遗传算法求解背包问题
基于改进遗传算法的背包问题求解技术研究

基于改进遗传算法的背包问题求解技术研究背包问题是一个经典的问题,它的应用在物流、采购、制造等领域广泛存在。
它的基本目标是在给定的载重量下,让所选物品的价值最大化。
但随着问题规模的增大,背包问题也变得越来越复杂,传统算法往往难以高效地解决问题。
因此,研究基于改进遗传算法的背包问题求解技术成为一种切实可行的方法。
一、背包问题的定义具体地来说,背包问题可以分为0/1背包问题和多重背包问题两种。
其中,0/1背包问题指在给定的背包容量下,从给出的n个物品中,选择一些物品放入一个背包中,每个物品要么全部被放下,要么不放。
而多重背包问题则允许在给定的n种物品中,从中选择任意数量的物品放入背包中,并且每个物品的重量和价值不同。
在0/1背包问题中,设物品数量为n,背包的容量为C,每件物品的重量为Wi,价值为Vi,求解背包能容纳的最大价值ΣVi,满足∑Wi≤C。
在多重背包问题中,同样设物品数量为n,背包的容量为C,每件物品的重量为Wi,价值为Vi,第i件物品的数量为Mi,求解背包能容纳的最大价值ΣVi,满足∑MiWi≤C。
二、传统算法的局限性对于小规模的背包问题,传统算法如贪心算法、动态规划等可以得到较好的解决。
但对于复杂的问题,传统算法的局限性也随之显现。
例如,在0/1背包问题中,当物品数量很大时,动态规划算法会出现状态数爆炸的问题,导致内存不足,程序崩溃。
针对这个问题,可以通过压缩状态空间、优化内存的方式来解决,但这些优化不可避免地会牺牲算法的准确性和效率。
在多重背包问题中,传统算法同样无法处理大规模问题。
传统的贪心算法可以得到近似最优解,但它无法保证求得的结果是全局最优的。
另外,当物品数量和价值的分布随机时,传统算法的效果越发不尽如人意。
更进一步地,传统算法无法解决背包问题的带约束函数问题。
带约束函数的背包问题可以表示为在可供选择的物品中,最大化价值函数,同时满足约束函数。
这样的问题在实际应用中普遍存在,如在某些国家的医院物流系统中,医生需要从供应商处选择药品、设备等物品来维持日常使用,但同时需要满足不同品种和不同状态的医用物品在仓库内的库存量比例不超过一定值。
遗传算法解决01背包问题

遗传算法解决01背包问题2015 ~2016 学年第二学期学生姓名专业学号2016年 6 月目录一:问题描述 (3)二:遗传算法原理及特点 (3)三:背包问题的遗传算法求解 (3)1.文字描述 (3)2.遗传算法中的抽象概念在背包问题的具体化 (3)3.算法求解的基本步骤 (4)四:算法实现 (4)1.数据结构 (4)2.部分代码 (5)五:结论 (8)六:参考文献 (8)一、问题描述0-1背包问题属于组合优化问题的一个例子,求解0-1背包问题的过程可以被视作在很多可行解当中求解一个最优解。
01背包问题的一般描述如下:给定n个物品和一个背包,物品i的重量为Wi,其价值为Vi,背包的容量为C。
问应如何选择合适的物品装入背包,使得背包中装入的物品的总价值最大。
注意的一点是,背包内的物品的重量之和不能大于背包的容量C。
在选择装入背包的物品时,对每种物品i只有两种选择:即装入背包或者不装入背包,不能讲物品i装入背包多次,也不能只装入部分的物品,称此类问题为0/1背包问题。
二、遗传算法原理及特点遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
遗传算法有着鲜明的优点:(1)遗传算法的操作对象是一组可行解,而非单个可行解;搜索轨道有多条,而非单条,因而具有良好的并行性.(2)遗传算法只需利用目标的取值信息,而无需递度等高价值信息,因而适用于任何规模,高度非线形的不连续多峰函数的优化以及无解析表达式的目标函数的优化,具有很强的通用性.(3)遗传算法择优机制是一种“软”选择,加上良好的并行性,使它具有良好的全局优化性和稳健性.(4)遗传算法操作的可行解集是经过编码化的(通常采用二进制编码),目标函数解释为编码化个体(可行解)的适应值,因而具有良好的可操作性与简单性.三、背包问题的遗传算法求解1、文字描述0-1背包问题传统的解决方法有动态规划法、分支界限法、回溯法等等。
遗传算法求解0-1背包问题(JAVA)

