八年级数学频率与概率的关系
数学上“频率”与“概率”的关系?

数学上“频率”与“概率”的关系?我是中考数学当百荟,从事初中数学教学三⼗多年。
说到“频率”与“概率”的关系,⾸先要了解初中数学中基本的统计思想:⽤样本估计总体,⽤频率估计概率;其次,要知道数学试验的统计量:频率=频数/总次数。
频率是通过试验得到的统计量,⽽概率是通过建⽴数学模型,计算得到的理论值。
在⼀定的情况下,可以⽤频率去估计(代替)事件发⽣的概率。
⼀。
⽤样本估计总体统计中,通常通过调查的⽅式获取相关的统计量。
调查通常有两种⽅式:普查和抽样调查。
⽐如:第六次全国⼈⼝普查(2010年11⽉1⽇),就是在国家统⼀规定的时间内,按照统⼀的⽅法、统⼀的项⽬、统⼀的调查表和统⼀的标准时点,对全国⼈⼝普遍地、逐户逐⼈地进⾏的⼀次性调查登记。
这次⼈⼝普查登记的全国总⼈⼝为1,339,724,852⼈这个数据采⽤的就是普查⽅式得到的。
⽽国家统计局每季度发布的居民⼈均可⽀配收⼊、居民消费价格指数、调查失业率等统计指标,是采⽤抽样调查⽅式获取的。
当统计的总体容量很⼤,调查耗时费⼒,调查成本巨⼤或者试验具有破坏性时,不宜采⽤普查⽅式,就要⽤抽样的⽅式来进⾏统计,然后⽤样本的统计量,去估计总体统计量。
这种统计思想就叫做⽤样本估计总体。
⽐如:某照明企业⽣产⼀批LED灯泡,为统计这批LED灯泡的使⽤寿命,采⽤哪种调查⽅式⽐较适合呢?因为要了解LED的使⽤寿命,按试验要求,就必须将LED灯泡变成“长明灯”,⼀直点亮直⾄⾃然熄灭(寿终正寝)。
这样试验是具有破坏性的,显然不能⽤普查⽅式,只能采⽤抽样的⽅式来进⾏。
从这批LED灯泡中,随机抽取50只灯泡作为⼀个样本,通过试验得到这个样本的平均使⽤寿命为3000⼩时,然后我们就说该企业的这批LED灯泡(总体)的使⽤寿命为3000⼩时。
⼆。
⽤频率估计概率俗话说,天有不测风云,⼈有旦⼣祸福。
这句话从数学的⾓度来理解就是,在⾃然界和⼈类社会中,严格确定的事件是⼗分有限的,⽽随机事件却是⼗分普遍的,概率就是对随机事件的⼀种数学的定量描述。
如何用频率来估计概率

如何用频率来估计概率在苏科版初中数学课本里所学习的概率计算问题有以下类型:第一类是可以列举有限个等可能发生的结果的概率计算问题(一步试验直接列举,两步以上的试验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验;第二类是用试验或者模拟试验的数据计算频率,并用频率估计概率的概率计算问题,比如掷图钉的试验。
在八年级的数学学习中概率的计算,主要是第二类题型,我们知道频率是研究概率的基础,所以利用频率估计概率的试题频频出现在各地的中考试卷中,下面以中考题为例,来剖析这一类题型的解法。
一、填空题中的用频率估计概率例1.在课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示:由此估计这种作物种子发芽率约为(精确到0.01).解:由公式种子的发芽率= 可求出种子的发芽率为0.939,因为精确到0.001故答案为0.94.点评:本题考察了百分率问题(1)种子的发芽率= ;(2)注意括号的中的要求为精确到0.01例2.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为.解:解:∵摸到红球的频率约为0.6,∴红球所占的百分比是60%.∴1000×60%=600.故答案为:600.点评:本题考查用频率估计概率,因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数.二、选择题中的用频率估计概率例3.“六?一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:下列说法不正确的是()A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒解:由表中提供的信息可知,只有“转动转盘10次,一定有3次获得文具盒”的判断不一定正确,故应选D.点评:正确正解频率与概率之间的关系是求解此类问题的关键. 由表中提供的信息,我们可以知道,当n很大时,指针落在“铅笔”区域的频率趋于0.70,由此,由频率与概率之间的关系可知,假如你去转动转盘一次,获得铅笔的概率大约是0.70,如果转动转盘2000次,指针落在“文具盒”区域的次数大约有2000次×(1-0.7)=600次,而将转盘转动转盘10次,却不一定有3次获得文具盒.三、解答题中的用频率估计概率例4.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40 000人次,公园游戏场发放的福娃玩具为10 000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球接近多少个?