第15章欧拉图与哈密尔顿图
合集下载
离散数学课件15欧拉图与哈密顿图

证明 若G是平凡图,结论显然成立。
下面设G为非平凡图,设G是m条边的n阶无 向图,
并设G的顶点集V={v1,v2,…,vn}。 必要性。因为G为欧拉图,所以G中存在欧 拉回路,
设C为G中任意一条欧拉回路,vi,vj∈V, v2i0,2v0/7j/都23 在C上,
定理15.1的证明
充分性。由于G为非平凡的连通图可知,G中边数 m≥1。
2020/7/23
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 充分性。设G的两个奇度顶点分别为u0和v0, 对G加新边(u0,v0),得G =G∪(u0,v0), 则G 是连通且无奇度顶点的图, 由定理15.1可知,G 为欧拉图, 因而存在欧拉回路C ,而C=C -(u0,v0)为G中一 条欧拉通路, 所以G为半欧拉图。
并2行从020/7遍/C23 上G 的i中某的顶欧点拉vr回开路始C行遍i,,i=每1遇,2,到…v,s*j,i,最就后
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 必要性。设G是m条边的n阶无向图,因为G为 半欧拉图, 因而G中存在欧拉通路(但不存在欧拉回路), 设Г=vi0ej1vi1…vim-1ejmvim为G中一条欧拉通路, vi0≠vim。 v∈V(G),若v不在Г的端点出现,显然d(v)为偶 数, 若v在端点出现过,则d(v)为奇数,
欧拉对物理力学、天文学、弹道学、航海学、建筑学、音 乐都有研究!有许多公式、定理、解法、函数、方程、常数等 是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标 准教程。19世纪伟大的数学家高斯曾说过“研究欧拉的著作永 远是了解数学的好方法”。欧拉还是数学符号发明者,他创设 的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等, 至今202沿0/7/2用3 。
下面设G为非平凡图,设G是m条边的n阶无 向图,
并设G的顶点集V={v1,v2,…,vn}。 必要性。因为G为欧拉图,所以G中存在欧 拉回路,
设C为G中任意一条欧拉回路,vi,vj∈V, v2i0,2v0/7j/都23 在C上,
定理15.1的证明
充分性。由于G为非平凡的连通图可知,G中边数 m≥1。
2020/7/23
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 充分性。设G的两个奇度顶点分别为u0和v0, 对G加新边(u0,v0),得G =G∪(u0,v0), 则G 是连通且无奇度顶点的图, 由定理15.1可知,G 为欧拉图, 因而存在欧拉回路C ,而C=C -(u0,v0)为G中一 条欧拉通路, 所以G为半欧拉图。
并2行从020/7遍/C23 上G 的i中某的顶欧点拉vr回开路始C行遍i,,i=每1遇,2,到…v,s*j,i,最就后
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 必要性。设G是m条边的n阶无向图,因为G为 半欧拉图, 因而G中存在欧拉通路(但不存在欧拉回路), 设Г=vi0ej1vi1…vim-1ejmvim为G中一条欧拉通路, vi0≠vim。 v∈V(G),若v不在Г的端点出现,显然d(v)为偶 数, 若v在端点出现过,则d(v)为奇数,
欧拉对物理力学、天文学、弹道学、航海学、建筑学、音 乐都有研究!有许多公式、定理、解法、函数、方程、常数等 是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标 准教程。19世纪伟大的数学家高斯曾说过“研究欧拉的著作永 远是了解数学的好方法”。欧拉还是数学符号发明者,他创设 的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等, 至今202沿0/7/2用3 。
第十五章欧拉图与哈密顿图

具有哈密顿回路的图称为半哈密顿图。平 凡图是哈密顿图。
图中所示的三个无向图都有哈密顿回路, 所以都是哈密顿图。有向图中,()具有哈 密顿回路,因而它是哈密顿图。()只有哈 密顿通路,但无哈密顿回路,因而它是半哈 密顿图,而()中既无哈密顿回路,也没有 哈密顿通路,因而不是哈密顿图,也不是半 哈密顿图。