遗传算法求解0-1背包问题一、问题描述给定n种物品和容量为C的背包。
物品i的重量是wi,其价值为vi。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?二、知识表示1、状态表示(1)个体或染色体:问题的一个解,表示为n个比特的字符串,比特值为0表示不选该物品,比特值为1表示选择该物品。
(2)基因:染色体的每一个比特。
(3)种群:解的集合。
(4)适应度:衡量个体优劣的函数值。
2、控制参数(1)种群规模:解的个数。
(2)最大遗传的代数(3)交叉率:参加交叉运算的染色体个数占全体染色体的比例,取值范围一般为0.4~0.99。
(4)变异率:发生变异的基因位数所占全体染色体的基因总位数的比例,取值范围一般为0.0001~0.1。
3、算法描述(1)在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;(2)随机产生U中的N个个体s1, s2, …, sN,组成初始种群S={s1, s2, …, sN},置代数计数器t=1;(3)计算S中每个个体的适应度f() ;(4)若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。
(5)按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1;(6)按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2;(7)按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3;(8)将群体S3作为新一代种群,即用S3代替S,t = t+1,转步3。
三、算法实现1、主要的数据结构染色体:用一维数组表示,数组中下标为i的元素表示第(i+1)个物品的选中状态,元素值为1,表示物品被选中,元素值为0表示物品不被选中。
种群:用二维数组表示,每一行表示一个染色体。
遗传算法求解背包问题

遗传算法的过程:初始化:将计划装入背包的每个物品看成一个二进制串的一位,为1表示放入该物品,为0表示不放入该物品。
初始种群的产生:初始化前对放入背包物品数的一个预测(背包容积/物品最大体积),接下来只要在种群每条染色体中保证有(背包容积/物品最大体积)个为1的位初始化就完成了。
选择:选择进行杂交的父代染色体,被选中的父代染色体总是若干个染色体中最优(适应度最高)的,来保证向优化的方向发展。
详细的选择方法:随机产生2个数:Chrom_Cross_From, Chrom_Cross_To,当然得采用一定的手段来保证前者比后者小。
从Chrom_Cross_From到Chrom_Cross_To这Chrom_Cross_To-Chrom_Cross_From+1条染色体中选择最优(适应度最大)的染色体作为父代之一。
需要进行两次选择得到杂交的两条父代染色体。
这样做可以保证算法不会过早收敛。
函数实现:Individual Select(int ChromSize,Individual Pop[]){int Num_Selected,i,j,Chrom_Selected_From,Chrom_Selected_To,temp;Individual *Chrom_Selected;do{Chrom_Selected_From=rand()%PopSize;Chrom_Selected_To=rand()%PopSize;if(Chrom_Selected_From>Chrom_Selected_To){temp=Chrom_Selected_From;Chrom_Selected_From=Chrom_Selected_To;Chrom_Selected_To=temp;}Num_Selected=Chrom_Selected_To-Chrom_Selected_From+1;}while(Num_Selected<=0);Chrom_Selected=new Individual[Num_Selected];for(i=0;i<Num_Selected;i++)Chrom_Selected[i].chrom=new int[ChromSize];for(i=0,j=Chrom_Selected_From;i<Num_Selected,j<Chrom_Selected_To+1;i++,j++){Chrom_Selected[i]=Pop[j];}Order_Best_First(ChromSize,Num_Selected,Chrom_Selected);Chrom_Selected[0].fitness=Fitness(Chrom_Selected[0].chrom,ChromSize);return Chrom_Selected[0];}杂交:将两次选择得到的父代染色体进行杂交得到一条新的染色体,作为较新种群(并非新的种群)的一条染色体,杂交直到较新种群的染色体数等于原种群的染色体数。
用遗传算法求解多维背包问题

智能所“暑期学校”科研实习报告题目:用遗传算法求解多维背包问题姓名:吴逊专业:智能科学与技术指导老师姓名、职务:尚荣华副教授日期:二零一一年八月摘要首先简单介绍了基本的遗传算法。
然后将贪婪算法与简单遗传法相结合构成一种混合遗传算法,用该混合遗传算法求解背包问题。
通过对标准测试集中的27个问题进行测试,发现用这种方法求解大规模背包问题, 其解的质量和求解性能较简单遗传算法和贪婪算法都有所改善。
关键词:遗传算法,多维背包问题绪论遗传算法是模拟生物界自然进化过程的一种计算模型,其思想主要来源于达尔文进化论、孟德尔遗传学说及现代生物学对生命遗传过程的研究。
对它的研究起源于20世纪70年代,由美国Michigan大学的J.Holland教授于1975年正式提出。
GA的主要特点是群体搜索策略和群体中个体之间的信息交换,搜索不依赖于梯度信息。
尤其适用于处理传统搜索方法难于解决的复杂和非线性问题,可广泛用于组合优化、机器学习、自适应控制等领域。
本文将先就遗传算法介绍其思想来源及基本思路,并提出GA应用的5个关键点。
接着对一类典型的组合优化问题——0-1背包问题分别进行简单遗传算法与混合遗传算法的求解,并将结果与贪婪算法进行对比。
第一章遗传算法概述2.1达尔文进化论与孟德尔学说19世纪中叶,达尔文创立了科学的生物进化学说,它第一次对整个生物界的发生、发展,作出了唯物的、规律性的解释,使生物学发生了一次革命性的变革。
达尔文进化论认为生物不是静止的,而是进化的。
物种不断变异,旧物种消失,新物种产生。
而且生物的进化是连续和逐渐,不会发生突变。
生物之间存在一定的亲缘关系,他们具有共同的祖先;而另一方面,由于生物过渡繁殖,但是它们的生存空间和食物有限,从而面临生存斗争,包括:种内、种间以及生物与环境的斗争。
总结起来为两部分内容:遗传变异与自然选择。
其中自然选择是达尔文进化论的核心。
1857年,孟德尔通过对植物进行一系列仔细的实验。
遗传算法求解0 1背包问题(JAVA)