分析(1)由40 000人次中公园游戏场发放的福娃玩具为10 000个,结合频率的意义可直接求得.(2)由概率与频率的关系可估计从袋中任意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.解(1)因为= ,所以参加一次这种游戏活动得到福娃玩具的频率为.(2)因为试验次数很大,大数次试验时,频率接近于理论频率,所以估计从袋中任意摸出一个球,恰好是红球的概率是.设袋中白球有x个,则根据题意,得= ,解得x=18.经检验x=18是方程的解.所以估计袋中白球接近18个.点评:利用频率估计概率,并以此引进未知数构造方程是求解此类问题的常用方法,同学们在学习时应注意体会和运用.例5.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.点评:(1)根据表格数据可以得到50次摸球实验活动中,出现红球20次,黄球30次,由此即可求出盒中红球、黄球各占总球数的百分比;(2)由题意可知50次摸球实验活动中,出现有记号的球4次,由此可以求出总球数,然后利用(1)的结论即可求出盒中红球.此题主要考查了利用频率估计概率的问题,首先利用模拟实验得到盒中红球、黄球各占总球数的百分比,然后利用百分比即可求出盒中红球个数.。
如何用频率来估计概率

如何用频率来估计概率在苏科版初中数学课本里所学习的概率计算问题有以下类型:第一类是可以列举有限个等可能发生的结果的概率计算问题(一步试验直接列举,两步以上的试验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验;第二类是用试验或者模拟试验的数据计算频率,并用频率估计概率的概率计算问题,比如掷图钉的试验。
在八年级的数学学习中概率的计算,主要是第二类题型,我们知道频率是研究概率的基础,所以利用频率估计概率的试题频频出现在各地的中考试卷中,下面以中考题为例,来剖析这一类题型的解法。
一、填空题中的用频率估计概率例1.在课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示:由此估计这种作物种子发芽率约为(精确到0.01).解:由公式种子的发芽率= 可求出种子的发芽率为0.939,因为精确到0.001故答案为0.94.点评:本题考察了百分率问题(1)种子的发芽率= ;(2)注意括号的中的要求为精确到0.01例2.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为.解:解:∵摸到红球的频率约为0.6,∴红球所占的百分比是60%.∴1000×60%=600.故答案为:600.点评:本题考查用频率估计概率,因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数.二、选择题中的用频率估计概率例3.“六?一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:下列说法不正确的是()A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次D.转动转盘10次,一定有3次获得文具盒解:由表中提供的信息可知,只有“转动转盘10次,一定有3次获得文具盒”的判断不一定正确,故应选D.点评:正确正解频率与概率之间的关系是求解此类问题的关键. 由表中提供的信息,我们可以知道,当n很大时,指针落在“铅笔”区域的频率趋于0.70,由此,由频率与概率之间的关系可知,假如你去转动转盘一次,获得铅笔的概率大约是0.70,如果转动转盘2000次,指针落在“文具盒”区域的次数大约有2000次×(1-0.7)=600次,而将转盘转动转盘10次,却不一定有3次获得文具盒.三、解答题中的用频率估计概率例4.六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40 000人次,公园游戏场发放的福娃玩具为10 000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球接近多少个?分析(1)由40 000人次中公园游戏场发放的福娃玩具为10 000个,结合频率的意义可直接求得.(2)由概率与频率的关系可估计从袋中任意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.解(1)因为= ,所以参加一次这种游戏活动得到福娃玩具的频率为.(2)因为试验次数很大,大数次试验时,频率接近于理论频率,所以估计从袋中任意摸出一个球,恰好是红球的概率是.设袋中白球有x个,则根据题意,得= ,解得x=18.经检验x=18是方程的解.所以估计袋中白球接近18个.点评:利用频率估计概率,并以此引进未知数构造方程是求解此类问题的常用方法,同学们在学习时应注意体会和运用.例5.研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.点评:(1)根据表格数据可以得到50次摸球实验活动中,出现红球20次,黄球30次,由此即可求出盒中红球、黄球各占总球数的百分比;(2)由题意可知50次摸球实验活动中,出现有记号的球4次,由此可以求出总球数,然后利用(1)的结论即可求出盒中红球.此题主要考查了利用频率估计概率的问题,首先利用模拟实验得到盒中红球、黄球各占总球数的百分比,然后利用百分比即可求出盒中红球个数.。