∈(),若不在Г的端点出现,显然 ()为偶数,若在端点出现过,则()为 奇数,因为Г只有两个端点且不同,因而 中只有两个奇数顶点。另外,的连通 性是显然的。
充分性: 设的两个奇度顶点分别 为 和,对加新边(),
得' ∪(),则'是连通且无奇度 顶点 的图,由定理可知,‘为欧拉 图,因而存在欧拉回路',而' () 为中一条欧拉通路,所以为半欧拉图。
图
由定理立即可知,图()图 为欧拉图,本图既可以看成圈, ,,之并(为 清晰起见,将个圈画在()中),也 可看成圈与圈 之并(两个圈画在()中)。将() 分解成若干个边不重的圈的并不是() 图特有的性质,任何欧拉图都有这个性 质。
定理 是非平凡的欧拉图当且仅 当是连通的且为若干个边不重的圈的并。
证 读者用定理证明。
下面给出一些哈密顿图和半哈密顿图 的充分条件。
定理 设是阶无向简单图,若对
于中任意不相邻的顶点,均有
()()≥
()
则中存在哈密顿通路。
证: 首先证明是连通图。否则至少 有两个连通分支,设是阶数为 的两个连通分支,设∈(),∈(), 因为是简单图,所以 ()()
()()≤≤
这与()矛盾所以必为连通图。
可以证明,当算法停止时所得简单回路 …()为中一条欧拉回路。
例 图()是给定的欧拉图。某人用算法 求中的欧拉回路时, 走了简单回路 之 后(观看他的错误走法),无法行遍了,试 分析在哪步他犯了错误?
第十五章-欧拉图与哈密顿图

(4)半欧拉图
具有欧拉通路而无欧拉回
路的图.
3
2. 无向欧拉图的判定 定理15.1 无向图G是欧拉图当且仅当G连通且无 奇度结点。 证明:若G为平凡图结论显然成立。
下面设G为n阶m条边的无向图。 必要性 设C为G中一条欧拉回路。
(1)G连通显然。
(2)viV(G),vi在C上每出现一次获2度,所 以vi为偶度结点. 由vi的任意性,结论为真。 4
e5
e4 e2
e5
e4
e3
e3
e3
欧拉图
半欧拉图
不是欧拉图 不是半欧拉图
11
a(甲)
b (乙)
图G
例:两只蚂蚁比赛问题:两只 蚂蚁甲、乙分别处在图G 中 的结点a,b处,并设图中各边长 c 度相等。甲提出同乙比赛:
从它们所在结点出发,走过 图中所有边最后到达结点c处。 如果它们速度相同,问谁最 先到达目的地?
17
(2)若G恰有两个奇数度结点vi和vj,则G具有 欧拉通路,且邮局位于结点vi,则邮递员走遍所 有的街道一次到达结点vj ;从vj返回vi可选择其间 的一条最短路径。这样,最短邮路问题转化为求 vi到vj的欧拉通路和vj到vi的最短路径问题。
(3)若G中度数为奇数的结点多于2个,则回路 中必须增加更多的重复边。分两步:
19
例:在下图中确定一条从v1到v1的回路,3使其权值最小.
8
半欧拉图的判定
定理15.2 无向图G是半欧拉图当且仅当G连通 且恰有两个奇度结点。若有两个奇数度结点,则 它们是每条欧拉通路的端点。
证明:必要性
G的连通性是显然的。设G是m条边的n阶无向 图,因为G为半欧拉图,因而G中存在欧拉通路 (但不存在欧拉回路),设=vi0ej1vi1…vim为G 中一条欧拉通路, vi0vim。对任意的v,若v不在 的端点出现,d(v)必为偶数,若v在端点出现 过,则d(v)为奇数,因为只有两个端点不同, 因此G中只有两个奇度结点。
欧拉图和哈密尔顿图

(b)中去掉结点u1和u2以后,p(G–{ u1,u2})=3, 由此 可以判定,这两个图都不是哈密尔顿图。
用正十二面体代表地球。游戏题的内容是:沿着正十二面体的棱寻
找一条旅行路线,通过每个城市恰好一次又回到出发城市。这便是 Hamilton回路问题。
欧拉回路是指不重复地走过所有路 径的回路,而哈密尔顿环是指不重复地
走过所有的点,并且最后还能回到起点的回 路
哈密尔顿图
定义:通过图G的每个结点一次且仅一次的环称为哈密尔顿环。 具有哈密尔顿环的图称为哈密尔顿图。通过图G的每个结点一次 且仅一次的开路称为哈密尔顿路。具有哈密尔顿路的图称为半哈 密尔顿图。
解一
a
a:说英语; b:说英语或西班牙语; C: 说英语,意大利语和俄语; d:说日语和西班牙语 e:说德语和意大利语; f:说法语、日语和俄语; g:说法语和德语.
b
d
c
e g
f
解 设7个人为7个结点, 将两个懂同一语言的人之间连一条边 (即他们能直接交谈), 这样就得到一个简单图G, 问题就转化为 G是否连通. 如图所示, 因为G的任意两个结点是连通的, 所以 G是连通图. 因此, 上述7个人中任意两个人能交谈.
