2, 在数轴上表示为:.19.解:(1)如图,△A 1B 1C 1为所作;(2)如图,△A 2B 2C 2为所作;点A 2,B 2,C 2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)△A 1B 1C 1与△A 2B 2C 2关于点P 中心对称,如图, 对称中心的坐标的坐标为(﹣2,﹣1). 20.解:(1)如图所示,△A ′B ′C 即为所求;(2)①②(﹣1,3).21.解:(1)∵BP、CP分别平分∠ABC和∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(∠ABC+∠ACB),=180°﹣(∠ABC+∠ACB),=180°﹣(180°﹣∠A),=180°﹣90°+∠A,=90°+32°=122°,故答案为:122°;(2)∵CE和BE分别是∠ACB和∠ABD的角平分线,∴∠1=∠ACB,∠2=∠ABD,又∵∠ABD是△ABC的一外角,∴∠ABD=∠A+∠ACB,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BEC的一外角,∴∠BEC=∠2﹣∠1=∠A+∠1﹣∠1=∠A=;(3)∠QBC=(∠A+∠ACB),∠QCB=(∠A+∠ABC),∠BQC=180°﹣∠QBC﹣∠QCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BQC=90°﹣∠A.22.解:(1)设购买一个足球需要x元,购买一个篮球需要y元,列方程得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元.(2)设购买了a个篮球,则购买了(96﹣a)个足球.列不等式得:80a+50(96﹣a)≤5720,解得a≤30.∵a为正整数,∴a最多可以购买30个篮球.∴这所学校最多可以购买30个篮球.23.解:(1)如图1中,设∠EFC=z,∠ABF=x,∠A=∠C=y,∵∠BEF=∠BFE,∠BEF=y+z,∴∠BFE=y+z,∵∠BFC=∠A+∠ABF,∴y+z+z=x+y,∴x=2z,∴∠ABF=2∠EFC.∵∠FBE=2∠ABF,∴∠EBF=4∠CFE故答案为∠EBF=4∠EFC.(2)结论:∠ABF=2∠EFC.理由;如图2中,设∠EFC=z,∠ABF=x,∠BAC=∠BCA=y,∵∠BAC=∠ABF+∠BFA,∠ACB=∠EFC+∠E,∴∠BFA=y﹣x,∠E=y﹣z,∵∠E=∠BFE,∴y﹣x+z=y﹣z,∴x=2z,∴∠ABF=2∠EFC.(3)如图3中,设∠EFC=x,则∠ABF=2x,∵∠BFE=5∠ABF,∴∠E=∠BFE=10x,∵MN∥BF,∴∠MNA=∠ABF=2x,∵∠ANM+∠ANC=90°,∠ANC+∠NCH=90°,∴∠HCN=∠ANM=∠BCN=2x,∴∠BCH=4x,∠CBH=90°﹣4x,在△BEF中,∵∠EBF+∠E+∠BFE=180°,∴2x+90°﹣4x+10x+10x=180°,∴x=5,∴∠ABC=90°﹣4x=70°.。

华东师大初中数学七年级下册《多边形》全章复习与巩固—知识讲解(提高)

华东师大初中数学七年级下册《多边形》全章复习与巩固—知识讲解(提高)

《多边形》全章复习与巩固(提高)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解它们这些性质在生产、生活中的广泛应用.5.理解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和公式,并能灵活运用公式解决有关问题.体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【知识网络】【要点梳理】要点一、三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边. 要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线在三角形中,连接它的一个顶点与它的对边中点的线段叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n 边形共有(3)2n n - 条对角线. 要点五、多边形的内角和及外角和公式1.内角和公式:n 边形的内角和为(n -2)·180°(n≥3,n 是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有 关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.【典型例题】类型一、三角形的三边关系1.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有 ( ).A .6个B .5个C .4个D .3个【答案】D ;【解析】x 的取值范围:511x <<,又x 为偶数,所以x 的值可以是6, 8, 10,故x 的值有3个.