苏科版数学八年级下册8.3《频率与概率》说课稿2

苏科版数学八年级下册8.3《频率与概率》说课稿2一. 教材分析《频率与概率》是苏科版数学八年级下册第8.3节的内容。
本节课的主要内容是让学生理解频率与概率的概念,掌握频率与概率之间的关系,并通过实例让学生学会如何运用频率估计概率。
教材通过引入频率这一概念,引导学生从实际问题中发现概率的规律,从而培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了概率的基本概念,对概率有一定的认识。
但学生对频率与概率之间的关系可能还不够清晰,需要通过实例来进一步理解和掌握。
此外,学生可能对如何从实际问题中提出概率模型并运用频率估计概率还存在一定的困难。
三. 说教学目标1.知识与技能目标:让学生理解频率与概率的概念,掌握频率与概率之间的关系,学会如何运用频率估计概率。
2.过程与方法目标:通过实例分析,培养学生从实际问题中提出概率模型的能力,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的团队合作意识和交流表达能力。
四. 说教学重难点1.重点:频率与概率的概念,频率与概率之间的关系。
2.难点:如何从实际问题中提出概率模型并运用频率估计概率。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件进行教学,通过实例和动画演示帮助学生直观地理解频率与概率的概念和关系。
六. 说教学过程1.导入新课:通过一个简单的实例,引导学生思考频率与概率之间的关系。
2.讲解概念:介绍频率与概率的定义,并通过实例帮助学生理解这两个概念。
3.分析关系:引导学生分析频率与概率之间的关系,让学生明白频率是概率的近似值。
4.应用实例:通过具体的实例,让学生学会如何从实际问题中提出概率模型并运用频率估计概率。
5.总结提高:让学生总结本节课的主要内容和收获,提高学生对频率与概率的理解和应用能力。
七. 说板书设计板书设计主要包括频率与概率的定义、频率与概率之间的关系以及如何从实际问题中提出概率模型并运用频率估计概率的步骤。
§6-1-1频率与概率(1)频率和概率的关系(liushuling )

(1,5) (1,6) (2,5) (2,6) (3,5) (3,6) (4,5) (4,6) (5,3) (5,4) (5,5) (5,6) (6,3) (6,4) (6,5) (6,6)
概率的综合应用:
3.有长度分别为2cm,2cm,4cm,5cm的小棒 各一根,放在不透明的纸盒中,每次从中任 意取一根小棒(不放回),取了三次,取得 的三根小棒恰好能构成一个三角形的概率是 多少?
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
3
4 5 6
(6,1) (6,2) (6,3) (6,4)(6,5) (6,6)
(2) 取3枚硬币:在第一枚的正面贴上 红色标签,反面贴上蓝色;在第二枚的正 面贴上蓝色标签,反面贴上黄色;在第三 枚的正面贴上黄色标签,反面贴上红色, 同时抛三枚硬币,落地后颜色各不相同的 机会有多大?
概率是 2/3 ; (2)随机从中摸出一球,记录下颜色后 放回袋中,充分混合后再随机摸出一球, 两次都摸到红球的概率为 ; (3)随机从中一次摸出两个球,两球 均为红球的概率是 。
(2)随机从中摸出一球,记录下颜色后 放回袋中,充分混合后再随机摸出一球, 两次都摸到红球的概率为 4/9 ;
红球 红球 红球 红球 兰球 兰球 1 2 3 4 5 6
2一般地,不确定事件发生的可能性 是有大小的。 表示方式一:
1(或100%) 必然事件发生的可能性:_______________ 不可能事件发生的可能性:____________ 用0来表示 不确定事件发生的可能性是 大于0小于1的 。
表示方式二:
用线段图可表示为:
0
不可能 发生
½(50%)
明白了
懂得了
合作交流的重要性
初中数学知识点:频率与概率的关系

初中数学知识点:频率与概率的关系
事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值.
