广东省广州大学附属中学2019-2020年第一学期10月大联盟初三数学考试卷(无答案)
2019-2020学年广东省广州市天河区华南师大附中九年级(上)第一次月考数学试卷

5. 3 分)已知 x 1,x 2 是一元二次方程 x 2﹣2x =0 的两个实数根,下列结论错误的是()2019-2020 学年广东省广州市天河区华南师大附中九年级(上)第一次月考数学试卷一.选择题(30 分)1.(3 分)下列图形中,一定既是轴对称图形又是中心对称图形的是()A .等边三角形B .直角三角形C .平行四边形D .正方形2.(3 分)若一元二次方程 x 2﹣2kx +k 2=0 的一根为 x =﹣1,则 k 的值为()A .﹣1B .0C .1 或﹣1D .2 或 03.(3 分)不透明的袋子中装有红球 1 个、绿球 1 个、白球 2 个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A .B .C .D .4.(3 分)下列说法正确的是()A .掷一枚质地均匀的正方体骰子,骰子停止转动后,5 点朝上是必然事件B .甲乙两人在相同条件下各射击 10 次,他们的成绩的平均数相同,方差分别是 S 甲 2=0.4,S 乙 2=0.6,则甲的射击成绩较稳定C .审查书稿中有哪些学科性错误适合用抽样调查法D .掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为(A .x 1≠x 2B .x 12﹣2x 1=0C .x 1+x 2=2D .x 1•x 2=26.(3 分)某机械厂七月份生产零件 50 万个,第三季度生产零件 182 万个.若该厂八、九月份平均每月生产零件的增长率均为 x ,则下面所列方程正确的是()A .50(1+x )2=182B .50+50(1+x )2=182C .50+50(1+x )+50(1+2x )=182D .50+50(1+x )+50(1+x )2=1827.(3 分)若一个袋子中装有形状与大小均完全相同有 4 张卡片,4 张卡片上分别标有数字﹣2,﹣1,2,3,现从中任意抽出其中两张卡片分别记为 x ,y ,并以此确定点 P (x ,y ),那么点 P 落在直线 y =﹣x +1 上的概率是() A . B .C .D .(8.(3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A.B.3C.D.59.3分)如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5cm B.4.8cm C.4.6cm D.4cm 10.(3分)如图,在正方形ABCD中,点E是CD的中点,点F是AD的中点,BE与CF 相交于点P,设AB=a.得到以下结论:①BE⊥CF;②AP=a;③CP=则上述结论正确的是()aA.①②B.①③C.②③D.①②③二.填空题(24分)11.(3分)在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是.12.(3分)一元二次方程(x﹣3)(x﹣2)=0的根是.13.(3分)如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为.14.(3分)一个不透明的袋子中装有三个小球,它们除分别标有的数字1,3,5不同外,其它完全相同.任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是.15.(3分)一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是.16.(3分)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为.三.解答题(18分)17.解方程:(x﹣1)2=4.18.在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.19.如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.四.解答题(21分)20.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去就设备维护费或新设备购进费)21.体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:组别1 2 3 4个数段0≤x<1010≤x<2020≤x<3030≤x<40频数521a频率0.10.42b(1)表中的数a=,b=;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.22.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(△1)证明:ADG≌△DCE;(2)连接BF,证明:AB=FB.五.解答题(27分)△23.如图,ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.(△1)求证:ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.24.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?25.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA =PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.22019-2020 学年广东省广州市天河区华南师大附中九年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(30 分)1.(3 分)下列图形中,一定既是轴对称图形又是中心对称图形的是()A .等边三角形B .直角三角形C .平行四边形D .正方形【解答】解:A 、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B 、直角三角形不是轴对称图形,也不是中心对称图形,故本选项错误;C 、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;D 、正方形既是轴对称图形,又是中心对称图形,故此选项正确.故选:D .2.(3 分)若一元二次方程 x 2﹣2kx +k 2=0 的一根为 x =﹣1,则 k 的值为()A .﹣1B .0C .1 或﹣1D .2 或 0【解答】解:把 x =﹣1 代入方程得:1+2k +k 2=0,解得:k =﹣1,故选:A .3.(3 分)不透明的袋子中装有红球 1 个、绿球 1 个、白球 2 个,除颜色外无其他差别.随机摸出一个小球后不放回,再摸出一个球,则两次都摸到白球的概率是()A .B .C .D .【解答】解:画树状图为:共有 12 种等可能的结果数,其中两次摸出的球都是的白色的结果共有 2 种,所以两次都摸到白球的概率是= ,故选:B .4.(3 分)下列说法正确的是()A .掷一枚质地均匀的正方体骰子,骰子停止转动后,5 点朝上是必然事件B .甲乙两人在相同条件下各射击 10 次,他们的成绩的平均数相同,方差分别是 S 甲 =5. 3 分)已知 x 1,x 2 是一元二次方程 x 2﹣2x =0 的两个实数根,下列结论错误的是()50.4,S 乙 2=0.6,则甲的射击成绩较稳定C .审查书稿中有哪些学科性错误适合用抽样调查法D .掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为【解答】解:A 、掷一枚质地均匀的正方体骰子,骰子停止转动后, 点朝上是随机事件, 所以 A 选项错误;B 、甲乙两人在相同条件下各射击 10 次,他们的成绩的平均数相同,方差分别是 S 甲 2=0.4,S 乙 2=0.6,甲的方差小,则甲的射击成绩较稳定,所以 B 选项正确; C 、审查书稿中有哪些学科性错误适合用全面调查,所以 C 选项错误;D 、掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为 ,所以 D 选项错误.故选:B .(A .x 1≠x 2B .x 12﹣2x 1=0C .x 1+x 2=2D .x 1•x 2=2【解答】解:∵ =(﹣△2)2﹣4×1×0=4>0,∴x 1≠x 2,选项 A 不符合题意;∵x 1 是一元二次方程 x 2﹣2x =0 的实数根, ∴x 12﹣2x 1=0,选项 B 不符合题意;∵x 1,x 2 是一元二次方程 x 2﹣2x =0 的两个实数根,∴x 1+x 2=2,x 1•x 2=0,选项 C 不符合题意,选项 D 符合题意.故选:D .6.(3 分)某机械厂七月份生产零件 50 万个,第三季度生产零件 182 万个.若该厂八、九月份平均每月生产零件的增长率均为 x ,则下面所列方程正确的是()A .50(1+x )2=182B .50+50(1+x )2=182C .50+50(1+x )+50(1+2x )=182D .50+50(1+x )+50(1+x )2=182【解答】解:设该厂八、九月份平均每月生产零件的增长率均为 x ,根据题意得:50+50(1+x )+50(1+x )2=182.故选:D .( (7.(3 分)若一个袋子中装有形状与大小均完全相同有 4 张卡片,4 张卡片上分别标有数字﹣2,﹣1,2,3,现从中任意抽出其中两张卡片分别记为 x ,y ,并以此确定点 P (x ,y ),那么点 P 落在直线 y =﹣x +1 上的概率是() A . B .C .D .【解答】解:画树状图如下:由树状图可知共有 12 种等可能结果,其中点 P 落在直线 y =﹣x +1 上的有(﹣2,3)、 ﹣1,2)、(2,﹣1)、(3,﹣2),所以点 P 落在直线 y =﹣x +1 上的概率是= ,故选:B .8.(3 分)如图,点 E 在正方形 ABCD 的边 AB 上,若 EB =1,EC =2,那么正方形 ABCD的面积为()A .B .3C .D .5【解答】解:∵四边形 ABCD 是正方形,∴∠B =90°,∴BC 2=EC 2﹣EB 2=22﹣12=3,∴正方形 ABCD 的面积=BC 2=3.故选:B .9. 3 分)如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形 ABCD ,若测得 A ,C 之间的距离为 6cm ,点 B ,D 之间的距离为 8cm ,则线段 AB 的长为()A.5cm B.4.8cm C.4.6cm D.4cm【解答】解:如图,作AR⊥BC于R,AS⊥CD于S,连接AC,BD交于点O,由题意知,AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.∵两张纸条等宽,∴AR=AS.∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD.在△Rt AOB中,OA=3,OB=4,∴AB==5.故选:A.10.(3分)如图,在正方形ABCD中,点E是CD的中点,点F是AD的中点,BE与CF 相交于点P,设AB=a.得到以下结论:①BE⊥CF;②AP=a;③CP=则上述结论正确的是()aA.①②B.①③C.②③D.①②③【解答】解:在△CDF和△BCE中∴△CDF≌△BCE(SAS)∴∠CEB=∠CFD∵∠DCF+∠CFD=90°∴∠DCF+∠CEB=90°∴∠EPC=90°∴①正确;如图延长CF交BA延长线于点M,在△CFD和△MF A中∴△CFD≌△MF A(ASA)∴CD=MA=AB=a,∵BP⊥CF∴AP为△Rt MPB斜边BM上的中线,是斜边的一半,即AP=BM=×2a=a,∴②正确;∵CP⊥BE∴CP×BE=CE×BC=∵BE===∴CP===∴③正确故选:D.二.填空题(24分)11.(3分)在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是20.