微元法在电磁感应问题中的应用

合集下载

微元法在电磁感应中的应用

微元法在电磁感应中的应用

磁场区时的速度为
v 1
,
∑ ∑ ∑ Δv=
v1
v 2
,
vΔt = d1 , Δt = t
所以
v1 -
v2 = gt sin θ-
B2 l 2 2 mR
d1

联立④⑤⑦式, 得
v1 =
4 mg Rd B2 l2d1
2
si
n
θ-
B2 l 2 d 1 8mR
点 评 本题 第⑶问 就必 须用设 速度、位 移、时间
微元的办法,结合牛顿第二定律、电磁感应规律求解.
二、电量、速度、时间微元在电磁感应现象中的应用
例 3 如 图 3 所示 ,长为 L 、电阻 r =0.3Ω、质量 m =0.1kg的 金属 棒 CD 垂直 跨过搁 在位 于水平 面上 的 两条光 滑金属导 轨上,两 导轨间距 也是 L ,棒与导 轨 接触 良好,导 轨电 阻不计,左 端接有 R =0.5Ω的电 阻,垂直 导轨平 面的匀 强磁场 向下穿 过平 面, 金属棒
行金属导轨 与水平面的夹角为 θ,导轨光滑且 电阻忽
略不计 .场强 为 B 的条 形匀强磁 场方向 与导轨 平面
垂直,磁场区域的宽 度为 d1 ,间距 为 d2 .两根 质量均
为 m 、有效电 阻均为 R 的导体棒 a 和 b 放在导 轨上,
并与导轨垂直.(设重力加速度为 g )
磁场区域 1 B
棒b
一、速度、位移、时间微元在电磁感应现象中的应用 例 1 如图 1 所示,在 光滑 的水平 面上 有一竖 直
向下的匀强磁 场分布在宽度为 a 的区域 内,现 有一个 边长为 L( a > L)的正方 形闭合线框以初速 度 v1 垂直 磁场边界滑过磁场后速度变为 v2 ,求线框完全进入磁 场时的速度.

微元法在电磁感应中的应用

微元法在电磁感应中的应用

注:
解:将整个导体棒分割成n个小线元,小线元端点到轴线的距离分别为r-r(=0),r , r ,……,r ,r ,……,r ,r (= a),第i个线元的长度为Δ r =r ,当Δ r
0 1
很小时,可以认为该线元上各点的速度都为vi=ω ri,各点的磁感应强度都为 Bi=Kri, 该线元因切割磁感线而产生的感应电动势为 ΔE Bvi Δri Kri ri Δri K ri2 Δri ① i 整个棒上的电动势为
2
代入②式,得
n 1 1 1 E K (ri3 ri3 1 ) K[(r13 r03 ) (r23 r13 ) (rn3 rn31 )] Ka 3 3 3 3 i 1


由全电路欧姆定律,导体棒通过的电流为
E Ka 3 I R 3R
2
式中已略去高阶小量(Δri)2。该细圆环带上、下表面所带电荷量之和为
Δqi 2σΔS i 2σ 0 ri2 2π ri Δri 4π 0 Δri ri
设时刻t,细圆环转动的角速度为 , 0 t 单位时间内,通过它的“横截面”的电荷量,即为电流
ΔI i Δqi

2 2 2k 0 (a 2 a1 ) πa 0 2k 0 (a 2 a1 ) πa 0 E t a1 a 2 t a1 a 2

由全电路欧姆定律可知,导线环内感应电流的大小为
2 E 2k 0 (a 2 a1 ) πa 0 I R a1 a 2 R
二、微元法解决问题的一般思路
(1)将所研究的对象进行无限分割,或假设研究对象发生了微小的 变化,如伸长了一小段长度Δl、质量减少了Δm、发生了一小段位 移Δx、经历了一小段时间Δt等等。 (2)从该微元入手,以某个微元为研究对象或微小变化为研究过程, 找出所选取的微元或微小变化所遵循的物理规律,列出对应的物理 方程。