【总结升华】不要忽略“x 为偶数”这一条件.举一反三:【变式】三角形的三边长为2,x-3,4,且都为整数,则共能组成 个不同的三角形.当x 为 时,所组成的三角形周长最大.【答案】三,8;提示:由三角形两边之和大于第三边,两边之差小于第三边,有4-2<x-3<4+2,解得5<x <9,因为x 为整数,故x 可取6,7,8;当x=8时,组成的三角形周长最大为11.2.如图,O 是△ABC 内一点,连接OB 和OC .(1)你能说明OB+OC<AB+AC的理由吗?(2)若AB=5,AC=6,BC=7,你能写出OB+OC的取值范围吗?【答案与解析】解:(1)如图,延长BO交AC于点E,根据三角形的三边关系可以得到,在△ABE中,AB+AE>BE;在△EOC中,OE+EC>OC,两不等式相加,得AB+AE+OE+EC>BE+OC.由图可知,AE+EC=AC,BE=OB+OE.所以AB+AC+OE>OB+OC+OE,即OB+OC<AB+AC.(2)因为OB+OC>BC,所以OB+OC>7.又因为OB+OC<AB+AC,所以OB+OC<11,所以7<OB+OC<11.【总结升华】充分利用三角形三边关系的性质进行解题.【高清课堂:与三角形有关的线段例1】类型二、三角形中的重要线段3.在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分为12cm和15cm两部分,求三角形的各边长.【思路点拨】因为中线BD的端点D是AC边的中点,所以AD=CD,造成两部分不等的原因是BC边与AB、AC边不等,故应分类讨论.【答案与解析】解:如图(1),设AB=x,AD=CD=12 x.(1)若AB+AD=12,即1122x x+=,所以x=8,即AB=AC=8,则CD=4.故BC=15-4=11.此时AB+AC>BC,所以三边长为8,8,11.(2)如图(2),若AB+AD=15,即1152x x+=,所以x=10.即AB=AC=10,则CD=5.故BC=12-5=7.显然此时三角形存在,所以三边长为10,10,7.综上所述此三角形的三边长分别为8,8,11或10,10,7.【总结升华】BD把△ABC的周长分为12cm和15cm两部分,哪部分是12cm,哪部分是15cm,问题中没有交代,因此,必须进行分类讨论.【高清课堂:与三角形有关的线段例5、】举一反三:【变式】有一块三角形优良品种试验田,现引进四个品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的方案供选择.【答案】解:方案1:如图(1),在BC上取D、E、F,使BD=ED=EF=FC,连接AE、AD、AF.方案2:如图(2),分别取AB、BC、CA的中点D、E、F,连接DE、EF、DF.方案3:如图(3),取AB中点D,连接AD,再取AD的中点E,连接BE、CE.方案4:如图(4),在 AB取点 D,使DC=3BD,连接AD,再取AD的三等分点E、F,连接CE、CF.类型三、与三角形有关的角4.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少? 【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,∵ BD是AC边上的高(已知),∴∠ADB=90°(垂直定义).又∵∠ABD=30°(已知),∴∠A=180°-∠ADB-∠ABD=180°-90°-30°=60°.又∵∠A+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=120°,又∵∠ABC=∠C,∴∠C=60°.(2)当△ABC为钝角三角形时,如图所示.在直角△ABD中,∵∠ABD=30°(已知),所以∠BAD=60°.∴∠BAC=120°.又∵∠BAC+∠ABC+∠C=180°(三角形内角和定理),∴∠ABC+∠C=60°.∴∠C=30°.综上,∠C的度数为60°或30°.【总结升华】在解决无图的几何题的过程中,只有正确作出图形才能解决问题.这就要求解答者必须具备根据条件作出图形的能力;要注意考虑图形的完整性和其他各种可能性,双解和多解问题也是我们在学习过程中应该注意的一个重要环节.举一反三:【高清课堂:与三角形有关的角练习(3)】【变式】如图所示,表示∠1,∠2,∠3,∠4的关系正确的选项为()A. ∠1+∠2=∠4﹣∠3B. ∠1﹣∠3=∠2﹣∠4C. ∠1+∠2=∠3+∠4D. ∠1﹣∠2=∠4﹣∠3【答案】A;提示:∵∠AEF是△BDE的外角,∴∠AEF=∠2+∠3,同理,∠4是△AEF的外角,∴∠4=∠AEF+∠1,即∠4=∠1+∠2+∠3,即∠1+∠2=∠4﹣∠3.类型四、三角形的稳定性5. 如图是一种流行的衣帽架,它是用木条(四长四短)构成的几个连续的菱形(四条边都相等),每一个顶点处都有一个挂钩(连在轴上),不仅美观,而且实用,你知道它能收缩的原因和固定方法吗?【答案与解析】解:这种衣帽架能收缩是利用四边形的不稳定性,可以根据需要改变挂钩间的距离。