欧拉图算法
int main() { memset(g,0,sizeof(g)); cin >> n >> e; for (i = 1; i <= e; i++) { cin >> x >> y; g[y][x] = g[x][y] = 1; du[x]++; //统计每个点的度 du[y]++; } start = 1; // 如果有奇点,就从奇点开始寻找,这样找到的就是 for (i = 1; i <= n; i++) // 欧拉路。没有奇点就从任意点开始, if (du[i]%2 == 1) // 这样找到的就是欧拉回路。(因为每一个点都是偶点) start = i; circuitpos = 0; find_circuit(start); for (i = 1; i <= circuitpos; i++) cout << circuit[i] << ' '; cout << endl; return 0; }
欧拉图和哈密尔顿图

欧拉回路是指不重复地走过所有路 径的回路,而哈密尔顿环是指不重复地
走过所有的点,并且最后还能回到起点的回 路
哈密尔顿图
定义:通过图G的每个结点一次且仅一次的环称为哈密尔顿环。具 有哈密尔顿环的图称为哈密尔顿图。通过图G的每个结点一次且仅 一次的开路称为哈密尔顿路。具有哈密尔顿路的图称为半哈密尔 顿图。
f:说法语、日语和俄语;
g:说法语和德语.
c f
g
解 设7个人为7个结点, 将两个懂同一语言的人之间连一条边
(即他们能直接交谈), 这样就得到一个简单图G, 问题就转化为
G是否连通. 如图所示, 因为G的任意两个结点是连通的, 所以
G是连通图. 因此, 上述7个人中任意两个人能交谈.
解二
c
英
意
e
a
例
半哈密尔顿图
哈密尔顿图 哈密尔顿图
N
周游世界的游戏——的解
哈密顿图
哈密顿图
无哈密顿 通路
哈密顿图
存在哈密 顿通路
实例
在上图中, (1),(2) 是哈密顿图;
实例
已知有关人员a, b, c, d, e, f, g 的有关信息
a:说英语;
b:说英语或西班牙语;
c;说英语,意大利语和俄语;
a:说英语; b:说英语或西班牙语;
英
德
c;说英语,意大利 语和俄语;
b
g
d:说日语和西班牙语 e:说德语和意大利语; f:说法语、日语和俄语; g:说法语和德语.
西
d
日
法
f
如果题目改为:试问这7个人应如何安排座位, 才能使每个人都能与
他身边的人交谈?
解:用结点表示人,用边表示连接的两个人能说讲一种语言,够造
走过所有的点,并且最后还能回到起点的回 路
哈密尔顿图
定义:通过图G的每个结点一次且仅一次的环称为哈密尔顿环。具 有哈密尔顿环的图称为哈密尔顿图。通过图G的每个结点一次且仅 一次的开路称为哈密尔顿路。具有哈密尔顿路的图称为半哈密尔 顿图。
f:说法语、日语和俄语;
g:说法语和德语.
c f
g
解 设7个人为7个结点, 将两个懂同一语言的人之间连一条边
(即他们能直接交谈), 这样就得到一个简单图G, 问题就转化为
G是否连通. 如图所示, 因为G的任意两个结点是连通的, 所以
G是连通图. 因此, 上述7个人中任意两个人能交谈.
解二
c
英
意
e
a
例
半哈密尔顿图
哈密尔顿图 哈密尔顿图
N
周游世界的游戏——的解
哈密顿图
哈密顿图
无哈密顿 通路
哈密顿图
存在哈密 顿通路
实例
在上图中, (1),(2) 是哈密顿图;
实例
已知有关人员a, b, c, d, e, f, g 的有关信息
a:说英语;
b:说英语或西班牙语;
c;说英语,意大利语和俄语;
a:说英语; b:说英语或西班牙语;
英
德
c;说英语,意大利 语和俄语;
b
g
d:说日语和西班牙语 e:说德语和意大利语; f:说法语、日语和俄语; g:说法语和德语.