【解答】解:设白球的个数为x个,∵共有黄色、白色的乒乓球50个,白球的频率稳定在60%,∴=60%,解得x=30,∴布袋中白色球的个数很可能是50﹣30=20(个).故答案为:20.12.(3分)一元二次方程(x﹣3)(x﹣2)=0的根是x1=3,x2=2.【解答】解:x﹣3=0或x﹣2=0,所以x1=3,x2=2.故答案为x1=3,x2=2.13.(3分)如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE 折叠,使点C落在AB边上的F处,则CE的长为.【解答】解:设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10,在△Rt DAF中,AD=6,DF=10,∴AF=8,∴BF=AB﹣AF=10﹣8=2,(((在△Rt BEF中,BE2+BF2=EF2,即(6﹣x)2+22=x2,解得x=故答案为,.14.(3分)一个不透明的袋子中装有三个小球,它们除分别标有的数字1,3,5不同外,其它完全相同.任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为6的概率是.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球所标数字之和为6的有:1,5),3,3),5,1),∴两次摸出的球所标数字之和为6的概率是:=.故答案为:.15.(3分)一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是k>2.【解答】解:∵方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴=(﹣△2k)2﹣4(k2﹣k+2)=4k﹣8>0,解得:k>2,故答案为:k>2.16.(3分)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为625.【解答】解:最初边长为1,面积1,延长一次为,面积5,再延长为51=5,面积52=25,下一次延长为5,面积53=125,以此类推,当N=4时,正方形A4B4C4D4的面积为:54=625.故答案为:625.三.解答题(18分)17.解方程:(x﹣1)2=4.【解答】解:两边直接开平方得:x﹣1=±2,∴x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1.18.在一个不透明的口袋中装有1个红球,1个绿球和1个白球,这3个球除颜色不同外,其它都相同,从口袋中随机摸出1个球,记录其颜色.然后放回口袋并摇匀,再从口袋中随机摸出1个球,记录其颜色,请利用画树状图或列表的方法,求两次摸到的球都是红球的概率.【解答】解:画树状图得:∵共有9种等可能的结果,摸到的两个球都是红球的有1种情况,∴两次摸到的球都是红球的概率=.19.如图,ABCD是正方形,E是CD边上任意一点,连接AE,作BF⊥AE,DG⊥AE,垂足分别为F,G.求证:BF﹣DG=FG.【解答】证明:∵四边形ABCD是正方形,∴AB=AD,∠DAB=90°,∵BF⊥AE,DG⊥AE,∴∠AFB=∠AGD=∠ADG+∠DAG=90°,∵∠DAG+∠BAF=90°,∴∠ADG=∠BAF,在△BAF和△ADG中,∵,∴△BAF≌△ADG(AAS),∴BF=AG,AF=DG,∵AG=AF+FG,∴BF=AG=DG+FG,∴BF﹣DG=FG.四.解答题(21分)20.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去就设备维护费或新设备购进费)【解答】解:(1)设每月的增长率为x,由题意得:100+100(1+x)+100(1+x)2=364,解得x=0.2,或x=﹣3.2(不合题意舍去)答:每月的增长率是20%.(2)设使用新设备y个月后,该厂所得累计利润不低于使用旧设备的累计利润,依题意有364+100(1+20%)2(y﹣3)﹣640≥(90﹣5)y,解得y≥12.故使用新设备12个月后,该厂所得累计利润不低于使用旧设备的累计利润.21.体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:组别1234个数段0≤x<1010≤x<2020≤x<3030≤x<40频数521a频率0.10.42b(1)表中的数a=20,b=0.08;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.【解答】解(1)抽查了九年级学生数:5÷0.1=50(人),20≤x<30的人数:50×=20(人),即a=20,30≤x<40的人数:50﹣5﹣21﹣20=4(人),b==0.08,故答案为20,0.08;(2)该九年级排球垫球测试结果小于10的人数450×0.1=45(人),答:该九年级排球垫球测试结果小于10的人数为45人;(3)列表如下==.∴P(选出的2人为一个男生一个女生的概率)22.如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.(△1)证明:ADG≌△DCE;(2)连接BF,证明:AB=FB.【解答】解:(1)∵四边形ABCD是正方形,∴∠ADG=∠C=90°,AD=DC,又∵AG⊥DE,∴∠DAG+∠ADF=90°=∠CDE+∠ADF,∴∠DAG=∠CDE,∴△ADG≌△DCE(ASA);(2)如图所示,延长DE交AB的延长线于H,∵E是BC的中点,∴BE=CE,又∵∠C=∠HBE=90°,∠DEC=∠HEB,∴△DCE≌△HBE(ASA),∴BH=DC=AB,即B是AH的中点,又∵∠AFH=90°,∴△Rt AFH中,BF=AH=AB.五.解答题(27分)△23.如图,ABC中,D是AB上一点,DE⊥AC于点E,F是AD的中点,FG⊥BC于点G,与DE交于点H,若FG=AF,AG平分∠CAB,连接GE,GD.(△1)求证:ECG≌△GHD;(2)小亮同学经过探究发现:AD=AC+EC.请你帮助小亮同学证明这一结论.(3)若∠B=30°,判定四边形AEGF是否为菱形,并说明理由.【解答】解:(1)∵AF=FG,∴∠F AG=∠FGA,∵AG平分∠CAB,∴∠CAG=∠F AG,∴∠CAG=∠FGA,∴AC∥FG,∵DE⊥AC,∴FG⊥DE,∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED,∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)证明:过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△P AG,∴AC=AP,由(1)可得EG=DG,∴△Rt ECG≌△Rt DPG,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形,证明:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AEGF是平行四边形,∴四边形AEGF是菱形.24.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈(利,该店采取了降价措施,在每件盈利不少于25 元的前提下,经过一段时间销售,发现销售单价每降低 1 元,平均每天可多售出 2 件.(1)若降价 3 元,则平均每天销售数量为26 件;(2)当每件商品降价多少元时,该商店每天销售利润为 1200 元?【解答】解:(1)若降价 3 元,则平均每天销售数量为 20+2×3=26 件.故答案为:26;(2)设每件商品应降价 x 元时,该商店每天销售利润为 1200 元.根据题意,得 (40﹣x )(20+2x )=1200,整理,得 x 2﹣30x+200=0,解得:x 1=10,x 2=20.∵要求每件盈利不少于 25 元,∴x 2=20 应舍去,∴x =10.答:每件商品应降价 10 元时,该商店每天销售利润为 1200 元.25.如图 1,在正方形 ABCD 中,P 是对角线 BD 上的一点,点 E 在 AD 的延长线上,且 PA=PE ,PE 交 CD 于 F .(1)证明:PC =PE ;(2)求∠CPE 的度数;(3)如图 2,把正方形 ABCD 改为菱形 ABCD ,其他条件不变,当∠ABC =120°时,连接 CE ,试探究线段 AP 与线段 CE 的数量关系,并说明理由.【解答】 1)证明:在正方形 ABCD 中,AB =BC , ∠ABP =∠CBP =45°,在△ABP 和△CBP 中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(△1)知,ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴PC=PE,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE;。
广州大学附属中学2023-2024学年九年级上学期月考数学试卷(10月份)及参考答案

2023-2024学年广东省广州大学附中九年级(上)月考数学试卷(10月份)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列图形中,是中心对称图形的是( )A. B. C. D.2.将一元二次方程5xx2−1=4xx化成一般形式后,二次项的系数和一次项系数分别是( )A. 5,−1B. 5,4C. 5,−4D. 5,13.抛物线yy=−(xx−2)2+3的顶点坐标是( )A. (−2,3)B. (2,3)C. (2,−3)D. (−2,−3)4.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,设共有xx个队参加比赛,则下列方程符合题意的是( )A. 12xx(xx+1)=90B. xx(xx+1)=90C. 12xx(xx−1)=90D. xx(xx−1)=905.若二次函数yy=(aa−1)xx2+3xx+aa2−1的图象经过原点,则aa的值必为( )A. 1或−1B. 1C. −1D. 06.若关于xx的方程mmxx2+2xx−1=0有两个不相等的实数根,则mm的取值范围是( )A. mm<−1B. mm>−1且mm≠0C. mm>−1D. mm≥−1且mm≠07.如图,在△AAAAAA中,AAAA=AAAA,∠AA=40°,点DD,PP分别是图中所作直线和射线与AAAA,AADD的交点.根据图中尺规作图痕迹推断,以下结论错误的是( )A. AADD=AADDB. ∠AAAAPP=∠AAAAPPC. ∠AAPPAA=115°D. ∠PPAAAA=∠AA8.已知一元二次方程xx2−3xx+1=0的两根为xx1,xx2,则xx12−5xx1−2xx2的值为( )A. −7B. −3C. 2D. 59.某餐厅主营盒饭业务,每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份.若该餐厅想让每天盒饭业务的利润达到1680元,设每份盒饭涨价xx元,则符合题意的方程是( )A. (16+xx−12)(360−40xx)=1680B. (xx−12)(360−40xx)=1680C. (xx−12)[360−40(xx−16)]=1680D. (16+xx−12)[360−40(xx−16)]=168010.抛物线上yy=(mm−4)xx2有两点AA(−3,yy1)、AA(2,yy2),且yy1>yy2,则mm的取值范围是( )A. mm>4B. mm<4C. mm≥4D. mm≠4二、填空题(本大题共6小题,共18.0分)11.一元二次方程xx2−3xx+2=0根的判别式ΔΔ=______ .12.在函数yy=√xx−2xx−3中,自变量的取值范围是______.13.若二次函数yy=aaxx2+bbxx−1经过(−1,0),则2023+2aa−2bb的值为.14.化简:2aa−2aa2−4aa+4÷aa−1aa−2=______.15.如图,四边形AAAAAADD中的两条对角线AAAA,AADD互相垂直,AAAA+AADD=10,当AAAA为______时.四边形AAAAAADD的面积最大.16.如图,平面内三点AA、AA、AA,AAAA=4,AAAA=3,以AAAA为对角线作正方形AADDAABB,连接AADD,则AADD的最大值是______ .17.用适当的方法解方程.(1)4(xx−1)2=9.(2)xx2−6xx−4=0.四、解答题(本大题共8小题,共68.0分。