七年级数学下册 单元复习(三)教案 华东师大版

七年级数学下册 单元复习(三)教案 华东师大版

单元复习(一)知识技能目标1.使学生对二元一次方程,二元一次方程的解,二元一次方程组以及二元一次方程组的解有进一步理解,能熟练准确地用代入法和加减法解二元一次方程组;2.能较熟练地列出一次方程组解简单的应用题.过程性目标1.在经历归纳本章的知识要点和复习练习过程中,体会把“二元”转化为“一元”的消元思想,进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法;2.通过对实际问题的探索与解决,使学生再次体验二元一次方程组与现实生活的联系和作用. 教学过程一、创设情境本章我们学习了二元一次方程,二元一次方程的解,二元一次方程组以及二元一次方程组的解和一次方程组的应用.通过今天的复习,相信同学们对本章的知识有更系统,更深刻的理解.二.探索归纳归纳知识结构:在归纳知识结构的过程中,同时复习相关的知识要点,什么叫二元一次方程,二元一次方程的解,什么叫二元一次方程组,二元一次方程组的解等概念,且使学生再次体验以下几个要点:(1)在实际问题中,常会遇到有多个未知量的问题,和一元一次方程一样,二元一次方程组也是反映现实世界数量之间相等关系的数学模型之一,要学会将实际问题转化为二元一次方程组,从而解决一些简单的实际问题.(2)二元一次方程组的解法较多,但它的基本思想都是消元,转化为一元一次方程来解的,最常见的消元方法有代入法和加减法.一个方程组用什么方法来逐步消元,转化应根据它的特点灵活选定.(3)通过列方程组来解实际问题,要注意检验和正确作答,检验不仅要检验求得的解是否适合方程组的每一个方程,更重要的是要考察所得的解答是否符合实际问题的要求.三、实践应用以下例题采取学生先练习,然后教师讲评,也可以采取师生共同完成的方法进行教学. 例1 求二元一次方程103=+y x 的正整数解.分析 求二元一次方程的解的方法通常是用一个未知数表示另一未知数,如x y 310-=,然后先给定x 一个值,求出y 的一个对应值,就可得到二元一次方程的一个解,而此题对未知数x 、y 作了限制必须是正整数.解 由,103=+y x 得x y 310-=当1=x 时,71310=⨯-=y ;当2=x 时,42310=⨯-=y ;当3=x 时,13310=⨯-=y .所以,二元一次方程103=+y x 的正整数解为⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==134271y x y x y x 例2 已知034)43(2=-++--y x y x ,求x 、y 的值.分析 本题求x 、y 的值,先根据条件得到一个关于x 、y 的方程组,再求出x 、y 的值,由于一个数的平方是非负数,一个数的绝对值也是非负数;两个非负数的和为零就只能是每个数都是零,因此原方程就转化为方程组⎩⎨⎧=-+=--.034043y x y x解 034)43(2=-++--y x y x ,2)43(--y x ≥0, 34-+y x ≥0, 所以,⎩⎨⎧=-+=--.034043y x y x 解这个方程组,得⎩⎨⎧-==.11y x答 .1,1-==y x例3 方程组⎪⎩⎪⎨⎧=+=+52243y b ax y x 与方程组⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,求a 、b 的值. 分析 本题两个方程组有相同的解,可以将两个方程组中的四个方程重新组合,先得到方程组⎩⎨⎧=-=+52243y x y x 求其解,得出x 、y 的值,再把x 、y 的值代入方程组⎪⎪⎩⎪⎪⎨⎧=-=+4352by x a y b ax 得到一个关于a 、b 的方程组,求出a 、b 的值.(解答过程略.答案.2,3==b a )例4 A 、B 两地相距150千米,甲、乙两车分别从A 、B 两地同时出发,同向而行,甲车3小时可追上乙车;相向而行,两车1.5小时相遇,求甲、乙两车的速度.分析 这里有两个未知数:甲、乙两车的速度;有两个相等的关系:(1)同向而行:甲车3小时的行程=乙车3小时的行程+150千米;(2)相向而行:甲车1.5小时的行程+乙车1.5小时的行程=150千米.解 设甲车的速度为x 千米/小时,乙车的速度为y 千米/小时.根据题意,得⎩⎨⎧=++=.1505.15.115033y x y x 解这个方程组得⎩⎨⎧==.2575y x答 甲车的速度为75千米/小时,乙车的速度为25千米/小时.课堂练习:(1)已知⎩⎨⎧==21y x 是方程组⎩⎨⎧=+=-352ny mx m xn 的解,求n m 和的值.