西
d
日
法
f
如果题目改为:试问这7个人应如何安排座位, 才能使每个人都能与
他身边的人交谈?
解:用结点表示人,用边表示连接的两个人能说讲一种语言,够造
第十五章 欧拉图与哈密顿图

长度大于或等于3的圈,设C为G中一个圈,
删除C上的全部边,得G的生成子图G',
, G2 , 设G'有s个连通分支 G1
公共顶点为,i=1, 2, … , s.
, 每个连通分支 , Gs
至多有k条边,且无奇度顶点,并且设G'i与C的
, G2 , 由归纳假设可知, G1
, 都是欧拉图, , Gs
并设G的顶点集 V={v1, v2, … , vn }.
必要性. 因为G为欧拉图,所以G中存在欧拉回路, 设C为G中任意一条欧拉回路, vi , vj ∈V,
vi, vj都在C上,因而vi , vj 连通,所以G为 连通图.
又vi∈V,vi在C上每出现一次获得2度,
若出现k次就获得2k 度,即d(vi)=2k .
点的入度都等于出度.
Байду номын сангаас
由定理15.3和15.4立即可知,图15.1中所示3个
有向图中只有(4)是欧拉图,没有半欧拉图.
图15.1
由定理15.1立即可知,图15.3(1)图为欧拉图.
图15.3
本图既可以看成圈
v1v2v8v1 , v2v3v4v2 , v4v5v6v4 , v6v7v8v6 之并(为清晰起见,
vim -1e jm vim为G中一条欧拉
vi 0 vim . v V (G ), 若v不在Г的端点出现, 通路,
显然d(v)为偶数,若v在端点出现过,则d(v)为奇数,
因为Г只有两个端点且不同,因而G中只有两个
奇数顶点. 另外,G的连通性是显然的.
充分性. 设G的两个奇度顶点分别为u0和v0,对G加 新边(u0, v0),得G ' =G∪(u0,v0),则G '是 连通且无奇度顶点的图,由定理15.1可知,G ' 为欧拉图,因而存在欧拉回路C ' ,而
欧拉图与哈密顿图

求欧拉图中欧拉回路的算法
Fleury算法;能不走桥就不走桥
1 任取v0∈VG;令P0=v0; 2 设Pi=v0e1v1e2…eivi已经行遍;按下面方法来从
EGe1;e2;…;ei中选取ei+1: a ei+1与vi相关联; b 除非无别的边可供行遍;否则ei+1不应该为
Gi=Ge1;e2;…;ei中的桥; 3当2不能再进行时;算法停止;
例15 1
例15 1 设G是非平凡的且非环的欧拉图;证明: 1λG≥2; 2对于G中任意两个不同顶点u;v;都存在简单回路C含u和v;
证明 1由定理15 5可知;e∈EG;存在圈C;e在C中; 因而pGe=pG;故e不是桥; 由e的任意性λG≥2;即G是2边连通图;
例15 1
例15 1 设G是非平凡的且非环的欧拉图;证明: 1λG≥2; 2对于G中任意两个不同顶点u;v;都存在简单回路C含u和v;
可以验证彼得松图满足定理中的条件;但不是哈密顿图;
若一个图不满足定理中的条件;它一定不是哈密顿图;
推论
推论 设无向图G=<V;E>是半哈密顿图;对于任意的V1V且 V1≠;均有 pGV1≤|V1|+1
证明 设P是G中起于u终于v的哈密顿通路; 令G =G∪u;v在G的顶点u;v之间加新边; 易知G 为哈密顿图; 由定理15 6可知;pG V1≤|V1|; 因此;pGV1 = pG V1u;v ≤ pG V1+1 ≤ |V1|+1
若vi与vj有哈共密同语顿言图;就是在v能i;vj将之间图连中无向所边有vi;v顶j; 由此组成点边都集合能E;安则G排为8在阶无某向个简单初图级; 回路 vi∈V;上dvi为的与图vi有;共同语言的人数;
欧拉图和哈密尔顿图ppt课件

有欧拉通路
全部结点为偶结点, 有欧拉回路
有欧拉通路
。a
a、b、c、e
。a
全部结点为
b。 。c 都为奇结点, 。 。 。 无欧拉通路
b。
。c
d
e
f 与欧拉回路 。 。 。
偶结点, 有欧拉回路
d e f 有欧拉通路
ppt课件
8
例7-8 如图街道,是否存在一条投递线路使 邮递员从邮局a出发通过所有街到一次在回 到邮局a?