广东实验中学附属天河学校2019-2020年第一学期九年级十月大练习题数学试卷(无答案)

广东实验中学附属天河学校九(上)十月大练习数学试命题:莫秀长审核:章伟娜校对:莫秀长注意:1.考试时间为120分钟,满分为150分.2.试卷分为第Ⅰ卷(选择题)与第Ⅱ卷(非选择题)两部分.3.选择题、非选择题需在问卷指定位置作答.一、选择题(本大题共10个小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列方程中,不是一元二次方程的是( ) A.2111x x+= B.21x x =+C.2730x +=D 2762x -= 2.下列函数中,一定是二次函数的是( ) A.21y x =-+B.2y ax bx c =++C.23y x =+D.22y x =3.对于抛物线()2254y x -++,下列说法正确的是( ) A.开口向下,顶点坐标()5,4 B.开口向上,顶点坐标()5,4 C.开口向下,顶点坐标()5,4-D.开口向上,顶点坐标()5,4-4.已知关于x 的一元二次方程20x ax a +-=的一个根是2-,则a 的值为( ) A.4B.4-C.43D.43-5.将261y x x =-+化成()2y x h k =-+的形式,则h k +k 的值是( ) A.-5B.-8C.-11D.56.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( ) A.()161225x +=B.()251216x -=C.()226151x =+D.()225116x -=7.关于x 的一元二次方程式220x ax --=,下列结论一定正确的是( ) A.该方程有两个相等的实数根 B.该方程有两个不相等的实数根 C.该方程没有实数根D.无法确定8抛物线244y x x =-+-与坐标轴的交点个数为( ) A.0B.1C.2D.39.若一次函数()1y a x a =++的图象过第一、三、四象限,则二次函数2y ax ax =-( ) A.有最大值4a B.有最大值4a -C.有最小值4a D.有最小值4a -10.一位篮球运动员在距离篮圈中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05m ,在如图所示的平面直角坐标系中,下列说法正确的是( )A.篮圈中心的坐标是()4,3.05B.此抛物线的解析式是213.55y x =+C.此抛物线的顶点坐标是()3.5,0D.篮球出手时离地面的高度是2m二、填空题(本大题共6个小题,每小题3分,满分18分) 11.写出一个以1-,2为根的一元二次方程__________.12.抛物线()20)y ax bx c a =++>与x 轴的两个交点分别是()3,0A -,()2,0B .当0y >时,x 的取值范围是__________.13.将抛物线21y x =-向右平移2个单位后所得新抛物线的表达式为__________.14已知等腰三角形的腰与底边的长分别是一元二次方程2680x -+=的解,则该三角形的面积__________. 15.已知函数()21y x =--图象上两点()12,A y ,()2,B a y ,其中2a >,则1y 与2y 的大小关系是1y __________2y .(填“<”“>”或“=”)16.如图,二次函数2y ax bx c =++的图象开口向上,图象经过点()1,2-和()1,0,且与y 轴相交于负半轴,给出五个结论:①0a >;②0b >;③0c >;④0a b c ++=;⑤20a b +>.其中正确结论的序号是__________.三、解答题(本大题共9个小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.解方程:2230x x +-=.18.关于x 的一元二次方方利23x x m ++=. (1)若该方程有两个实数根,求m 的取值范围.(2)在(1)的条件下,m 取符合题意的最大整数,求一元二次方程的根. 19.已知一个二次函数图象上部分点的横坐标x 与纵坐标y 的对应值如表所示:(1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中面出这个二次函数的图象; (3)当42x -<<-时,直接写出y 的取值范围.20.如图,有一个面积是120平方米的长方形养鸡场,鸡场的一边靠墙,墙长16米,与墙垂直的两侧均有一个1米宽的小门,除门外都用竹篱笆围成.若竹篱笆的总长30米,则鸡场的两邻边长各是多少?21.已知抛物线2y ax =经过点()2,8A --. (1)求此抛物线的函数解析式; (2)判断点()1,4B 是否在此抛物线上; (3)求出抛物线上纵坐标为6-的点的坐标.22.广州某景区商店销售一种纪念品,这种商品的成本价10元件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元件,市场调查发现,该商品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?23.已知关于x 的一元二次方程()()22210x a x a a +-+-=,其中0a <. (1)求证:此方程有两个不相等的实数根;(2)若等腰ABC △的一腰AB 长为6,另两边AC ,BC 的长分别是这两个方程两个不相等的实数根,求等腰ABC △的周长;(3)若此方程的两根恰好为菱形两条对角线的长,且菱形面积为21,请直接写出a 的值. 24.如图,已知抛物线2y x bx c =++经过()1,0A ,()0,2B 两点,顶点为D . (1)求抛物线的解析式;(2)将OAB △绕点A 顺时针旋转90︒后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB △的面积是1NDD △面积的2倍,求点N 的坐标.25.如图,抛物线2y x bx c =-++与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点N ,过A 点的直线l :y kx n =+与y 轴交于点C ,与抛物线2y x bx c =-++的另一个交点为D ,已知()1,0A -,()5,6D -,P点为抛物线2y x bx c =-++上一动点(不与A 、D 重合).(1)求抛物线和直线l 的解析式;(2)当点P 在直线l 上方的抛物线上时,过P 点作PE x ∥轴交直线l 于点E ,作PF y ∥轴交直线l 于点F ,求PE PF 的最大值;(3)设M 为直线l 上的点,探究是否存在点M 使得以点N 、C ,M 、P 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由.。
广东省广州大学附属中学2019-2020学年第一学期10月大联盟初三数学考试卷

广大附中2019—2020学年第一学期10月大联盟考试问卷初三数学(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题3分,共30分,每题给出的四个项中,只有一项是符合题目要求的)1.下列方程是一元二次方程的是( ) A .20ax bx c ++=B .20y x -=C .212x x-=D .(1)(3)0x x -+=2.矩形、菱形、正方形都具有的性质是( ) A .每一条对角线平分一组对角 B .对角线相等 C 、对角线互相平分D 对角线互相垂直3.已知关于x 的一元二次方程22(3)590m x x m -++-=有一个解是0,则m 的值为( ) A .3-B .3C .3±D .不确定4.一元二次方程2104x x +-=的根的情况是( ) A .有两个不等的实数根 B .有两个相等的实数根 C .无实数根 D .无法确定5.将二次函数2y x =的图象先向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( ) A .2(1)2y x =+- B .2(1)2y x =++ C .2(1)2y x =--D .2(1)2y x =-+6.已知二次函数22y x mx =-,以下各点不可能成为该二次函数顶点的是( ) A .()2,4--B .()2,4-C .()1,1--D .()1,1-7.一次函数y ax b =+与二次函数2y ax bx =+在同一坐标系中的图象大致为( )A .B .C .D .8.如图Rt ABC ∆中,90ABC ∠=︒,6AB cm =,8BC cm =,动点P 从点A 出发沿AB 边以1/cm 秒的速度向点B 匀速移动,同时,点Q 从点B 出发沿BC 边以2/cm 秒的速度向点C 匀速移动,当P 、Q 两点中有一个点到达终点时另一个点也停止运动.运动( )秒后,PBQ ∆面积为25cm .A .0.5B .1C .5D .1或59.如图,在正方形ABCD 的外侧,作等边ADE ∆,AC 、BE 相交于点F ,则BFC ∠为( )A .45︒B .55︒C .60︒D .75︒10.如图1,在ABC ∆中,AB BC =,AC m =,D ,E 分别是AB ,BC 边的中点,点P 为AC 边上的一个动点,连接PD ,PB ,PE .设AP x =,图1中某条线段长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是( )图1 图2 A .PBB .PCC .PDD .PE二、填空题(本大题共6小题,每小题3分,共18分)11.把二次函数212y x x =-化为形如2()y x h k =-+的形式:________________. 12.方程2440x -=的解是________________.13.若a 为方程250x x +-=的一个根,则21a a ++的值为________________. 14.一个三角形的两边长为3和8,第三边的长是方程(9)13(9)0x x x ---=的根,则这个三角形的周长是_______________.15.如图,B 、E 、F 、D 四点在同一条直线上,菱形ABCD 的面积为2120cm ,正方形AECF 的面积为250cm ,则菱形的边长为_____________cm .16.抛物线223y x x =--与交y 轴负半轴于C 点,直线2y kx =+交抛物线于E 、F 两点(E 点在F 点左边),使CEF ∆被y 轴分成的两部分面积差为5,则k 的值为____________.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(1)计算:11( 3.14)|12π-⎛⎫--- ⎪⎝⎭(2)解方程:2310x x -+= 18.已知抛物线223y x x =--(1)该抛物线与x 轴的交点坐标是____________,顶点坐标是___________. (2)选取适当的数据填入下表,在坐标系中利用五点画出此物线的图象:(3)结合函数图象,直接回答下列问题:①若抛物线上两点()11,A x y ,()22,B x y 的坐标满足121x x <<,比较1y ,2y 的大小:____________.②当0y <时,自变量x 的取值范围是______________.19.如图,用一根20m 长的绳子围成一个面积为224m 的矩形ABCD ,通过方程计算该矩形的长AB .20.如图所示,ABC ∆中,D 是BC 边上一点:E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF BD =,连接BF .(1)求证:D 是BC 的中点;(2)若AB AC =,试判断四边形AFBD 的形状,并证明你的结论. 21.已知关于x 的一元二次方程22(21)20x m x m +++-=. (1)若该方程有两个实数根,求m 的最小整数值;(2)若方程的两个实数根分别为1x ,2x ,且()221221x x m -+=,求m 的值.22.