(2)若单项式1)2(3)3(2232-++--y x x y b a b a 与是同类项,求x 和y 的值. (3)已知方程组⎩⎨⎧=+=+8442y x my x 的解是正整数,求m 的值.(4)甲、乙两人同时绕m 400的环形跑道行走,如果他们同时从同一起点背向而行,2分30秒首次相遇;如果他们同时由同一起点同向而行12分30秒首次相遇,求甲、乙二人每分钟各走多少米?四、交流反思1.小组交流上面练习的完成情况,评判正误;2.列一次方程组解应用题,关键是寻找相等关系,设几个求知数,就要找出几个相等关系,并把这些相等关系转化为方程组.五、检测反馈1.填空:(1)在432-=x y 中,如果5.1=x ,那么_____=y ;如果0=y ,那么____=x ; (2)由523=-y x ,得到用x 表示y 的式子为______=y . 2.解下列方程组:(1) ⎩⎨⎧=+-=-;23,16133y x y x (2)⎩⎨⎧-=-=++;4147,022y x y x (3) ⎩⎨⎧=+=-;245,1443s t s t (4)⎩⎨⎧-=-=+;4.023,2.1565y x y x(5) ⎩⎨⎧-=-=+;1553,8.492n m y m (6)⎪⎪⎩⎪⎪⎨⎧-=-=+.122943,32321y x y x3.A 、B 两地相距36千米,甲从A 地出发步行到B 地,乙从B 地出发步行到A 地,两人同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍.求两人的速度.4.今年,小李的年龄是他爷爷的51.小李发现,12年之后,他的年龄变成爷爷的31.试求出今年小李的年龄.5.两块试验田去年共产花生470千克,改用良种后,今年共产花生523千克.已知其中第一块田的产量比去年增产16﹪,第二块田的产量比去年增产10﹪.这两块田改用良种前每块田产量分别是多少千克?今年每块田各增产多少千克?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东数学七年级下册复

集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]
华东师大版数学七年级下册期末总复习
第6章一元一次方程
一、方程的有关概念
1.方程:含有未知数的等式叫做方程.
2.一元一次方程的概念:只含有一个未知数,未知数的次数都是1,等号两边都是等式,这样的方程叫做一元一次方程.
3.方程的解:使方程左右两边的值相等的未知数的值叫做方程的解,一元方程的解,也叫它的根.
4.解方程:求方程解的过程叫做解方程.
二、等式的基本性质
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等.如果a =b,那么a±c=b±c.
2.0的数,结果仍相
等.如果a=b,那么ac=bc(c≠0).
三、一元一次方程的解法
解一元一次方程的一般步骤:
(1)去分母:方程两边都乘各分母的最小公倍数,别漏乘.
(2)去括号:注意括号前的系数与符号.
(3)移项:把含有未知数的项移到方程的左边,常数项
移到方程右边,移项注意要改变符号.
(4)合并同类项:把方程化成ax=b(a≠0)的形式.
(5)系数化为1:方程两边同除以x的系数,得x=m的形式
四、实际问题与一元一次方程
1.列方程(组)的应用题的一般步骤:
审:审清题意,分清题中的已知量、未知量.
设:设未知数,设其中某个未知量为x.
列:根据题意寻找等量关系列方程.
解:解方程.
验:检验方程的解是否符合题意.
答:写出答案(包括单位).
[注意] 审题是基础,找等量关系是关键.
2.常见的几种方程类型及等量关系:
(1)行程问题中基本量之间关系:路程=速度×时间.
①相遇问题:全路程=甲走的路程+乙走的路程;
②追及问题:甲为快者,被追路程=甲走路程-乙走路程; ③流水问题:v 顺=v 静+v 水,v 逆=v 静-v 水.
1. 顺水航行所用时间+逆水航行所用时间=总时间.
2. 顺流速度=船在静水中速度+水流速度, 逆流速度=船在静水中速度-水流速度.
3. 工作量=工作时间×工作效率.
4. 工程问题中的一般相等关系:如果一件工作分几个 阶段完成,那么各阶段工作量的和等于总工作量.
思维导图
第7章 一次方程组
一、二(三)元一次方程组的有关概念
1.二元一次方程的概念:含有两个未知数的一次方程,叫做二元一次方程.
2.二元一次方程组的概念:由两个一次方程组成的含有两个未知数的方程组叫做二元一次方程组.
3.二元一次方程组的解:使二元一次方程组中每个方程都成立的两个未知数的值,叫做二元一次方程组的解.
4.三元一次方程组的概念:由三个一次方程组成的含有三个未知数的方程组叫做三元一次方程组.
二、二元一次方程组的解法
(1)代入法:从一个方程中求出某一个未知数的表达式,再把它“代入”另一个方程,进行求解,这种方法叫做代入消元法,简称代入法.