可达的:在图G中,结点u和结点v之间存在一
条路,则称结点u到结点v是可达的。
ppt课件
2
无向图的连通性
连通:在无向图G中,结点u和结点v之间存在一 条路,则称结点u与结点v是连通的。约定:任一 结点与自身总是连通的。 连通图:若图G中,任意两个结点均连通,则称G 是连通图,否则称非连通图。对非连通图可分成几
个无公共结点的连通分支。无向图中结点间的连通
关系是等价关系。 图是连通的判定法则:从图中任意一结点出发,
通过某些边一定能到达其它任意一结点,则称
图是连通的。
ppt课件
3
练习1:连通图的判定
指出下列各图是否连通
(1)
(2)
(3)
(4)
(5)
(6)
ppt课件 (7)
(8)
4
欧拉图
设G=<V,E>是连通无向图 欧拉通路:在图G中存在一条通路,经过图G 中每条边一次且仅一次。
第二节 图的连通性
通路和回路 无向图的连通性 有向图的连通性 欧拉图 哈密顿图
ppt课件
1
通路和回路 给定图G V , E
通路: G中前后相互关联的点边交替序列 w=v0e1v1e2…envn称为连接v0到vn的通路。 W中边的数目K称为通路W的长。
全部结点为偶结点, 有欧拉回路
有欧拉通路
。a
a、b、c、e
。a
全部结点为
b。 。c 都为奇结点, 。 。 。 无欧拉通路
b。
。c
d
e
f 与欧拉回路 。 。 。
偶结点, 有欧拉回路
d e f 有欧拉通路
ppt课件
8
例7-8 如图街道,是否存在一条投递线路使 邮递员从邮局a出发通过所有街到一次在回 到邮局a?
可达的:在图G中,结点u和结点v之间存在一
条路,则称结点u到结点v是可达的。
ppt课件
2
无向图的连通性
连通:在无向图G中,结点u和结点v之间存在一 条路,则称结点u与结点v是连通的。约定:任一 结点与自身总是连通的。 连通图:若图G中,任意两个结点均连通,则称G 是连通图,否则称非连通图。对非连通图可分成几
个无公共结点的连通分支。无向图中结点间的连通
关系是等价关系。 图是连通的判定法则:从图中任意一结点出发,
通过某些边一定能到达其它任意一结点,则称
图是连通的。
ppt课件
3
练习1:连通图的判定
指出下列各图是否连通
(1)
(2)
(3)
(4)
(5)
(6)
ppt课件 (7)
(8)
4
欧拉图
设G=<V,E>是连通无向图 欧拉通路:在图G中存在一条通路,经过图G 中每条边一次且仅一次。
第二节 图的连通性
通路和回路 无向图的连通性 有向图的连通性 欧拉图 哈密顿图
ppt课件
1
通路和回路 给定图G V , E
通路: G中前后相互关联的点边交替序列 w=v0e1v1e2…envn称为连接v0到vn的通路。 W中边的数目K称为通路W的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15. 1 欧拉图 例 判断下列各图是否是 欧拉图。
(1)
(2)
(3)
(4)
集合与图论
(5)
(6)
1.18
哈尔滨工业大学软件学院 李东 副教授
15. 1 欧拉图
(5)
(5)是一个非连通图,所以肯定不是 欧拉图。
集合与图论
1.19
哈尔滨工业大学软件学院 李东 副教授
15. 1 欧拉图
(2)
(3)
设G是n(n>2)阶无向图,若对于G 中每一对不相邻的顶点u、v,均有:
d(u)+d(v) ≥n-1 则G中存在哈密尔顿通路。
集合与图论
1.44
哈尔滨工业大学软件学院 李东 副教授
定理15.7的推论 设G是n(n>2)阶无向简单图,若对于G
中每一对不相邻的顶点u、v,均有: d(u)+d(v) ≥n,
(1)
(2)
(3)
(4)
集合与图论
(6) (5)