某水果商场经销一种高档水果,原售价每千克50元,连续两次降价后每千克售价32元,每次下降的百分率相同. (1)求每次下降的百分率;(2)已知这种水果每千克盈利10元,每天可售出500千克.经市场调查发现,若每千克涨价1元,日销售量将减少20千克,在进货价不变的情况下,商场决定采取适当的涨价措施,但规定每千克涨价不能超过8元,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?23.如图,抛物线23y ax bx =++与x 轴交于()1,0A -和()3,0B 两点,与y 轴交于点C ,点D 是该抛物线的顶点,分别连接AC 、CD 、AD .(1)求抛物线的函数解析式以及顶点D 的坐标;(2)在抛物线上取一点P (不与点C 重合),并分别连接PA 、PD ,当PAD ∆的面积与ACD ∆的面积相等时,求点P 的坐标.24.在菱形 ABCD 中,60ABC ∠=︒,P 是射线BD 上一动点,以AP 为边向右侧作等边APE ∆连接CE .图1 图2(1)如图1,当点P 在菱形ABCD 内时,则BP 与CE 的数量关系是_______________.CE 与AD 的位置关系是_____________.(2)如图2,当点P 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明:若不成立,请说明理由;(3)如图2,连接BE ,若AB =BE =AP 的长.25.在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .图① 图② (1)请直接写出点A ,C ,D 的坐标;(2)如图①,在x 轴上找一点E ,使得CDE ∆的周长最小,求点E 的坐标;(3)如图②,F 为直线AC 上的动点,在抛物线上是否存在点P ,使得AFP ∆为等腰直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由.。
2019-2020学年上学期广东省广州市九年级期末考试数学模拟试卷及答案

2019-2020学年上学期广东省广州市九年级期末考试数学模拟试卷(考试时长90分钟,全卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.下列四个图形中,不是中心对称图形的是()A. B. C. D.2.在平面直角坐标系中,点P(-3,4)关于原点对称的点的坐标是( )A. (3,4)B. (3,-4)C. (4,-3)D. (-3,4)3.已知方程x2+mx+2=0的一个根是1,则它的另一个根是 ( )A. 1B. 2C. —2D. 34.用长分别为3cm,4cm,5cm的三条线段可以围成直角三角形的事件是()A. 必然事件B. 不可能事件C. 随机事件D. 以上都不是5.把抛物线y=x2向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为()A. y=(x+1)2+2B. y=(x﹣1)2+2C. y=(x+1)2﹣2D. y=(x﹣1)2﹣26.下列各说法中:①圆的每一条直径都是它的对称轴;②长度相等的两条弧是等弧;③相等的弦所对的弧也相等;④同弧所对的圆周角相等;⑤ 90°的圆周角所对的弦是直径;⑥任何一个三角形都有唯一的外接圆;其中正确的有()A. 3 个B. 4 个C. 5 个D. 6 个7.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是A. 88°B. 92°C. 106°D. 136°8.如果,那么代数式的值是( )A. 6B. 8C. -6D. -89.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论::①a<0;②b>0;③b2﹣4ac>0;④a+b+c<0;其中结论正确的个数有()A. 1个B. 2个C. 3个D. 4个10.(11·钦州)函数y=ax-2 (a≠0).与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是二、填空题(本大题共7小题,每小题4分,共28分)11.方程2x2-x=0的根是______.12.一元二次方程x2-3x-10=0的解是_________.13.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=_____.14.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为_________cm2.15.已知关于的方程没有实数根,则的取值范围是________.16.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为.17.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,如果点A的坐标为(1,0),那么点B2019的坐标为.。
最新2019年广州XX中学九年级上月考数学试卷(10月份)(有答案)

2019-2020年广东省广州XX中学九年级(上)月考数学试卷(10月份)一.选择题(每题3分,共30分)1.(3分)16平方根是()A.4B.﹣4C.±4D.±82.(3分)方程2x2﹣6x=9的二次项系数、一次项系数、常数项分别为()A.6,2,9B.2,﹣6,9C.2,﹣6,﹣9D.﹣2,6,93.(3分)抛物线y=(x﹣2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)4.(3分)下列一元二次方程有两个相等的实数根的是()A.x2+2x=0B.(x﹣1)2=0C.x2=1D.x2+1=05.(3分)如图,是一条抛物线的图象,则其解析式为()A.y=x2﹣2x+3B.y=x2﹣2x﹣3C.y=x2+2x+3D.y=x2+2x+36.(3分)直角三角形两条直角边的和为7,面积是6,则斜边长是()A.B.5C.D.77.(3分)把160元的电器连续两次降价后的价格为y元,若平均每次降价的百分率是x,则y与x的函数关系式为()A.y=320(x﹣1)B.y=320(1﹣x)C.y=160(1﹣x2)D.y=160(1﹣x)28.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4B.k≤4C.k<4且k≠3D.k≤4且k≠39.(3分)三角形两边长分别是8和6,第三边长是一元二次方程x2﹣16x+60=0一个实数根,则该三角形的面积是()A.24B.48C.24或8D.810.(3分)函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.二.填空题(每小题3分,共18分)11.(3分)已知(﹣1,y1),(2,y2),(﹣3,y3)都在函数y=x2图象上,则y1,y2,y3的大小关系为(用“<”连接).12.(3分)参加一次足球联赛的每两队之间都进行两次比赛,共要比赛90场.设共有x个队参加比赛,则依题意可列方程为.13.(3分)关于x的一元二次方程x2﹣5x+k=0有两个不相等的实数根,则k可取的最大整数为.14.(3分)已知点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,当﹣2<x≤1时,y的取值范围是.15.(3分)如图,在平面直角坐标系中,正方形ABCD的顶点A,B的坐标分别为(0,2),(1,0),顶点C在函数y=x2+bx﹣1的图象上,将正方形ABCD沿x轴正方形平移后得到正方形A′B′C′D′,点D的对应点D′落在抛物线上,则点D与其对应点D′间的距离为.16.(3分)如图,二次函数y=ax2+bx+c的图象与x轴的两个交点分别为(﹣1,0),(3,0)对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0④8a+c<0,其中正确的有.三、解答题(共102分)17.(10分)解方程(1)x 2﹣4x=0(2)2x 2+3=7x18.(8分)已知x 1=﹣1是方程x 2+mx ﹣5=0的一个根,求m 的值及方程的另一根x 2.19.(8分)在平面直角坐标系中,二次函数的图象经过(2,﹣2),(0,﹣2),函数的最小值是﹣4.(1)求二次函数的解析式.(2)当自变量的取值范围为什么时,该二次函数的图象在横轴上方?请直接写出答案.20.(10分)某商店进行促销活动,如果将进价为8元/件的商品按每件10元出售,每天可销售100件,现采用提高售价,减少进货量的办法增加利润,已知这种商品的单价每涨1元,其销售量就要减少10件,问将售价定为多少元/件时,才能使每天所赚的利润最大?并求出最大利润.21.(8分)已知:关于x 的一元二次方程mx 2﹣(2m ﹣2)x+m=0有实根.(1)求m 的取值范围;(2)若原方程两个实数根为x 1,x 2,是否存在实数m ,使得+=1?请说明理由.22.(8分)一条单车道的抛物线形隧道如图所示.隧道中公路的宽度AB=8m ,隧道的最高点C到公路的距离为6m .(1)建立适当的平面直角坐标系,求抛物线的表达式;(2)现有一辆货车的高度是4.4m ,货车的宽度是2m ,为了保证安全,车顶距离隧道顶部至少0.5m ,通过计算说明这辆货车能否安全通过这条隧道.23.(10分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料.(1)设计一种砌法,使矩形花园的面积为300m2.(2)当BC为何值时,矩形ABCD的面积有最大值?并求出最大值.24.(10分)如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∠PBD的度数为,点D的坐标为(用t表示);(2)当t为何值时,△PBE为等腰三角形?(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.25.(10分)已知直线l:y=﹣2,抛物线C:y=ax2﹣1经过点(2,0)(1)求a的值;(2)如图①,点P是抛物线C上任意一点,过点P作直线l的垂线,垂足为Q.求证:PO=PQ;(3)请你参考(2)中的结论解决下列问题1.如图②,过原点作直线交抛物线C于A,B两点,过此两点作直线l的垂线,垂足分别为M,N,连接ON,OM,求证:OM⊥ON;2.如图③,点D(1,1),使探究在抛物线C上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标,若不存在,请说明理由.参考答案与试题解析一.选择题(每题3分,共30分)1.(3分)16平方根是()A.4B.﹣4C.±4D.±8【分析】依据平方根的定义和性质求解即可.【解答】解:16平方根是±4.故选:C.【点评】本题主要考查的是平方根的定义和性质,掌握平方根的性质是解题的关键.2.(3分)方程2x2﹣6x=9的二次项系数、一次项系数、常数项分别为()A.6,2,9B.2,﹣6,9C.2,﹣6,﹣9D.﹣2,6,9【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.要确定二次项系数、一次项系数和常数项,首先要把方程化成一般形式.【解答】解:∵方程2x2﹣6x=9化成一般形式是2x2﹣6x﹣9=0,∴二次项系数为2,一次项系数为﹣6,常数项为﹣9.故选:C.【点评】注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.3.(3分)抛物线y=(x﹣2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标,本题得以解决.【解答】解:∵抛物线y=(x﹣2)2﹣3,∴该抛物线的顶点坐标是(2,﹣3),故选:A.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.4.(3分)下列一元二次方程有两个相等的实数根的是()A.x2+2x=0B.(x﹣1)2=0C.x2=1D.x2+1=0【分析】逐一求出四个选项中方程的根的判别式△的值,取其为零的选项即可得出结论.