(2)加减法:把方程的两边分别相加或相减消去一个未知数的方法,叫做加减消元法,简称加减法.
五、三元一次方程组的解法
消元法:通过消元,把一个较复杂的三元一次方程组转化为简单易解的阶梯形的方程组,从而通过回代得出其解,整个求解过程称为用消元法解三元一次方程组.
三、用一次方程组解决实际问题
1.列方程组的应用题的一般步骤:
审:审清题意,分清题中的已知量、未知量.
设:设未知数.
(2)工程问题中的基本量之间的关系:
工作效率=工作总量工作时间
. ①甲、乙合作的工作效率=甲的工作效率+乙的工作效率;
②通常把工作总量看做“1”.
列:根据题意寻找等量关系列方程.
解:解方程(组).
验:检验方程的解是否符合题意.
答:写出答案(包括单位).
[注意] 审题是基础,找等量关系是关键.
2.常见的几种方程类型及等量关系:
(1)行程问题中基本量之间的关系:
①路程=速度×时间;
②相遇问题:全路程=甲走的路程+乙走的路程;
③追及问题:甲为快者,被追路程=甲走路程-乙走路程;
④流水问题:v顺=v静+v水,v逆=v静-v水.
(2)等积变形问题中基本量之间的关系:
①原料面积=成品面积;
②原料体积=成品体积.
(3)储蓄问题中基本量之间的关系:
①本金×利率×年数=利息;
②本金+利息=本息和.
(4)销售问题中基本量之间的关系:
①实际售价-进价(成本)=利润;
②利润÷进价×100%=利润率;
③进价×(1+利润率)=售价;标价×折扣数÷10=进价. 思维导图
第8章一元一次不等式
一、不等式的有关概念
二、不等式的基本性质
三、解一元一次不等式
四、解一元一次不等式组
1.分别求出不等式组中各个不等式的解集;
2.利用数轴求出这些不等式的解集的公共部分.
五、用数轴表示一元一次不等式(组)的解集
六、利用一元一次不等式(组)解决实际问题
先求出不等式的解集,然后根据“大于向右画,小于向左画,含等号用实心圆点,不含等号用空心圆圈”的原则在数轴上表示解集.
解不等式的应用问题的步骤包括审、设、列、解、找、答这几个环节,而在这些步骤中,最重要的是利用题中的已知条件,列出不等式(组),然后通过解出不等式(组)确定未知数的范围,利用未知数的特征(如整数问题),依据条件,找出对应的未知数的确定数值,以实现确定方案的解答.
思维导图
第9章多边形
一、三角形的分类
二、三角形的高、中线、角平分线:
三、三角形内角和与外角和
四、三角形的三边关系
三角形的任意两边之和大于第三边;
三角形的任意两边之差小于第三边.
注意:
1.三边关系的依据是:两点之间线段最短.
2.判断三条线段能否构成三角形的方法:只要满足较小
的两条线段之和大于第三条线段,便可构成三角形;若
不满足,则不能构成三角形.
3.三角形第三边的取值范围是:
两边之差<第三边<两边之和
五、多边形的性质
用相同正多边形可以铺满地面的条件:
正多边形的每个内角都能被360o 整除.
用多种正多边形可以拼成平面的条件:
围绕一点拼在一起的多种正多边形的内角之和为
360o.
三角形两边之和大于第三边,可以用来判断三条线段能
否组成三角形,在运用中一定要注意检查是否任意两边
的和都大于第三边,也可以直接检查较小两边之和是否
大于第三边.三角形的三边关系在求线段的取值范围以
及在证明线段的不等关系中有着重要的作用.
三角形内角和定理:三角形内角和是180°.其推论为
直角三角形两锐角互补及有两个角的和为90°的三角
形是直角三角形.已知三角形中的三角形之间关系,可
运用方程思想来求各角的度数.
在多边形的有关求边数或内角、外角度数的问题中,要注意内角与外角之间的转化,以及定理的运用.尤其在求边数的问题中,常常利用定理列出方程,进而再求得边数.
在角的求值问题中,常常利用图形关系或内角、外角之间的关系进行转化,然后通过三角形内角和定理列方程求解.
思维导图
第10章轴对称、平移与旋转
作一个图形关于某条直线的对称图形,其关键是确定图形上特殊点的对称点.
平移前后的图形形状和大小完全相同,任何一对对应点连线段平行(或共线)且相等.
中心对称图形和轴对称图形的主要区别在于一个是绕一点旋转,另一个是沿一条直线对折.这是易错点,也是辨别它们不同的关键.
思维导图。

相关文档
最新文档