1.11
哈尔滨工业大学软件学院 李东 副教授
15. 1 欧拉图
(1)
(6)
上两图中,度数为奇数的顶点个数都 是4。所以根据定理15.2,它们不可能存 在欧拉通路,更无欧拉回路,因此都不是
欧拉图。
集合与图论
1.12
哈尔滨工业大学软件学院 李东 副教授
15. 1 欧拉图
有哈密尔顿通路,但无哈密尔顿 回路,所以不是哈密尔顿图。
有哈密尔顿回路,所以 是哈密尔顿图。
(2)
集合与图论
1.30
哈尔滨工业大学软件学院 李东 副教授
(3) (4)
(5)
(6)
以上4图都有哈密尔顿回路,所以都
是哈密尔顿图。
集合与图论
1.31
哈尔滨工业大学软件学院 李东 副教授
15. 2 哈密尔顿图 例 判断下列各图是否是哈密尔顿图。
所以只具有哈密尔顿通路,而不具有哈密 尔顿回路的图不是哈密尔顿图,只是半哈密尔 顿图。
集合与图论
1.28
哈尔滨工业大学软件学院 李东 副教授
15. 2 哈密尔顿图 例 判断下列各图是否是哈密尔顿图。
(1)
(2)
(3)
(4)
集合与图论
(6) (5)
1.29
哈尔滨工业大学软件学院 李东 副教授
(1)
集合与图论
1.36
哈尔滨工业大学软件学院 李东 副教授
此条件只是哈密尔顿图的必要条件, 不满足上述条件的图,一定不是哈密尔顿 图。但满足的,也不一定是哈密尔顿图。
集合与图论
1.37
哈尔滨工业大学软件学院 李东 副教授
15. 2 哈密尔顿图
证明:因为G是哈密尔顿图,所以G
中存在哈密尔顿通路. 设C为一条哈密尔顿通路,则V1中的
证明:设v为图G的割点,令:V1={v}. 则p(G-V1) ≥2. 而|V1|=1.
所以由定理15.6可知:
有割点的图一定不是哈密尔顿图。
集合与图论
1.40
哈尔滨工业大学软件学院 李东 副教授
利用定理15.6及其推论判断如下 4图是否是哈密尔顿图。
a
u
v (1)
a (3)
b
c
集合与图论
b
d
c
(2) e
无向图G为欧拉图,当且 仅当G是连通图且无奇度顶点。
集合与图论
1.9
哈尔滨工业大学软件学院 李东 副教授
15. 1 欧拉图
n 定理15.2
无向图G是半欧拉图当且 仅当G是连通的且G中恰有两 个奇度顶点。
集合与图论
1.10
哈尔滨工业大学软件学院 李东 副教授
15. 1 欧拉图 例 判断下列各图是否是 欧拉图。
集合与图论
1.26
哈尔滨工业大学软件学院 李东 副教授
15. 2 哈密尔顿图
从定义可以看出,存在哈密尔顿通 路(回路)的图一定是连通图。
具有哈密尔顿通路但不具有哈密尔顿回路
的图叫做半哈密尔顿图.
平凡图是哈密尔顿图.
集合与图论
1.27
哈尔滨工业大学软件学院 李东 副教授
哈密尔顿回路一定是哈密尔顿通路, 但哈密尔顿通路不一定是哈密尔顿回路。
(4)
1.41
哈尔滨工业大学软件学院 李东 副教授
u
有割点u,v,所以不是 哈密尔顿图。
v
(1)
a
b
d
c
令V1={a,b,c,d,e},则p(G-V1) =6 >|V1|=5,所以不是哈密尔顿图。
(2) e
集合与图论
1.42
哈尔滨工业大学软件学院 李东 副教授
a
(3)
令V1={a,b,c},则p(G-V1) =4
集合与图论
1.23
哈尔滨工业大学软件学院 李东 副教授
00
01
10
图D为欧拉图,因
11
为D是连通图,且
所有顶点的入度等
于出度(都等于2)。
集合与图论
1.24
哈尔滨工业大学软件学院 李东 副教授
15.2 哈密尔顿图
n 引子:“周游世界问题”
该问题是基于正十二面体的一个数学游戏:
是否存在经过所 有顶点一次且仅一次 的回路或通路?
则G中存在哈密尔顿回路,即G是哈密 尔顿图.