【解答】解:A、∵△=22﹣4×1×0=4>0,∴一元二次方程x2+2x=0有两个不相等的实数根;B、原方程可变形为x2﹣2x+1=0,∵△=(﹣2)2﹣4×1×1=0,∴一元二次方程(x﹣1)2=0有两个相等的实数根;C、原方程可变形为x2﹣1=0,∵△=02﹣4×1×(﹣1)=4>0,∴一元二次方程x2=1有两个不相等的实数根;D、∵△=02﹣4×1×1=﹣4<0,∴一元二次方程x2+1=0没有实数根.故选:B.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.5.(3分)如图,是一条抛物线的图象,则其解析式为()A.y=x2﹣2x+3B.y=x2﹣2x﹣3C.y=x2+2x+3D.y=x2+2x+3【分析】先利用抛物线与x轴的交点坐标为(﹣1,0),(3,0),则可设交点式为y=a(x+1)(x﹣3),然后把(0,﹣3)代入求出a的值即可.【解答】解:因为抛物线与x轴的交点坐标为(﹣1,0),(3,0),可设交点式为y=a(x+1)(x﹣3),把(0,﹣3)代入y=a(x+1)(x﹣3),可得:﹣3=a(0+1)(0﹣3),解得:a=1,所以解析式为:y=x2﹣2x﹣3,故选:B.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.6.(3分)直角三角形两条直角边的和为7,面积是6,则斜边长是( )A .B .5C .D .7【分析】设其中一条直角边的长为x ,则另一条直角边的长为(7﹣x ),根据三角形的面积为x建立方程就可以求出两直角边,由勾股定理就可以求出斜边.【解答】解:设其中一条直角边的长为x ,则另一条直角边的长为(7﹣x ),由题意,得x (7﹣x )=6,解得:x 1=3.,x 2=4,由勾股定理,得斜边为:=5.故选:B .【点评】本题考查了三角形的面积公式的运用,勾股定理的运用.列一元二次方程解实际问题的运用,解答时根据面积公式建立方程求出直角边是关键.7.(3分)把160元的电器连续两次降价后的价格为y 元,若平均每次降价的百分率是x ,则y 与x 的函数关系式为( )A .y=320(x ﹣1)B .y=320(1﹣x )C .y=160(1﹣x 2)D .y=160(1﹣x )2 【分析】由原价160元可以得到第一次降价后的价格是160(1﹣x ),第二次降价是在第一次降价后的价格的基础上降价的,为160(1﹣x )(1﹣x ),由此即可得到函数关系式.【解答】解:第一次降价后的价格是160(1﹣x ),第二次降价为160(1﹣x )×(1﹣x )=160(1﹣x )2则y 与x 的函数关系式为y=160(1﹣x )2.故选:D .【点评】此题考查从实际问题中得出二次函数解析式,需注意第二次降价是在第一次降价后的价格的基础上降价的,所以会出现自变量的二次,即关于x 的二次函数.8.(3分)已知函数y=(k ﹣3)x 2+2x+1的图象与x 轴有交点,则k 的取值范围是( )A .k <4B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠3【分析】分为两种情况:①当k ﹣3≠0时,(k ﹣3)x 2+2x+1=0,求出△=b 2﹣4ac=﹣4k+16≥0的解集即可;②当k ﹣3=0时,得到一次函数y=2x+1,与x 轴有交点;即可得到答案.【解答】解:①当k ﹣3≠0时,(k ﹣3)x 2+2x+1=0,△=b 2﹣4ac=22﹣4(k ﹣3)×1=﹣4k+16≥0,k≤4;②当k﹣3=0时,y=2x+1,与x轴有交点.故选:B.【点评】本题主要考查对抛物线与x轴的交点,根的判别式,一次函数的性质等知识点的理解和掌握,能进行分类求出每种情况的k是解此题的关键.9.(3分)三角形两边长分别是8和6,第三边长是一元二次方程x2﹣16x+60=0一个实数根,则该三角形的面积是()A.24B.48C.24或8D.8【分析】先利用因式分解法解方程得到所以x1=6,x2=10,再分类讨论:当第三边长为6时,如图,在△ABC中,AB=AC=6,BC=8,作AD⊥BC,则BD=CD=4,利用勾股定理计算出AD=2,接着计算三角形面积公式;当第三边长为10时,利用勾股定理的逆定理可判断此三角形为直角三角形,然后根据三角形面积公式计算三角形面积.【解答】解:x2﹣16x+60=0(x﹣6)(x﹣10)=0,x﹣6=0或x﹣10=0,所以x1=6,x2=10,当第三边长为6时,如图,在△ABC中,AB=AC=6,BC=8,作AD⊥BC,则BD=CD=4,AD===2,所以该三角形的面积=×8×2=8;当第三边长为10时,由于62+82=102,此三角形为直角三角形,所以该三角形的面积=×8×6=24,即该三角形的面积为24或8.故选:C.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).10.(3分)函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误.【解答】解:A、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2+bx+c的图象应该开口向下,故选项错误;B、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2+bx+c的图象应该开口向下,故选项错误;C、由一次函数y=ax+a的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,对称轴x=﹣>0,故选项正确;D、由一次函数y=ax+a的图象可得:a<0,此时二次函数y=ax2+bx+c的对称轴x=﹣<0,故选项错误.故选C.【点评】应该熟记一次函数y=ax+a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.二.填空题(每小题3分,共18分)11.(3分)已知(﹣1,y1),(2,y2),(﹣3,y3)都在函数y=x2图象上,则y1,y2,y3的大小关系为y1<y2<y3(用“<”连接).【分析】把各点的横坐标代入函数解析式求出函数值,即可得解.【解答】解:x=﹣1时,y 1=2×(﹣1)2=2, x=2时,y 2=2×22=8,x=﹣3时,y 3=2×(﹣3)2=18, 所以,y 1<y 2<y 3. 故答案为:y 1<y 2<y 3.【点评】本题考查了二次函数图象上点的坐标特征,准确计算求出各函数值是解题的关键. 12.(3分)参加一次足球联赛的每两队之间都进行两次比赛,共要比赛90场.设共有x 个队参加比赛,则依题意可列方程为 x (x ﹣1)=90 .【分析】设有x 个队参赛,根据参加一次足球联赛的每两队之间都进行两场场比赛,共要比赛90场,可列出方程. 【解答】解:设有x 个队参赛, x (x ﹣1)=90.故答案为:x (x ﹣1)=90.【点评】本题考查由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.13.(3分)关于x 的一元二次方程x 2﹣5x+k=0有两个不相等的实数根,则k 可取的最大整数为 6 .【分析】根据判别式的意义得到△=(﹣5)2﹣4k >0,解不等式得k <,然后在此范围内找出最大整数即可.【解答】解:根据题意得△=(﹣5)2﹣4k >0,解得k <,所以k 可取的最大整数为6. 故答案为6.【点评】本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.(3分)已知点P (x ,y )在二次函数y=2(x+1)2﹣3的图象上,当﹣2<x ≤1时,y 的取值范围是 ﹣3≤y ≤5 .【分析】根据题目中的函数解析式和题意,可以求得相应的y 的取值范围,本题得以解决. 【解答】解:∵二次函数y=2(x+1)2﹣3,∴该函数对称轴是直线x=﹣1,当x=﹣1时,取得最小值,此时y=﹣3,∵点P(x,y)在二次函数y=2(x+1)2﹣3的图象上,∴当﹣2<x≤1时,y的取值范围是:﹣3≤y≤5,故答案为:﹣3≤y≤5.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.15.(3分)如图,在平面直角坐标系中,正方形ABCD的顶点A,B的坐标分别为(0,2),(1,0),顶点C在函数y=x2+bx﹣1的图象上,将正方形ABCD沿x轴正方形平移后得到正方形A′B′C′D′,点D的对应点D′落在抛物线上,则点D与其对应点D′间的距离为 2 .【分析】作辅助线,构建全等三角形,先根据A和B的坐标求OB和OA的长,证明∴△AOB≌△BGC,BG=OA=2,CG=OB=1,写出C(3,1),同理得:△BCG≌△CDH,得出D的坐标,根据平移的性质:D与D′的纵坐标相同,则y=3,求出D′的坐标,计算其距离即可.【解答】解:如图,过C作GH⊥x轴,交x轴于G,过D作DH⊥GH于H,∵A(0,2),B(1,0),∴OA=2,OB=1,∵四边形ABCD为正方形,∴∠ABC=90°,AB=BC,∴∠ABO+∠CBG=90°,∵∠ABO+∠OAB=90°,∴∠CBG=∠OAB,∵∠AOB=∠BGC=90°,∴△AOB≌△BGC,∴BG=OA=2,CG=OB=1,∴C(3,1),同理得:△BCG≌△CDH,∴CH=BG=2,DH=CG=1,∴D (2,3),∵C 在抛物线的图象上,把C (3,1)代入函数y=x 2+bx ﹣1中得:b=﹣,∴y=x 2﹣x ﹣1, 设D (x ,y ),由平移得:D 与D′的纵坐标相同,则y=3,当y=3时, x 2﹣x ﹣1=3, 解得:x 1=4,x 2=﹣3(舍), ∴DD′=4﹣2=2,则点D 与其对应点D′间的距离为2, 故答案为:2.【点评】本题考查出了二次函数图象与几何变换﹣﹣平移、三角形全等的性质和判定、正方形的性质,作辅助线,构建全等三角形,明确D 与D′的纵坐标相同是关键.16.(3分)如图,二次函数y=ax 2+bx+c 的图象与x 轴的两个交点分别为(﹣1,0),(3,0)对于下列命题:①b ﹣2a=0;②abc <0; ③a ﹣2b+4c <0④8a+c <0,其中正确的有 ③④ .【分析】首先根据二次函数图象开口方向可得a >0,根据图象与y 轴交点可得c <0,再根据二次函数的对称轴x=﹣,结合图象与x 轴的交点可得对称轴为x=1,结合对称轴公式可判断出①的正误;根据对称轴公式结合a 的取值可判定出b <0,根据a 、b 、c 的正负即可判断出②的正误;利用a ﹣b+c=0,求出a ﹣2b+4c <0,再利用当x=4时,y >0,则16a+4b+c>0,由①知,b=﹣2a,得出8a+c>0.【解答】解:根据图象可得:a>0,c<0,对称轴:x=﹣>0,①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,∴﹣=1,∴b+2a=0,故①错误;②∵a>0,∴b<0,∵c<0,∴abc>0,故②错误;③∵a﹣b+c=0,∴c=b﹣a,∴a﹣2b+4c=a﹣2b+4(b﹣a)=2b﹣3a,又由①得b=﹣2a,∴a﹣2b+4c=﹣7a<0,故此选项正确;④根据图示知,当x=4时,y>0,∴16a+4b+c>0,由①知,b=﹣2a,∴8a+c>0;故④正确;故正确为:③④两个.故答案为:③④.【点评】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).三、解答题(共102分) 17.(10分)解方程 (1)x 2﹣4x=0 (2)2x 2+3=7x【分析】(1)利用因式分解法解方程;(2)先把方程化为一般式,然后利用因式分解法解方程. 【解答】解:(1)x (x ﹣4)=0, x=0或x ﹣4=0, 所以x 1=0,x 2=4; (2)2x 2﹣7x+3=0, (2x ﹣1)(x ﹣3)=0, 2x ﹣1=0或x ﹣3=0,所以x 1=,x 2=3.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.(8分)已知x 1=﹣1是方程x 2+mx ﹣5=0的一个根,求m 的值及方程的另一根x 2. 