微元法在电磁学中的应用

微元法在电磁学中的应用
微元法在电磁学中的应用
指导老师:刘淑静 答 辩 人:范雯菲 专 业: 师范物理
本文摘要
微元法是电磁学中的重要研究方法之一,本文用微元 法对电磁学中一些典型问题的电场强度、磁感应强度、 安培力和感应电动势进行了分析与计算,说明了运用 微元法解决电磁学实际问题的关键和一般规则。
目 录
绪论 微元法的定义及应用理论基础 微元法在电磁学中的应用 • 微元法求电场强度 • 微元法求磁感应强度 • 微元法求安培力 • 微元法求感应电动势 结论 参考文献 致谢
感应电动势分为感生电动势和动生电动势
动生电动势: ( v B ) d l
(L)
感生电动势:
Lຫໍສະໝຸດ E感 dl
B t
dS
S
如图9,弯成三角的金属架COD, 导体棒 图 8.三角金属架的感应电 MN垂直OD以恒定速度v在金属架上向右滑动, 且t=0时x=0,已知磁场强度的方向垂直纸面 向外,求下列情况中金属架内的 (1)磁场B分布均匀,且磁场不随时间变化。 (2)非均匀时变磁场,磁感应强度大小 B kx cos t 当B均匀分布时: i 当B变化时:

3.微元法求安培力
现以一实例进行分析:半圆形载 流导线受匀强磁场的作用 如图7,若以θ为变量,载流导线所受 安培力的大小是与θ的变化区间[0,п] 有关的量;由力的叠加原理可知 F 在区 间上具有可加性;载流导线可以看做电 流元的集合。在载流导线上任取一个电 流元,则,此中电流元所受到的磁场对 其作用的大小为 也可写成
致 谢
经过小半年的努力,我的毕业论文顺利完成了。在这 里,我向所有指导过我的老师和帮助过我的同学,对他们 表示深深的谢意。 感谢我的指导老师——刘淑静老师。她严肃的科 学态度,严谨的治学精神,精益求精的工作作风,深深地 感染和激励着我。在做毕业论文的整个过程中,刘老师都 始终给予我细心的指导和不懈的支持。 感谢大学期间授我业、解我惑的全体老师。没有 他们的谆谆教导,我就不可能具备扎实的专业知识。感谢 和我一起做毕业论文的同学们,他们在本次论文中给了我 很多支持和帮助,正因为你们的关怀和鼓励,此次毕业论 文才会顺利完成!