要点诠释:
(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复试验的条件下可以近似地作为这个事件的概率;
(2)频率和概率在试验中可以非常接近,但不一定相等;
(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.
第1 页共1 页。
频率的稳定性-频率与概率

案例二:电力系统中的频率稳定性问题
电力系统中的频率稳定性问题
在电力系统中,频率的稳定性对于保证电力系统的稳定运行至关重要。频率不稳定会导致电力系统的负荷波动, 严重时甚至可能导致系统崩溃。
解决电力系统频率稳定性问题的方法
解决电力系统中的频率稳定性问题需要从多个方面入手,如优化电源配置、进行负荷管理、采用稳定的控制系统 等。
条件概率
一个事件发生的概率,在另一个事件 已经发生的情况下。
期望值
随机变量的平均值,或期望值,通常 表示为E(X)。
方差
衡量随机变量偏离其期望值的程度。
CHAPTER 03
频率稳定性的影响因素
系统因素
设备稳定性
设备的稳定性和可靠性对频率稳 定性有重要影响。设备故障或异 常运行可能会导致频率波动,影
案例三:运动状态的频率稳定性研究
运动状态下的频率稳定性研究
对于运动状态下的系统,如机械振动、电磁振荡等,频率的稳定性是保证系统稳定运行的关键。
提高运动状态下的频率稳定性的方法
提高运动状态下的频率稳定性需要从多个方面入手,如优化机械结构设计、选择合适的材料、进行动 态调整等。
案例四:工业生产过程中的频率稳定性控制
频率稳定性案例分析
案例一:通信系统的频率稳定性优化
频率稳定性在通信系统中的重要性
在通信系统中,频率的稳定性直接影响到信号的传输质量和速度。频率不稳定 会导致信号失真、传输错误等问题,从而影响通信质量。
频率稳定性优化的方法
为了提高通信系统的频率稳定性,可以采用多种方法,如采用高精度的频率源 、进行频率校准、采用稳定的传输介质等。
要点一
工业生产过程中的频率稳定性控 制
在工业生产过程中,尤其是化工、制药等领域,生产过程 中对于温度、压力、流量等参数的频率稳定性要求较高。
浅谈频率和概率的关系

浅谈频率和概率的关系作者:周颜萍来源:《初中生世界·八年级》2014年第04期在学习的过程中,同学们对于概率知识并不陌生,因为我们从小学就开始体验事件发生的等可能性、游戏规则的公平性,并能计算一些简单事件发生的可能性. 进入初中以后,我们在具体情景中开始了解概率的意义,初步了解频率与概率的关系. 但是多数同学只记住了用列举法求随机事件的概率,甚至相当一部分同学认为随机事件都是等可能事件,以为解决概率问题都可以套公式计算. 另外,同学们往往只知道用随机事件发生的频率估算概率,并不清楚频率和概率之间的区别. 下面我们就一起来看看频率和概率之间到底有什么关系吧!在多次随机试验中,随着试验次数的增加,如果事件A出现的频率稳定于某个常数q,并且0≤q≤1,则在数学上我们定义事件A的概率为 p,记作P(A)=q,称之为概率的统计定义. 概率的统计定义提供了一个具体值,并且在试验重复次数n较大时,可用频率给出概率的一个近似值,这是概率统计定义最有价值的地方. 由于教材的限制以及初中生的认知水平等原因,理解概率的统计定义是一个难点,如下问题很值得我们探究:①定义中说到的存在“某个常数”到底是一个怎样的数?②能够求出这个常数吗?③既然存在着这个常数,为什么又要求这个常数的近似值呢?④定义中的“稳定于”该怎样去理解呢?要解决上述问题,首先必须了解概率的统计定义的基本内容和其中的一些关键词语,充分理解概率的统计概念的内涵.1. 频率稳定于概率是对大量的试验而言的概率论里研究的随机试验,可以在相同条件下重复进行,如果某个试验只能进行一次,那么某一事件A要么肯定会发生,要么就不会不发生,在这样的条件下得出的结果根本无随机性可言,更谈不上发生的可能性的大小了. 事实上,频率稳定于概率这个结论是针对大量的试验而言的. 如果在试验次数不多的前提下,用频率来估计概率是不太合适的. 例如,只做了10次抛掷均匀硬币的试验,其中有7次正面朝上,就认为正面朝上的概率大约为0.7,其误差就较大了,所以频率稳定于概率是对大量的实验而言的.2. 频率与概率既有密切的联系,又有本质的区别由于概率是通过大量重复试验统计的,所以在利用概率思想进行决策时,会产生理解上的困难. 