【分析】将x 1=﹣1代入方程可得关于m 的方程,解之求得m 的值,即可还原方程,解之得出另一个根.【解答】解:由题意得:(﹣1)2+(﹣1)×m ﹣5=0, 解得m=﹣4;当m=﹣4时,方程为x 2﹣4x ﹣5=0 解得:x 1=﹣1,x 2=5 所以方程的另一根x 2=5.【点评】本题主要考查一元二次方程的解的定义及解方程的能力,解题的关键是根据方程的解的定义求得m 的值.19.(8分)在平面直角坐标系中,二次函数的图象经过(2,﹣2),(0,﹣2),函数的最小值是﹣4.(1)求二次函数的解析式.(2)当自变量的取值范围为什么时,该二次函数的图象在横轴上方?请直接写出答案. 【分析】(1)先利用二次函数的对称性得到抛物线的对称轴为直线x=1,则抛物线的顶点坐标为(1,﹣4),设顶点式y=a (x ﹣1)2﹣4,然后把(0,﹣2)代入求出a 即可;(2)2(x ﹣1)2﹣4=0得抛物线与x 轴的交点坐标为(1﹣,0),(1+,0),然后写出抛物线在x 轴上方所对应的自变量的范围即可.【解答】解:(1)∵二次函数的图象经过(2,﹣2),(0,﹣2), ∴抛物线的对称轴为直线x=1, ∴抛物线的顶点坐标为(1,﹣4), 设抛物线的解析式为y=a (x ﹣1)2﹣4,把(0,﹣2)代入得a (0﹣1)2﹣4=﹣2,解得a=2, ∴抛物线的解析式为y=2(x ﹣1)2﹣4;(2)当y=0时,2(x ﹣1)2﹣4=0,解得x 1=1﹣,x 2=1+,∴抛物线与x 轴的交点坐标为(1﹣,0),(1+,0),∴当x <1﹣或x >1+时,y >0,即当x <1﹣或x >1+时,该二次函数的图象在横轴上方.【点评】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解一元二次方程的问题.关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.20.(10分)某商店进行促销活动,如果将进价为8元/件的商品按每件10元出售,每天可销售100件,现采用提高售价,减少进货量的办法增加利润,已知这种商品的单价每涨1元,其销售量就要减少10件,问将售价定为多少元/件时,才能使每天所赚的利润最大?并求出最大利润.【分析】确定每件利润、销售量,根据利润=每件利润×销售量,得出销售利润y (元)与销售单价x (元)之间的函数关系,利用配方法确定函数的最值.【解答】解:设销售价每件定为x 元,则每件利润为(x ﹣8)元,销售量为[100﹣10(x ﹣10)],根据利润=每件利润×销售量,可得销售利润y=(x ﹣8)•[100﹣10(x ﹣10)]=﹣10x 2+280x ﹣1600=﹣10(x ﹣14)2+360, ∴当x=14时,y 的最大值为360元,∴应把销售价格定为每件14元,可使每天销售该商品所赚利润最大,最大利润为360元. 【点评】此题考查二次函数的性质及其应用,将实际问题转化为求函数最值问题,从而来解决实际问题,比较简单.21.(8分)已知:关于x 的一元二次方程mx 2﹣(2m ﹣2)x+m=0有实根. (1)求m 的取值范围;(2)若原方程两个实数根为x 1,x 2,是否存在实数m ,使得+=1?请说明理由.【分析】(1)根据“关于x 的一元二次方程mx 2﹣(2m ﹣2)x+m=0有实根”,判别式△≥0,得到关于m 的一元一次方程,解之即可,(2)根据“+=1”,通过整理变形,根据根与系数的关系,得到关于m 的一元二次方程,解之,结合(1)的结果,即可得到答案.【解答】解:(1)∵方程mx 2﹣(2m ﹣2)x+m=0是一元二次方程, ∴m ≠0,△=(2m ﹣2)2﹣4m 2 =4m 2﹣8m+4﹣4m 2 =4﹣8m ≥0,解得:m,即m 的取值范围为:m 且m ≠0,(2)+==﹣2=1,x 1+x 2=,x 1x 2=1,把x 1+x 2=,x 1x 2=1代入﹣2=1得:=3,解得:m=4±2,∵m 的取值范围为:m 且m ≠0,∴m=4±2不合题意,即不存在实数m ,使得+=1.【点评】本题考查了根与系数的关系,一元二次方程的定义和根的判别式,解题的关键:(1)根据判别式△≥0,列出关于m 的一元一次方程,(2)正确掌握根与系数的关系,列出一元二次方程.22.(8分)一条单车道的抛物线形隧道如图所示.隧道中公路的宽度AB=8m,隧道的最高点C 到公路的距离为6m.(1)建立适当的平面直角坐标系,求抛物线的表达式;(2)现有一辆货车的高度是4.4m,货车的宽度是2m,为了保证安全,车顶距离隧道顶部至少0.5m,通过计算说明这辆货车能否安全通过这条隧道.【分析】(1)以AB所在直线为x轴,以抛物线的对称轴为y轴建立平面直角坐标系xOy,如图所示,利用待定系数法即可解决问题.(1)求出x=1时的y的值,与4.4+0.5比较即可解决问题.【解答】解:(1)本题答案不唯一,如:以AB所在直线为x轴,以抛物线的对称轴为y轴建立平面直角坐标系xOy,如图所示.∴A(﹣4,0),B(4,0),C(0,6).设这条抛物线的表达式为y=a(x﹣4)(x+4).∵抛物线经过点C,∴﹣16a=6.∴a=﹣∴抛物线的表达式为y=﹣x2+6,(﹣4≤x≤4).(2)当x=1时,y=,∵4.4+0.5=4.9<,∴这辆货车能安全通过这条隧道.【点评】本题考查二次函数的应用、平面直角坐标系等知识,解题的关键是学会构建平面直角坐标系,掌握待定系数法解决问题,属于中考常考题型.23.(10分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25m ),现在已备足可以砌50m 长的墙的材料. (1)设计一种砌法,使矩形花园的面积为300m 2.(2)当BC 为何值时,矩形ABCD 的面积有最大值?并求出最大值.【分析】(1)根据题意可以得到相应的一元二次方程,从而可以解答本题;(2)根据题意可以得到面积与矩形一边长的关系式,然后化为顶点式,注意求出的边长要符合题意.【解答】解:(1)设AB 为xm ,则BC 为(50﹣2x )m , x (50﹣2x )=300, 解得,x 1=10,x 2=15,当x 1=10时50﹣2x=30>25(不合题意,舍去), 当x 2=15时50﹣2x=20<25(符合题意),答:当砌墙宽为15米,长为20米时,花园面积为300平方米; (2)设AB 为xm ,矩形花园的面积为ym 2,则y=x (50﹣2x )=﹣2(x ﹣)2+,∴x=时,此时y 取得最大值,50﹣2x=25符合题意,此时y=,即当砌墙BC 长为25米时,矩形花园的面积最大,最大值为.【点评】本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.24.(10分)如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).(1)∠PBD的度数为45°,点D的坐标为(t,t)(用t表示);(2)当t为何值时,△PBE为等腰三角形?(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.【分析】(1)易证△BAP≌△PQD,从而得到DQ=AP=t,从而可以求出∠PBD的度数和点D的坐标.(2)由于∠EBP=45°,故图1是以正方形为背景的一个基本图形,容易得到EP=AP+CE.由于△PBE底边不定,故分三种情况讨论,借助于三角形全等及勾股定理进行求解,然后结合条件进行取舍,最终确定符合要求的t值.(3)由(2)已证的结论EP=AP+CE很容易得到△POE周长等于AO+CO=8,从而解决问题.【解答】解:(1)如图1,由题可得:AP=OQ=1×t=t(秒)∴AO=PQ.∵四边形OABC是正方形,∴AO=AB=BC=OC,∠BAO=∠AOC=∠OCB=∠ABC=90°.∵DP⊥BP,∴∠BPD=90°.∴∠BPA=90°﹣∠DPQ=∠PDQ.∵AO=PQ,AO=AB,∴AB=PQ.... 在△BAP和△PQD中,∴△BAP≌△PQD(AAS).∴AP=QD,BP=PD.∵∠BPD=90°,BP=PD,∴∠PBD=∠PDB=45°.∵AP=t,∴DQ=t.∴点D坐标为(t,t).故答案为:45°,(t,t).(2)①若PB=PE,则t=0,符合题意②若EB=EP,则∠PBE=∠BPE=45°.∴∠BEP=90°.∴∠PEO=90°﹣∠BEC=∠EBC.在△POE和△ECB中,∴△POE≌△ECB(AAS).∴OE=CB=OC.∴点E与点C重合(EC=0).∴点P与点O重合(PO=0).∵点B(﹣4,4),∴AO=CO=4.此时t=AP=AO=4.③若BP=BE,在Rt△BAP和Rt△BCE中,∴Rt△BAP≌Rt△BCE(HL).∴AP=CE.∵AP=t,∴CE=t.∴PO=EO=4﹣t.∵∠POE=90°,∴PE==(4﹣t).延长OA到点F,使得AF=CE,连接BF,如图2所示.在△FAB和△ECB中,∴△FAB≌△ECB.∴FB=EB,∠FBA=∠EBC.∵∠EBP=45°,∠ABC=90°,∴∠ABP+∠EBC=45°.∴∠FBP=∠FBA+∠ABP=∠EBC+∠ABP=45°.∴∠FBP=∠EBP.在△FBP和△EBP中,∴△FBP≌△EBP(SAS).∴FP=EP.∴EP=FP=FA+AP=CE+AP.∴EP=t+t=2t.∴(4﹣t)=2t.解得:t=4﹣4∴当t为0秒或4秒或(4﹣4)秒时,△PBE为等腰三角形.(3)∵EP=CE+AP,∴OP+PE+OE=OP+AP+CE+OE=AO+CO=4+4=8.∴△POE周长是定值,该定值为8.【点评】本题考查了正方形的性质、等腰三角形的性质、全等三角形的性质与判定、勾股定理等知识,考查了分类讨论的思想,考查了利用基本活动经验解决问题的能力,综合性非常强.熟悉正方形与一个度数为45°的角组成的基本图形(其中角的顶点与正方形的一个顶点重合,角的两边与正方形的两边分别相交)是解决本题的关键.25.(10分)已知直线l:y=﹣2,抛物线C:y=ax2﹣1经过点(2,0)(1)求a的值;(2)如图①,点P是抛物线C上任意一点,过点P作直线l的垂线,垂足为Q.求证:PO=PQ;(3)请你参考(2)中的结论解决下列问题1.如图②,过原点作直线交抛物线C于A,B两点,过此两点作直线l的垂线,垂足分别为M,N,连接ON,OM,求证:OM⊥ON;2.如图③,点D(1,1),使探究在抛物线C上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标,若不存在,请说明理由.【分析】(1)利用待定系数法可求a的值;(2)设点P(a, a2﹣1),根据两点距离公式可求PQ,PO的长度,即可证PQ=PO;(3)1.由(2)可得OB=BN,AM=AO,即可求∠BON=∠BNO,∠AOM=∠AMO,根据三角形内角和定理可求OM⊥ON;2.过点F作EF⊥直线l,由(2)得OF=EF,当点D,点F,点E三点共线时,OF+DF的值最小,此时DE⊥直线l,即可求FD+FO的最小值.【解答】解:(1)∵抛物线C:y=ax2﹣1经过点(2,0)∴0=4a﹣1∴a=(2)∵a=∴抛物线解析式:y=x2﹣1设点P(a, a2﹣1)∴PO==a2+1PQ=a2﹣1﹣(﹣2)=a2+1∴PO=PQ(3)1.由(2)可得OA=AM,OB=BN∴∠BON=∠BNO,∠AOM=∠AMO∵AM⊥MN,BN⊥MN∴AM∥BN∴∠ABN+∠BAM=180°∵∠ABN+∠BON+∠BNO=180°,∠AOM+∠AMO+∠BAM=180°∴∠ABN+∠BON+∠BNO+∠AOM+∠AMO+∠BAM=360°∴∠BON+∠AOM=90°∴∠MON=90°∴OM⊥ON2.如图:过点F作EF⊥直线l,由(2)可得OF=EF,∵OF+DF=EF+DF∴当点D,点F,点E三点共线时,OF+DF的值最小.即此时DE⊥直线l∴OF+DF的最小值为DE=1+2=3.【点评】本题考查了二次函数综合题,待定系数法求解析式,两点距离公式,三角形内角和定理,最短路径问题,利用数形思想解决问题是本题的关键.。
广州市【九年级数学试题+答题卡+答案】 2019~2020学年度第一学期期末检测试卷0

B.6
C.8
D.12
二.填空题(本大题共 6 个小题,每小题 4 分,共 24 分)
11. 已知关于 x 的方程 x2+x+2a﹣1=0 的一个根是 0,则 a=
.