微元法论文电磁感应论文:微元法在电磁感应中的应用题型分析

微元法论文电磁感应论文:微元法在电磁感应中的应用题型分析

微元法论文电磁感应论文:微元法在电磁感应中的应用题型分析摘要:本文针对目前江苏高考中电磁感应中微元法的应用进行了深入浅出的分析。

首先对微元法的定义和步骤作简要的分析。

然后把电磁感应中出现的题目作了简要的分类:(1)导体棒所受的合力为单一安培阻力。

(2)安培阻力与物体速度成正比,导体在受到安培力的作用下和一个恒定外力的作用下做变加速运动。

(3)导体棒由于切割磁感线产生感应电流,受到安培阻力作用做变加速运动,安培力与速度的不成正比。

对每种题型作了详尽的分析,并且得出了更易于学生接受的推论。

此方法已经在教学实践中加以应用,并收到了良好的效果。

关键词:微元法电磁感应应用一、背景微元法是中学物理中的一种重要的思想方法。

从近几年的江苏省的高考试题来看多次出现应用微元法解决电磁感应的题目,如2006年最后一题,2007年最后第二题,2008年的最后一题,2009年最后一题。

说明在江苏高考中微元法占有相当重要的地位。

在大学普通物理中,许多问题的求解都要用到“微元法”的思想。

因此微元法非常重要。

我在教学过程中发现,学生对微元法的理解不够深入。

学生对微元法什么时候用,为什么要用,怎样用微元法往往是一知半解,在考试中乱用一气。

在电磁感应与力学综合题中,导棒在磁场中切割磁感线,产生感应电动势,进而产生感应电流。

导棒中的感应电流在磁场中受到了安培力的作用。

而安培力与物体的速度有关,安培力是变力,进而使导棒做变加速运动。

当求导棒在一定时间内发生的位移,或发生一定位移时需要的时间,由于导棒发生变加速运动,不能应用匀变速运动规律来求解,这为微元法的应用提供了非常好的素材。

因此本文借助于电磁感应中的力学问题的素材来研究微元法的应用。

本文主要讨论两个方面:一是怎样引导利用微元法来解题;二是就电磁感应中利用微元法解答的几种题型作初步的探讨。

二、微元法的定义微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。

用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。

微元法在《电磁感应》中的应用

微元法在《电磁感应》中的应用

微元法在《电磁感应》中的应用作者:揭秋林来源:《中学物理·高中》2015年第12期物理学追求认识自然界最普遍、最基本的规律。

学生学习物理,就要注意养成追根问底、悟物穷理的思维习惯,这有利于提高学生的理性思维能力。

新教材在《电磁感应》这一章中较老教材做了许多改动,从电磁感应现象,本质、规律三方面进行阐述,旨在达到上述效果。

但是由于高中学生在物理理论知识和数学知识两方面都有不足,学习时做不到深究,从而造成对电磁感应的认识不到位,而微元法能很好的加深理解和应用。

1 电磁感应现象大量的实验说明只要穿过某一闭合回路的磁通量发生变化,闭合回路中就有电流产生,磁通量的变化有以下两种情况:(1)B不变化而闭合电路的整体或局部在做切割磁感线运动,这样产生的感应电动势叫做动生电动势。

(2)B变化而闭合电路的任一部分都不动,这样产生的感应电动势叫做感生电动势。

2 产生电动势的原因(1)动生电动势的产生原因——洛伦兹力如图1所示,金属杆ab以速率v向右平移,它里面的电子也随之向右运动,向右运动的电子因处在磁场中所以要受到[TP12GW167。

TIF,Y#]洛伦兹力作用,由左手定则可以判断洛伦兹力方向向下,沿杆的洛伦兹力驱使自由电子向下运动,闭合线框中便出现逆时针方向的电流,这样在杆ab中就产生了动生电动势,运动着的杆ab就相当于电源。

(2)感生电动势产生的原因——感生电场力通过实验观察杆不动磁场变化时的电磁感应现象,自然会提出什么力驱使电荷定向移动呢?麦克斯韦认为,变化的磁场会激发一个闭合电场,我们称之为感生电场或涡旋电场。

感生电场对自由电荷的感生电场力充当了非静电力驱使闭合回路中的自由电荷定向移动,形成了电流,产生了感生电动势。

3 感应电动势大小的计算方法3。

1 匀强电场中的动生电动势大小的计算方法方法一从产生原因入手——洛伦兹力作用如图2所示,金属杆ab以速率v向右平移,则自由电子受到的沿杆的洛伦兹力f=evB,电子从金属杆一端移动到另一端(相当于从电源的一极移到另一极),此力做功Wf=fl,而Wf=eE,联立以上三式可解得E=Blv。