因此,只有深刻理解概率与频率的关系以及概率与频率的本质区别,才能正确理解概率的意义.(1)概率是随机事件的本质属性,完全决定于事件的本身,是先于试验而客观存在的,它不会随着试验次数的增加而发生变化. 如抛掷一枚质地均匀的硬币,出现正面向上的概率是0.5,与做多少次试验无关.(2)频率是个随机变化的数值,在开始试验之前是不能确定的,事件发生的频率反映在n次重复试验中,试验结果和总的试验次数n有关,即重复试验的总次数n不同,结果(频率)可能不同,而且即使重复试验的次数n相同,事件出现的次数k也可能不同,结果(频率)也就可能不同. 频率是一个随着试验次数的增加可能发生变化的统计量.(3)在大量的重复试验中,事件发生的频率会趋近于概率. 在实际问题中,通常在某随机事件概率未知的前提下,我们正是通过多次重复试验,求得随机事件的频率,并用它来估计随机事件发生的概率.(4)事件发生的频率客观上能够体现事件概率的含义,即在多次重复试验中,一个事件发生的频率越大,说明在一次试验中该事件发生的可能性越大;如果重复试验中事件发生的频率越小,说明该事件再一次试验发生的可能性越小. 反过来,事件发生的概率也应该体现在事件的频率上,即事件的概率越大,在重复试验中,该事件发生得越频繁,频率也越大;同样如果事件A的概率较小,它在重复试验中的频率也较小. 这说明概率的现实意义是可以用频率来解释的,它能帮助人们做出合理的决策,但这并不意味着可以用频率来代替概率.(5)尽管某个事件发生的概率较大,也就是说该事件发生的可能性较大,但是,在一次或几次试验中该事件也可能不发生. 同样,尽管某个事件的概率较小,但是在一次试验中该事件也可能发生. 这正是事件的随机性与概率的确定性的区别. 概率只是一种理论上的推断事件发生可能性的大小,并不是真实发生的结果,如在购买彩票的过程中,购买一张彩票中特等奖的概率很小,但不意味着就一定不会中奖.3. “稳定于”的实际意义频率“靠近”概率是可以直接观察到的一种客观现象,而通过实践又可以证实,概率很接近1的事件在一次试验中几乎一定会发生,这就是为什么可以“用频率估计概率”的理由.4. 定义中的“常数”本质是一种理论上的推断概率实际上是频率的科学抽象. 在概率的统计定义中,只说到存在“某个常数”,并没有说到如何求这个常数,即求概率值. 无论是谁去抛一枚均匀的硬币,在试验次数很大时,正面朝上的频率,都会在常数0.5附近摆动. 在大量的实验结果中,正面朝上和反面朝上的比例约为1∶1,古今中外的多次随机实验的结果中,这一比值大致相同,这个结果是不会以人的意志为转移的. 这些事实让我们相信,事件发生的概率是客观存在的. 但无论是根据概率的统计定义或公理化定义,我们都是在承认事件发生的概率是客观存在的前提下进行的. 因此,随机事件的概率本质上是以大量随机试验为基础,然后在此基础上的一种理论上的推断,也就是说概率实际是频率在理论上的一种期望值,这个理论上的期望值,严格来说是无法通过具体试验精确地确定的,即使重复试验的次数再多也不能做到,因此我们只能由此粗略地确定一个近似值. 当然,当试验次数很大时,我们可以得到比较接近准确值的“近似值”,而在实践中,较高精度的近似值可以帮助我们来进行判断和分析.5. 实验次数越多,频率就会越接近概率的说法不一定正确用频率估计概率,有人认为“试验次数越多,用频率估计概率就越准确”. 这样的叙述严密吗?极端特例:掷一枚硬币两次,得到正面朝上的频率为0.5,而掷1 000次硬币,理论上仍有可能得到频率为1. 说明“试验次数越大,估计就越准确”,这样的表述不严密.随机现象有其偶然性一面,也有其必然性一面,这种必然性表现在大量重复试验中呈现出的固有规律,我们称之为随机现象的统计规律. 因而在一般情形下,观察与试验是认识随机现象和发现与解决概率问题的一种有效方法.(作者单位:江苏省常州钟楼实验中学)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点三:概率的计算
1、一个不透明的袋中装有除颜色外均相同的5
个红球和3个黄球,从中随机摸出一个,摸到黄球的
概率是
A. 1
B. 1
C. 3
()
D. 3
8
3
8
1
5
8
2、有一对酷爱运动的年轻夫妇给他们12个月大
的婴儿拼排3块分别写有“20”, “08”和“北京”的字
块 , 如 果 婴 儿 能 够 排 成 “ 2008 北 京 ” 或 者 “ 北 京
.