12. 已知二次函数 y=(x-2)2-3,当 x
时,y 随 x 的增大而减小.
13. 如图所示,△ABC 中,∠BAC=33°,将△ABC 绕点 A 按顺时针方向旋转 50°,对应得
到△AB′C′,则∠B′AC 的度数为
.
14.如图,在平面直角坐标系中,菱形 OABC 的面积为 12,点 B 在 y 轴上,点 C 在反比例
函数 y k 的图象上,则 k 的值为
.
x
第 13 题
第 14 题
15.如图,四边形 ABCD 内接于⊙O,AB 是直径,过 C 点的切线与 AB 的延长线交于 P 点,
为事件 A.请完成下列表格:
事件 A
必然事件
随机事件
m 的值
⑵ 先从袋子中取出 2 个红球,再随机摸出 2 个球,求摸出 2 个球是黑球的概率.
21. 如图 1,四边形 ADEF 是正方形,点 B、C 分别在边 AD、AF 上,且 AB=AC,此时 BD=CF,BD⊥CF 成立. ⑴ 当△ABC 绕点 A 逆时针旋转α(0°<α<90°)时,如图 2,BD=CF 成立吗? 若成立,请证明;若不成立,请说明理由.
第 3页,共 4 页
三.解答题(三)(本大题共 3 个小题,每小题 9 分,共 27 分)
23.
如图,函数 y1=﹣x+4 的图象与函数 y2
k (x>0)的图象交于 A(m,1),B(1,n) x
两点.
⑴ 求反比例函数解析式; ⑵ 利用图象写出当 x≥1 时,y1 和 y2 的大小关系.
2024年广东省广州大学附属中学初三一模数学试题含答案解析

2024年广东省广州大学附属中学中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在3,7-,0,19四个数中,最大的数是()A.3B.7-C.0D.1 92.由六块相同的小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.【答案】D【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】观察图形可知,该几何体的俯视图如下:.故选:D .【点睛】本题考查了简单组合体的三视图的知识,俯视图是从物体的上面看得到的视图.3.某公司5名员工在一次义务募捐中的捐款额为(单位:元):30,50,50,60,60.若捐款最少的员工又多捐了20元,则分析这5名员工捐款额的数据时,不受影响的统计量是( )A .平均数B .中位数C .众数D .方差【答案】B【分析】根据捐款最少的员工又多捐了20元,则从小到大的顺序不变,即中位数不变,即可解答.【详解】解:根据题意,可得302050+=,即捐款额为:50,50,50,60,60,此时中位数不变,平均数,众数,方差都会受到影响,故选:B .【点睛】本题考查了中位数,众数,方差,平均数,熟知以上概念是解题的关键.4.下列计算正确的是( )A .248a a a ⋅=B .3332a a a-=C .()3236ab a b =D .()222a b a b +=+【答案】C【分析】分别根据同底数幂的乘法,合并同类项,积的乘方,完全平方公式逐一分析判断即可.【详解】解:246a a a ⋅=,故A 不符合题意,33332a a a -=,故B 不符合题意;()3236ab a b =,故C 符合题意;()2222a b a ab b +=++,故D 不符合题意;故选C【点睛】本题考查的是同底数幂的乘法,合并同类项,积的乘方运算,完全平方公式的应用,熟记运算法则是解本题的关键.5.不等式组311442x x x x -≥+⎧⎨+>-⎩的解集是( )A .12x ≤<B .1x ≤C .2x >D .12x <≤【答案】A【分析】先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集.【详解】解:311442x x x x -≥+⎧⎨+>-⎩①② 解不等式①得:1x ≥,解不等式②得:2x <,∴不等式组的解集为12x ≤<,故选A .【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.6.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若1155,230∠=︒∠=︒,则3∠的度数为( )A .45︒B .50︒C .55︒D .60︒【答案】C【分析】利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵AB OF ∥,∴1180BFO ∠+∠=︒,∴18015525BFO ∠=︒-︒=︒,∵230POF ∠=∠=︒,∴3302555POF BFO ∠=∠+∠=︒+︒=︒;故选:C .【点睛】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.7.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是( )A .16B .18C .14D .12【答案】A【分析】根据题意,可以画出相应的树状图,从而可以得到小乐抽到的两张邮票恰好是“立春”和“立夏”的概率.【详解】解:设立春用A 表示,立夏用B 表示,秋分用C 表示,大寒用D 表示,树状图如下,由上可得,一共有12种可能性,其中小乐抽到的两张邮票恰好是“立春”和“立夏”的可能性28.关于x 的函数y kx k =-和(0)ky k x=≠在同一坐标系中的图象大致是( )A .B .C .D .故选C .9.《九章算术》是我国古代重要的数学专著之一,其中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天;如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求两匹马的速度.设慢马的速度为x 里/天,则可列方程为( )A .900900132x x+=+B .900900132x x-=-C .900900132x x +=-D .900900132x x-=+10.已知二次函数()()212y x ax b x x x x =++=--(12,,,a b x x 为常数),若1213x x <<<,记=+t a b ,则( )A .30t -<<B .10t -<<C .13t -<<D .03t <<【答案】C【分析】由题意可得()1212a x x b x x =-+=,,从而得到()()12111a b x x +=---,再根据1213x x <<<可得()()1211113x x -<---<,由此即可得到答案.【详解】解:∵二次函数()()212y x ax b x x x x =++=--,1213x x <<<,∴1x ,2x 是方程20x ax b ++=的两个根,∴()1212a x x b x x =-+=,,∴()1212a b x x x x +=-++,∴()()12111a b x x +=---,∵1213x x <<<,∴120112x x <-<-<,∴()()120114x x <--<,∴()()1211113x x -<---<,∴13a b -<+<,∴13t -<<,故选:C .【点睛】本题主要考查了二次函数与一元二次方程之间的关系,正确得到()()12111a b x x +=---是解题的关键.二、填空题11.某种颗粒的半径约为0.000025米,用科学计数法表示这个数为 米.【答案】-52.510⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】-50.000025 2.510=⨯故答案为:-52.510⨯.12.分解因式:228x -= .【答案】()()222x x +-【分析】本题考查提公因式法与公式法分解因式,掌握因式分解的方法是解决问题的关键.【详解】解:()()()222824222x x x x -=-=+-,故答案为:()()222x x +-.13.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y (单位:m )与它距离喷头的水平距离x (单位:m )之间满足函数关系式2241y x x =-++,喷出水珠的最大高度是m .【答案】3【分析】把二次函数化为顶点式,进而即可求解.【详解】解:∵222412(1)3y x x x =-++=--+,∴当x =1时,3y =最大值,故答案是:3.【点睛】本题主要考查二次函数的图像和性质,掌握二次函数的顶点式,是解题的关键.14.在Rt ABC △中,90C ∠=︒,30B ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点E ,F ;再分别以点E ,F 为圈心,大于12EF 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .则CD 与BD 的数量关系是 .的直径,点C在圆上.将 AC沿AC翻折与AB交于点D.若15.如图,AB是O=的度数为40︒,则 AD=cm.3cm,OA BC故答案为53π.【点睛】本题主要考查了圆周角定理、弧长公式等知识点,求得键.16.如图,DE 平分等边ABC 的面积,折叠BDE △得到,△FDE AC 分别与,DF EF 相交于,G H 两点.若,==DG m EH n ,用含,m n 的式子表示GH 的长是.三、解答题17.解方程:224x x -=18.如图,//AB CD ,B D ∠=∠,直线EF 与AD ,BC 的延长线分别交于点E ,F .求证:DEF F ∠=∠.【答案】见解析【分析】根据已知条件//AB CD ,B D ∠=∠,得到DCF D ∠=∠,从而得到//AD BC ,即可证明DEF F ∠=∠.【详解】证明:∵//AB CD ,∴DCF B ∠=∠.∵B D ∠=∠,∴DCF D ∠=∠.∴//AD BC .∴DEF F ∠=∠.【点睛】本题考查平行线的性质和判定.平行线的性质:两直线平行,内错角相等.平行线的判定:同位角相等,两直线平行.19.先化简,再求值:2211121x x x x x -⎛⎫+÷ ⎪+++,其中x 满足210x x --=20.为了解某地区九年级学生的视力情况,从该地区九年级学生中抽查了部分学生,根据调查结果,绘制了如下两幅不完整的统计图.根据以上信息,解决下列问题:(1)此次调查的样本容量为;(2)扇形统计图中A对应圆心角的度数为°;(3)请补全条形统计图;(4)若该地区九年级学生共有25000人,请估计其中视力正常的人数.【答案】(1)450(2)36︒(3)见解析(4)2500人【分析】(1)根据C的人数是117人,所占的比例是26%,据此即可求得此次调查的样本容量;(2)用A类学生数除以450,再乘以360︒即可得解;(3)利用总人数减去A、C、D三类的人数即可求得B的人数,从而补全直方图;(4)利用总人数25000乘以对应的百分比即可求得.【详解】(1)解:11726%450÷=,答:此次调查的样本容量为是450,故答案为450.(4)解:45250002500450⨯=(人)答:九年级学生共有25000人,请估计其中视力正常的人数共有【点睛】本题考查的是条形统计图和扇形统计图的综合运用,中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据计图直接反映部分占总体的百分比大小.21.如图,在平面直角坐标系中,一次函数152y x =+和2y x =-的图象相于点A ,反比例函数k y x=的图象经过点A .(1)求反比例函数的表达式;(2)设一次函数152y x =+的图象与反比例函数y =k x 的图象的另一个交点为B ,连接OB ,求ABO 的面积;(3)根据图象直接写出关于x 的不等式152k x x +>的解集.联立1528y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得:x y =⎧⎨=⎩∴()8,1B -.在15y x =+中,令0y =,得22.2022年4月16日,神舟十三号载人飞船返回舱成功着陆,任务取得圆满成功.航模店看准商机,同样花费320元,购进“天宫”模型的数量比“神舟”模型多4个且每个“天宫”模型成本比每个“神舟”模型成本少20%.