微元法在电磁学中的应用

微元法在电磁学中的应用

微元法在电磁学中的应用
微元法在电磁学中的应用非常广泛,可以用来解决电荷分布、电场、电势、电磁感应等问题。

1. 电荷分布:微元法可以用于计算不规则形状电荷分布的总电荷量。

将电荷分布划分为许多微小电荷元,然后对每个微小电荷元进行求和,就可以得到整个电荷分布的总电荷量。

2. 电场:微元法可以用于计算电荷在某点产生的电场。

通过将电荷分布划分为微小电荷元,然后计算每个微小电荷元对某一点的电场贡献,再将所有微小电荷元的贡献相加,就可以得到该点的总电场。

3. 电势:微元法可以用于计算电荷在某一点产生的电势。

通过将电荷分布划分为微小电荷元,然后计算每个微小电荷元对某一点的电势贡献,再将所有微小电荷元的贡献相加,就可以得到该点的总电势。

4. 电磁感应:在计算电磁感应时,可以使用微元法来计算由磁场引起的感应电动势。

将磁场分布划分为微小磁场元,然后计算每个微小磁场元对某一回路的感应电动势贡献,再将所有微小磁场元的贡献相加,就可以得到该回路的总感应电动势。

微元法在电磁学中可以帮助我们计算复杂的电荷分布、电场、电势和电磁感应问题,通过将问题划分为微小元素并进行求和,使得计算更加简化和准确。

浅谈“微元法”在高考物理题中应用

浅谈“微元法”在高考物理题中应用

浅谈“微元法”在高考物理题中应用作者:史文杰来源:《理科考试研究·高中》2014年第12期在近几年的高考中时常出现一些涉及物体在变力作用下,做非匀变速运动的问题.学生在解题时,感觉无从下手.因为日常的教学和练习中,大多数情况只讨论恒力作用下的匀变速直线运动,对于变力问题下的非匀变速直线运动只作定性分析,很少进行定量研究.这类问题的解决涉及到“微元法”.一、微元法所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法.它适用于变力作用下做变速运动(非匀变速运动)的情况.用微元法解题目体现了微分和积分的思想.何为微分思想?例如时间Δt很短或位移Δx很小时,非匀变速运动可以看作匀变速运动,从v-t图象中的图形可近似看作矩形,所以vΔt=Δx.何为积分思想?如许多小的梯形加起来为大的梯形,即Δx=X,(Δx代表微位移,X代表总位移),并且Δv=v-v0,当末速度v=0时,有Δv=v0,或初速度v0=0时,有Δv=v,这种求和的方法体现了积分思想.笔者发现采用“微元法”解决的题目虽然很多,情景多变,但其解题的模式是相似的,都采用关系式Δv=aΔt=F合mΔt,即牛顿第二定律和加速度定义式的微元式,学生只要会受力分析和运动分析,写出F合的表达式(与v有关的变力)以及初速度v0和末速度v,根据上面的方程,解出相关的物理量即可.下面谈一谈“微元法”在电磁感应问题和动力学问题中的应用.二、“微元法”在电磁感应问题中的应用一些涉及“电磁感应”的题目,可以用微元法解,因为在电磁感应中,如导体切割磁感线运动,产生的感应电动势E=BLv,感应电流I=BLvR,安培力F=BIL=B2L2Rv,因为是变力问题,所以可以用微元法.例1如图所示,一水平放置的光滑平行导轨上放一质量为m的金属杆,导轨间距为L,导轨的一端连接一阻值为R的电阻,其它电阻不计,磁感应强度为B的匀强磁场垂直于导轨平面,现给金属杆一个水平向右的初速度v0,然后任其运动,导轨足够长,试求金属杆在导轨上向右移动的最大距离是多少?解析对杆进行受力分析,杆在竖直平面内受到重力、竖直向上的支持力这是一对平衡力,水平方面上向左的安培力是杆受到的合外力.而且F安随速度的变小而变小.这是典型变力作用下求位移的题.解设杆在减速中的某一时刻的速度为v,取一极短时间Δt,发生了一段极小的位移Δx,在Δt时间内,磁通量的变化Δ=BLΔx,感应电流I=ΔΔtR=BLΔxΔtR安培力F安=BIL=B2L2ΔxΔtR,由于Δt极短,可以认为F安=B2L2vR.由牛顿第二定律在t到t+Δt时间内,Δv=aΔt=F合m=Δt (此处体现了微分思想)方程两边求和:Δv=B2L2vmRΔt (此处体现了积分思想)方程变形:Δv=B2L2mRvΔt (vΔt=x,Δv=v0-0)即v0-0=B2L2mRx,解得:x=mv0RB2l2三、“微元法”在动力学问题中的应用。

电磁感应中微元法的应用技巧及实例

电磁感应中微元法的应用技巧及实例

电磁感应中微元法的应用技巧及实例无锡市第六高级中学 曹钱建摘要:微元法是电磁学中极其重要的一种研究方法,电磁学中无时无刻都在利用微元法处理问题,使复杂问题简化和纯化,从而确定变量为常量达到理想化的效果。

间题中的信息进行提炼加工,突出主要因素,忽略次要因素,恰当处理,构建新的物理模型,从而更好地应用微元法,学好电磁感应这部分内容。

关键词:微元法;电磁感应;高考新课标物理教材中涉及到微分的思想,相应的派生出大量的相关问题。

而微元法与电磁感应相结合的问题更是常考点也是难点,本文将就此类问题的解决提供一套简便实用的方法,及部分经典实例。

电磁感应问题中的动生电动势模型中,金属杆在达到稳定之前的过程是一个变加速过程(其中涉及到的v 、E 、I 、安F 、a 都是变量),常规的原理、公式都无法直接使用,使得很多学生遇到此类问题都觉得无从下手,但此类问题却在近两年各地模拟卷和江苏高考卷中,作为压轴题出现。

其实这时可以采取“微元法”,即将所研究的变加速物理过程,分割成许多微小的单元,从而将非理想物理模型变成理想物理模型;将变加速运动过程变成匀加速运动过程,然后选择微小的单元,利用下面介绍的方法进行分析和讨论,可用一种比较简单且相对固定的模式解决此类问题。