集合与图论
1.45
哈尔滨工业大学软件学院 李东 副教授
15. 2 哈密尔顿图
n 定理15.7的推论
设G是n(n>2)阶无向图,若
δ (G ) ≥ n , 2
则G是哈密尔顿图。
集合与图论
1.46
哈尔滨工业大学软件学院 李东 副教授
集合与图论
1.21
哈尔滨工业大学软件学院 李东 副教授
15. 1 欧拉图
(1)
此图为有向连通图,且所有顶点的 出度均等于入度。所以根据定理15.3的 推论,它们是 欧拉图。
集合与图论
1.22
哈尔滨工业大学软件学院 李东 副教授
例 设有向图D=<V,E>,其中V={vi|0≤i≤3}, E={ej|0≤j≤7}.若以i的二进制表示标记vi , 则v0,v1,v2,v3分别记做00,01,10,11 。类似地,若以j的二进制表示标记ej ,则e0 ,e1,…,e7分别记做000,001,010, …,111。边abc从顶点ab到bc(a,b,c=0,1), 例如,边001从00到01。试画出D的图形, 并证明它是 欧拉图。
(1)
(2)
(3)
(4)
集合与图论
(5)
(6)
1.32
哈尔滨工业大学软件学院 李东 副教授
(5)
此图明显不是哈密尔顿图。
集合与图论
1.33
哈尔滨工业大学软件学院 李东 副教授
(2)
(3)
此3图只有哈密尔顿通路, 但无哈密尔顿回路,所以不是 哈密尔顿图。
(6)
集合与图论
1.34
哈尔滨工业大学软件学院 李东 副教授
顶点在C上可能相邻,也可能不相邻. 即:p(C-V1) ≤|V1|. 由于C-V1是G-V1的子图,所以C-V1的连
通分支数不会超过G -V1的连通分支数.
所以:p(G-V1) ≤p(C-V1) ≤|V1|.
因此:p(G-V1)≤|V1|.
集合与图论
1.38
哈尔滨工业大学软件学院 李东 副教授
15. 2 哈密尔顿图
具有欧拉通路但不具有欧拉 回路的图叫做半欧拉图.
集合与图论
1.4
哈尔滨工业大学软件学院 李东 副教授
特别地,规定平凡图是欧拉图。
集合与图论
1.5
哈尔滨工业大学软件学院 李东 副教授
15. 1 欧拉图
n 例,判断下列各图是否是 欧拉图。
集合与图论
1.6
哈尔滨工业大学软件学院 李东 副教授
15. 1 欧拉图
集合与图论
1.16
哈尔滨工业大学软件学院 李东 副教授
15. 1 欧拉图
n 定理15.4
一个有向图D是半欧拉图,当且仅当 D是单向连通的,且D中恰有两个奇度顶 点外,其余顶点的入度等于出度。
这两个奇度顶点中,一个顶点的入 度比出度大1。
另一个顶点的入度比出度小1。
集合与图论
1.17
哈尔滨工业大学软件学院 李东 副教授
n 定理15.6 的推论
设无向图G = <V, E>为半哈密尔顿 图,非空集合V1是V的任意真子集, 则:
p(G-V1) ≤|V1|+1 其中p(G-V1) 是从G中删除V1后, 所得图的连通分支数。
集合与图论
1.39
哈尔滨工业大学软件学院 李东 副教授
例15.4
设G为n阶无向连通图,证明:若G有 割点,则图G一定不是哈密尔顿图。
b
>|V1|,所以不是哈密尔顿图。
c
此图称为彼得森图,在数学上
已经证明其不存在哈密尔顿回路。
(4)
此图虽然满足对于任意的V1,有 p(G-V1) ≤|V1|,但由于其不存在哈密尔 顿回路,所以不是哈密尔顿图。
集合与图论
1.43
哈尔滨工业大学软件学院 李东 副教授
15. 2 哈密尔顿图
n 定理15.7
(4)
(5)
上两图中,度数为奇数的顶点个数 都是2。所以根据定理15.2,它们具有 欧拉通路,但无欧拉回路,因此都是半 欧拉图。
集合与图论
1.13
哈尔滨工业大学软件学院 李东 副教授
15. 1 欧拉图
(2)
(3)
上两图中,不存在度数为奇数的顶点 。所以根据定理15.2,它们均有欧拉通 路,且这些欧拉通路为欧拉回路,因此 它们都是欧拉图。