(3)试估算盒子里黑、白两种颜色的球各有多少只?
(精
1 频率 :设总共做n次重复实验,而事件
A发生了m次,次数m为频数,称比值 m
为A发生的频率
n
2 概率:在数学上,我们用一个数值来 描述事件发生可能性的大小,这个数值叫 做概率.
3 概率和频率的关系:当试验次数足够 多时,事件的频率稳定到它的概率附近, 我们常用频率估计概率
随机事件:在一定条件下可能发生也可能 不发生的事件
2 分类 :
必然事件
事件
确定事件
不可能事件
随机事件
考点二
她将盒子里面的在一个不透明的盒子里装有只有颜色不同的黑、白两种 球共10个,小颖做摸球实验,球搅匀后从中随机摸出一个球记下颜色,再把 它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
2008”,则他们就给婴儿奖励.假设婴儿能将字块横着
正 (ห้องสมุดไป่ตู้
排,
1)
那
么
这
个婴
1
儿
能
得
到
1
奖
励
的
概率
1
是
A. 6
B. 4
C. 3
D. 2
一般地,如果一个实验有n个等可能的 结果,而事件A包含其中k个结果,我们定义
P(A)= k = 事件A包含的可能结果数
n
所有可能结果数
对任何一个事件A,它的概率P(A) 满足
二 探究与总结
1 (2010 无锡)小刚参加上海世博会,由于 只有一天时间,他上午从A-----中国馆,B----日 本馆,C----美国馆中任意选择一处参观,下午从 D----韩国馆,E----英国馆,F----德国馆中任意选 择一处参观
(1)写出小刚所有可能的参观方式 (2)求小刚上午和下午恰好都参观亚洲国家展 馆的概率
0≤ P(A)≤1.必然事件的概率是1,不可能事 件的概率是0.
考点四:几何概率 1 一只小狗在如图的方砖上走来走去,最终 停在阴影方砖上的概率是( )
4
A
B1
C 15D
3
C1 5
D 2B 15
几何概率:实验可能的结果要用
线段或平面区域表示,事件的概率 定义为部分线段的长度(部分区域 的面积)和整条线段的长度(整个 区域的面积)的比.这些概率与几何 度量有关,数学上称为几何概率.
初三数学第一轮复习
概率
考点一:事件的概念
1.下列事件是必然事件的是 ( ) A 通常加热到100 ℃ ,水沸腾 B 抛一枚硬币,正面向上 C 明天会下雨 D 经过城市中某一有交通信号灯的路口, 恰好遇到红灯.
1 事件的概念
必然事件 :在一定条件下必然发生的事件
不可能事件:在一定条件下不可能发生的 事件
2 某校有A、B两个餐厅,甲、 乙、丙三名同学各自随机选择其 中的一个餐厅用餐,求甲、乙、 丙三名同学在同一餐厅用餐的概 率.
三 拓展与提高
1 有三张不透明的卡片,除正面写有不同的数字外, 其它均相同,将这三张卡片背面朝上洗匀后,第一 次从中随机抽取一张,并把这张卡片标有的数字记 作一次函数表达式中的k , 第二次从余下的两张卡片中再随机抽取一张,上面 标有的数字记作一次函数表达式中的b , (1)写出k为负数的概率 (2)求一次函数y=kx+b 的图像经过二、三、四 象限的概率(用树状图或列表法求解)
摸球的次数n
100 200 300 500 800 1000 3000
摸到白球的次数m 65 124 178 302 599 599 1803
摸到白球的频率 0.65
0.693 0.604 0.601
0.601
(1) 填全表格,并请估计:当n很大时,摸到白球的频率将会接近
确到0.1)
(2)假如你摸一次,你摸到白球的概率P(白球)=