例1、如图甲所示,光滑绝缘 水平面上一矩形金属线圈 abcd 的质量为m 、电阻为R 、ad 边长度为L ,其右侧是有左右边界的匀强磁场,磁场方向垂直纸面向外,磁感应强度大小为B ,ab 边长度与有界磁场区域宽度相等,在t =0时刻线圈以初速度v 0进入磁场,在t=T 时刻线圈刚好全部进入磁场且速度为v l ,此时对线圈施加一沿运动方向的变力F ,使线圈在t =2T 时刻线圈全部离开该磁场区,若上述过程中线圈的v —t 图象如图乙所示,整个图象关于t=T 轴对称.(1)求t=0时刻线圈的电功率;(2)线圈进入磁场的过程中产生的焦耳热和穿过磁场过程中外力F 所做的功分别为多少?(3)若线圈的面积为S ,请运用牛顿第二运动定律和电磁学规律证明:在线圈进入磁场过程中m RLS B v v 210=- 解:t =0时,E=BLv 0 线圈电功率Rv L B R E P 20222==(2)线圈进入磁场的过程中动能转化为焦耳热 21202121mv mv Q -= 外力做功一是增加动能,二是克服安培力做功 2120mv mv W F -=(3)根据微元法思想,将时间分为若干等分,每一等分可看成匀变速,利用牛顿第二定律分析可得:Bv v 乙m Rv L B m BLI a 22==: 等式两边同时乘以t ∆可得:t Lv mRL B t v mR L B t a ∆=∆=∆222 因为时间t ∆极短,则a 可认为恒定不变,所以t a ∆等于此极短时间内的速度改变量v ∆,同理v 也可认为恒定不变,所以t v ∆等于此极短时间内的位移x ∆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应动态分析(一)
——微元法在电磁感应问题中的应用
导体 感应电 变速 E=BLv 动势变 运动 化
v与a方向关系
E I= R+r
感应 电流 变化
F=BIL
加速 度变 化
F合=ma
合外 力变 化
F合=F安+F其
安培 力变 化
分析此类问题的关键是抓住状态变化过程中变 量的变化特点和规律,从而确定状态变化过程中的 临界点和最终状态
q CBL v CBL a I t t mg CB 2 L2 a ma m 恒量 a g 2 2 m CB L
即物体作匀加速直线运动!
2008.12.16
mg
分析元过程 来帮助理解 运动细节
小结——微元法在电磁感应问题中的应用 在处理问题时,从对事物的极小部分(微元)分 析入手,达到解决事物整体的方法。 在使用微元法处理问题时,需将其分解为众多 微小的“元过程”,而且每个“元过程”所遵循的 规律是相同的,这样,我们只需分析这些“元过 程”,然后再将“元过程”进行必要的数学方法 (累计求和)进而使问题求解。 在电磁感应问题中,常常遇到非匀变速运动过 程中求位移,电量,能量等问题,灵活运用微元的 思想,可以帮助我们更深刻的理解物理过程。
t
2008.12.16
R
B
F
思考:求该过程中 ③末速度多大? 产生的焦耳热
B 2 L2 vm F F安 R
2 2
FR vm 2 2 B L
v vm
B L v 运动规律 F vi m R2 2 t B L F t vi t mv t0 t t R Δt B 2 L2 F t vi t m v Ft mvm R x R 2 2 2 2 B L B L Ft x m(vm 0) R
2008.12.16
④若在t时刻,棒作匀速运动,求 这段时间内的总位移。(t > t0)
引申2:如图,竖直放置的光滑U形导轨宽为L,上端串有一 个电容,电容为C,磁感应强度为B的匀强磁场方向垂直于纸 面向里。金属棒ab的质量为m,与导轨接触良好,不计摩擦 及各部分电阻,试通过计算说明金属棒的运动情况。
d
P M O N
d v0
d
d
d
d
d
求①线框从开始进入磁场到竖直
下落的过程中产生的焦耳热Q
1 2 Q mv0 2
2008.12.16
d
P M O N
d v0
d
d
d
d
d
②线框能穿过的完整条形磁场
区域的个数n。
mv0 R x 2 2 Bl
B、d、m、l、R、v0
微元法
x mv0 R n 2l 2 B 2l 3