(1)“神舟”和“天宫”模型的成本各多少元?(2)该航模店计划购买两种模型共100个,且每个“神舟”模型的售价为35元,“天宫”模型的售价为25元.设购买“神舟”模型a个,售卖这两种模型可获得的利润为w元,①求w与a的函数关系式(不要求写出a的取值范围);②若购进“神舟”模型的数量不超过“天宫”模型数量的一半,则购进“神舟”模型多少个时,销售这批模型可以获得最大利润?最大利润是多少?23.如图,已知APB ∠,点M 是PB 上的一个定点.(1)尺规作图:请在图1中作O ,使得O 与射线PB 相切于点M ,同时与PA 相切,切点记为N ;(2)在(1)的条件下,若603APB PM ∠=︒=,,则所作的O 的劣弧 MN与PM PN 、所围成图形的面积是_________.(2)解:∵PM 和PN 为O 的切线,∴OM PB ⊥,ON PN ⊥,MPO ∠=∴90OMP ONP ∠=∠=︒,∴180120MON APB ∠=︒-∠=︒,在Rt POM 中,MPO 30∠=︒,扇形的面积计算.24.定义:平面直角坐标系xOy 中,点(),P a b ,点(),Q c d ,若c ka =,d kb =-,其中k 为常数,且0k ≠,则称点Q 是点P 的“k 级变换点”.例如,点()4,6-是点()2,3的“2-级变换点”.(1)函数4y x=-的图象上是否存在点()1,2的“k 级变换点”?若存在,求出k 的值;若不存在,说明理由;(2)点1,22A t t ⎛⎫- ⎪⎝⎭与其“k 级变换点” B 分别在直线1l ,2l 上,在1l ,2l 上分别取点()21,m y ,()22,m y .若2k ≤-,求证:122y y -≥;(3)关于x 的二次函数()2450y nx nx n x =--≥的图象上恰有两个点,这两个点的“1级变换点”都在直线5y x =-+上,求n 的取值范围.25.如图1,在ABC 中,AB AC =,点M ,N 分别为边AB ,BC 的中点,连接MN .初步尝试:(1)MN 与AC 的数量关系是 ,MN 与AC 的位置关系是 .特例研讨:(2)如图2,若90BAC ∠=︒, BC =BMN 绕点B 顺时针旋转α(α为锐角),得到BEF △,当点A ,E ,F 在同一直线上时,AE 与BC 相交于点D ,连接CF .①求BCF ∠的度数;②求CD 的长.深入探究:(3)若90BAC ∠<︒,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE ,CF .当旋转角α满足0360α︒<<︒,点C ,E ,F 在同一直线上时,利用所提供的备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.∵MN 是BAC 的中位线,∴MN AC ∥,∴90BMN BAC ∠=∠=︒,∵将BMN 绕点B 顺时针旋转∴BE BM BF BN ==,;BEF ∠∵点A ,E ,F 在同一直线上,∵90AB AC BAC =∠=︒, ,∴242AB BC ==,ACB ∠=∵ADN BDE ANB ∠=∠∠=∠,∴ADN BDE ∽ ,∴2222DN AN DE BE ===,∵AB AC =,∴A ABC CB =∠∠,设∵MN 是ABC 的中位线,∴MN AC ∥,∴MNB MBN θ∠=∠=,∵将BMN 绕点B 顺时针旋转α,得到BEF △,∴EBF MBN MBE NBF α∠=∠=≌, ,∴EBF EFB θ∠=∠=,∴1802BEF θ∠=︒-,∵点C ,E ,F 在同一直线上,∴2BEC θ∠=,∴180BEC BAC ∠+∠=︒,∴A ,B ,E ,C 在同一个圆上,∴EAC EBC αθ∠=∠=-,∴1802180BAE BAC EAC θαθαθ∠=∠-∠=︒---=︒--()(),∵ABF αθ∠=+,∴180BAE ABF ∠∠=+︒,如图所示,当F 在EC 上时,∵BEF BAC BC BC ∠=∠=,,∴A ,B ,E ,C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=︒-,将BMN 绕点B 顺时针旋转α,得到BEF △,∴MBN EBF ∠=∠,∴NBF EBM ∠=∠.设NBF β∠=,则EBM β∠=,则360αβ+=︒,∴ABF θβ∠=-,∵BFE EBF EFB FBC FCB θ∠=∠=∠=∠+∠,,∴ECB FCB EFB FBC θβ∠=∠=∠-∠=-,∵ EBEB =,∴EAB ECB θβ∠=∠=-,∴BAE ABF ∠=∠,综上所述,BAE ABF ∠=∠或180BAE ABF ∠∠=+︒.【点睛】本题属于几何变换综合题,考查了圆周角定理,对角互补四边形四顶点共圆,相似三角形的性质与判定,旋转的性质,中位线的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练综合运用以上知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广大附中2019—2020学年第一学期10月大联盟考试问卷
初三数学
(时间:120分钟 满分:150分)
命题人:杨舟 审卷人:陈嘉伦
一、选择题(本大题共10小题,每小题3分,共30分,每题给出的四个项中,只有一项是符合题目要求的)
1.下列方程是一元二次方程的是( )
A .20ax bx c ++=
B .20y x -=
C .212x x -=
D .(1)(3)0x x -+=
2.矩形、菱形、正方形都具有的性质是( )
A .每一条对角线平分一组对角
B .对角线相等
C 、对角线互相平分
D 对角线互相垂直 3.已知关于x 的一元二次方程22(3)590m x x m -++-=有一个解是0,则m 的值为( )
A .3-
B .3
C .3±
D .不确定 4.一元二次方程2104
x x +-=的根的情况是( ) A .有两个不等的实数根 B .有两个相等的实数根 C .无实数根
D .无法确定 5.将二次函数2y x =的图象先向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A .2(1)2y x =+-
B .2(1)2y x =++
C .2(1)2y x =--
D .2(1)2y x =-+ 6.已知二次函数22y x mx =-,以下各点不可能成为该二次函数顶点的是( )
A .()2,4--
B .()2,4-
C .()1,1--
D .()1,1- 7.一次函数y ax b =+与二次函数2y ax bx =+在同一坐标系中的图象大致为( )
A .
B .
C .
D .
8.如图Rt ABC ∆中,90ABC ∠=︒,6AB cm =,8BC cm =,动点P 从点A 出发沿AB 边以1/cm 秒的速度向点B 匀速移动,同时,点Q 从点B 出发沿BC 边以2/cm 秒的速度向点C 匀速移动,当P 、Q 两点
中有一个点到达终点时另一个点也停止运动.运动( )秒后,PBQ ∆面积为2
5cm .
A .0.5
B .1
C .5
D .1或5
9.如图,在正方形ABCD 的外侧,作等边ADE ∆,AC 、BE 相交于点F ,则BFC ∠为( )
A .45︒
B .55︒
C .60︒
D .75︒
10.如图1,在ABC ∆中,AB BC =,AC m =,D ,E 分别是AB ,BC 边的中点,点P 为AC 边上的一个动点,连接PD ,PB ,PE .设AP x =,图1中某条线段长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是( )
图1 图2
A .P
B B .P
C C .P
D D .PE
二、填空题(本大题共6小题,每小题3分,共18分)
11.把二次函数212y x x =-化为形如2
()y x h k =-+的形式:________________.
12.方程2440x -=的解是________________.
13.若a 为方程250x x +-=的一个根,则21a a ++的值为________________.
14.一个三角形的两边长为3和8,第三边的长是方程(9)13(9)0x x x ---=的根,则这个三角形的周长是_______________.
15.如图,B 、E 、F 、D 四点在同一条直线上,菱形ABCD 的面积为2
120cm ,正方形AECF 的面积为250cm ,则菱形的边长为_____________cm .
16.抛物线2
23y x x =--与交y 轴负半轴于C 点,直线2y kx =+交抛物线于E 、F 两点(E 点在F 点左边),使CEF ∆被y 轴分成的两部分面积差为5,则k 的值为____________.
三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)
17.(1)计算:101( 3.14)|12π-⎛⎫--- ⎪⎝⎭
(2)解方程:2
310x x -+=
18.已知抛物线223y x x =--
(1)该抛物线与x 轴的交点坐标是____________,顶点坐标是___________.
(2)选取适当的数据填入下表,在坐标系中利用五点画出此物线的图象:
(3)结合函数图象,直接回答下列问题:
①若抛物线上两点()11,A x y ,()22,B x y 的坐标满足121x x <<,比较1y ,2y 的大小:____________. ②当0y <时,自变量x 的取值范围是______________.
19.如图,用一根20m 长的绳子围成一个面积为2
24m 的矩形ABCD ,通过方程计算该矩形的长AB .
20.如图所示,ABC ∆中,D 是BC 边上一点:E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF BD =,连接BF .
(1)求证:D 是BC 的中点;
(2)若AB AC =,试判断四边形AFBD 的形状,并证明你的结论.
21.已知关于x 的一元二次方程22
(21)20x m x m +++-=.
(1)若该方程有两个实数根,求m 的最小整数值;
(2)若方程的两个实数根分别为1x ,2x ,且()221221x x m -+=,求m 的值. 22.某水果商场经销一种高档水果,原售价每千克50元,连续两次降价后每千克售价32元,每次下降的百分率相同.
(1)求每次下降的百分率;
(2)已知这种水果每千克盈利10元,每天可售出500千克.经市场调查发现,若每千克涨价1元,日销售量将减少20千克,在进货价不变的情况下,商场决定采取适当的涨价措施,但规定每千克涨价不能超过8元,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?
23.如图,抛物线2
3y ax bx =++与x 轴交于()1,0A -和()3,0B 两点,与y 轴交于点C ,点D 是该抛物线的顶点,分别连接AC 、CD 、AD .
(1)求抛物线的函数解析式以及顶点D 的坐标;
(2)在抛物线上取一点P (不与点C 重合),并分别连接PA 、PD ,当PAD ∆的面积与ACD ∆的面积相等时,求点P 的坐标.
24.在菱形 ABCD 中,60ABC ∠=︒,P 是射线BD 上一动点,
以AP 为边向右侧作等边APE ∆连接CE .
图1 图2
(1)如图1,当点P 在菱形ABCD 内时,则BP 与CE 的数量关系是_______________.CE 与AD 的位置关系是_____________.
(2)如图2,当点P 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明:若不成立,请说明理由;
(3)如图2,连接BE ,若AB =BE =AP 的长.
25.在平面直角坐标系中,抛物线2
23y x x =--+与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .
图①图②
(1)请直接写出点A,C,D的坐标;
∆的周长最小,求点E的坐标;
(2)如图①,在x轴上找一点E,使得CDE
∆为等腰直角三角形?若存(3)如图②,F为直线AC上的动点,在抛物线上是否存在点P,使得AFP
在,求出点P的坐标,若不存在,请说明理由.。