引申1: 如图,水平放置的导体电阻为R ,R与两根光滑的 平行金属导轨相连,导轨间距为L ,其间有垂直导轨平面的、 磁感应强度为B的匀强磁场。导轨上有一导体棒ab质量为m受 到大小为F的恒力作用从静止开始向右运动。 ①导体棒将做什么运动? R B
F
v
加速度越来越小的加速运动, 最终做匀速运动,外力F与 安培力平衡 ②请描绘出运动的v-t 图像
运动规律(牛顿第二定律):
即: F安
t
B Lv ma R
2008.12.16
2 2
④能否求出这个过程的总位移呢? R v v0 B
v 微元法
取一元过程,Δt极小,vi与这一时间间隔内 的平均速度相等,a的大小与元过程有关
B 2 L2 v ma R
2 2
B 2 L2 vi v m R t
v0
v0
最终静止
t
2008.12.16
例1. 如图,水平放置的导体电阻为R ,R与两根光滑的平行 金属导轨相连,导轨间距为L ,其间有垂直导轨平面的、磁 感应强度为B的匀强磁场。导轨上有一导体棒ab质量为m以初 速度v0向右运动。 ③全过程一共产生多少焦耳热? R B
v
v v0
1 2 W安 0 mv0 2 Q W安
2008.12.16
思考题 如图,空间等间距分布着水平方向的条形匀强磁场, 竖直 方向磁场区域足够长, 磁感应强度为B=1T ,每一条形磁 场区域的宽度及相邻条形磁场区域的间距均为d=0.5m,现有 一边长l=0.2m、质量m=0.1kg、电阻R=0.1Ω的正方形线框 MNOP以v0=7m/s的初速从左侧磁场边缘水平进入磁场
4.4
∴能完整的穿过4个条形磁场区域
2008.12.16
Δt
x v t vi t
B L vi t mv R B 2 L2 t R vi t mv B 2 L2 x m 0 v0 R B 2 L2 x mv0 R
2008.12.16
④能否求出这个过程的总位移呢? R v v0 B
2008.12.16
例. 如图,水平放置的导体电阻为R ,R与两根光滑的平行 金属导轨相连,导轨间距为L ,其间有垂直导轨平面的、磁 感应强度为B的匀强磁场。导轨上有一导体棒ab质量为m以初 速度v0向右运动。
①导体棒将做什么运动? R B 加速度越来越小的减速运动 ②请描绘出运动的v-t 图像 v
④能否求出这个过程的总位移呢? R v v0 B
v
mv0 R x 2 2 B L
⑤能否求出全过程中通过导体某个 横截面的电量?
t
BLx q R R BL mv0 R mv0 2 2 R B L BL
2008.12.16
④能否求出这个过程的总位移呢? R v I B
v
mv0 R x 2 2 B L
v 微元法
B L x mv0 R
பைடு நூலகம்2 2
mv0 R x 2 2 B L
t
Δt
在使用微元法处理问题时,需将 其分解为众多微小的“元过程”, 而且每个“元过程”所遵循的规 律是相同的,这样,我们只需分 析这些“元过程”,然后再将 “元过程”进行必要的数学方法 (累计求和)进而使问题求解。
2008.12.16
微元法
Δt
BLv q I i t I v v I R BLI i t mv BI i L m t t BL I i t m v
⑤能否求出全过程中通过导体某个 横截面的电量?
BLq m(0 v0 )
mv0 q BL
2008.12.16
t
2008.12.16
例1. 如图,水平放置的导体电阻为R ,R与两根光滑的平行 金属导轨相连,导轨间距为L ,其间有垂直导轨平面的、磁 感应强度为B的匀强磁场。导轨上有一导体棒ab质量为m以初 速度v0向右运动。 ④能否求出这个过程的总位移呢? R v v0 B
v
位移:图像与横轴所包含的面积
x v t vi t
C a b
要说明运动情况,可能有哪些? 匀速,匀加速还是变加速? 需要通过计算说明什么问题? 找出F-t,或 a-t 的关系
2008.12.16
C
运动规律
分析受力
a
BIL
b
mg BIL ma q 这种情况下 q CU ? 不适用 I ,欧姆定律适用么 t 微元 q C U C E CBL v
相关文档
最新文档