遗传算法求解0-1背包问题一、问题描述给定n种物品和容量为C的背包。
物品i的重量是wi,其价值为vi。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?二、知识表示1、状态表示(1)个体或染色体:问题的一个解,表示为n个比特的字符串,比特值为0表示不选该物品,比特值为1表示选择该物品。
(2)基因:染色体的每一个比特。
(3)种群:解的集合。
(4)适应度:衡量个体优劣的函数值。
2、控制参数(1)种群规模:解的个数。
(2)最大遗传的代数(3)交叉率:参加交叉运算的染色体个数占全体染色体的比例,取值范围一般为0.4~0.99。
(4)变异率:发生变异的基因位数所占全体染色体的基因总位数的比例,取值范围一般为0.0001~0.1。
3、算法描述(1)在搜索空间U上定义一个适应度函数f(x),给定种群规模N,交叉率Pc和变异率Pm,代数T;(2)随机产生U中的N个个体s1,s2,…,sN,组成初始种群S={s1,s2,…,sN},置代数计数器t=1;(3)计算S中每个个体的适应度f();(4)若终止条件满足,则取S中适应度最大的个体作为所求结果,算法结束。
(5)按选择概率P(xi)所决定的选中机会,每次从S中随机选定1个个体并将其染色体复制,共做N次,然后将复制所得的N个染色体组成群体S1;(6)按交叉率Pc所决定的参加交叉的染色体数c,从S1中随机确定c个染色体,配对进行交叉操作,并用产生的新染色体代替原染色体,得群体S2;(7)按变异率P m所决定的变异次数m,从S2中随机确定m个染色体,分别进行变异操作,并用产生的新染色体代替原染色体,得群体S3;(8)将群体S3作为新一代种群,即用S3代替S,t=t+1,转步3。
三、算法实现1、主要的数据结构染色体:用一维数组表示,数组中下标为i的元素表示第(i+1)个物品的选中状态,元素值为1,表示物品被选中,元素值为0表示物品不被选中。
种群:用二维数组表示,每一行表示一个染色体。
遗传算法的0-1背包问题(c语言)
基于遗传算法的0-1背包问题的求解摘要:一、前言组合优化问题的求解方法研究已经成为了当前众多科学关注的焦点,这不仅在于其内在的复杂性有着重要的理论价值,同时也在于它们能在现实生活中广泛的应用。
比如资源分配、投资决策、装载设计、公交车调度等一系列的问题都可以归结到组合优化问题中来。
但是,往往由于问题的计算量远远超出了计算机在有效时间内的计算能力,使问题的求解变为异常的困难。
尤其对于NP 完全问题,如何求解其最优解或是近似最优解便成为科学的焦点之一。
遗传算法已经成为组合优化问题的近似最优解的一把钥匙。
它是一种模拟生物进化过程的计算模型,作为一种新的全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算的地位。
背包问题是一个典型的组合优化问题,在计算理论中属于NP-完全问题, 其计算复杂度为)2(O n ,传统上采用动态规划来求解。
设w[i]是经营活动 i 所需要的资源消耗,M 是所能提供的资源总量,p[i]是人们经营活动i 得到的利润或收益,则背包问题就是在资源有限的条件下, 追求总的最大收益的资源有效分配问题。
二、问题描述背包问题( Knapsack Problem)的一般提法是:已知n 个物品的重量(weight )及其价值(或收益profit )分别为0>i w 和0>i p ,背包的容量(contain )假设设为0>i c ,如何选择哪些物品装入背包可以使得在背包的容量约束限制之内所装物品的价值最大?该问题的模型可以表示为下述0/1整数规划模型:目标函数:∑==ni i i n x c x x x f 121),,(max Λ⎪⎩⎪⎨⎧=∈≤∑=),2,1(}1,0{t .s 1n i x p x w i n i i i i Λ (*)式中i x 为0-1决策变量,1=i x 时表示将物品i 装入背包中,0=i x 时则表示不将其装入背包中。
遗传算法求解0-1背包问题(步骤)(精)
遗传算法求解0-1背包问题。
(步骤)#include "iostream.h"#include "iomanip.h"#include "stdlib.h"#include "math.h"#include "time.h"//定义问题的最大规模#define max 100//问题规模,即共有多少个包int packageNum;//每个包的重量int packageWeight[max];//每个包的价值int packageValue[max];//约束,背包的最大容量int limitWeight;//群体的规模int colonySize;//colonyState[i][k] 表示一个染色体//colonyState[1...colonySize][ 0|1 ] 表示一代群体int colonyState[max][2][max];// currAge 表示当前代的编号// (currAge+1)%2 表示下一代的编号int currAge = 0;//个体评价信息表typedef struct tagIndividualMsg{int index;int value;} IndividualMsg;IndividualMsg individualMsg[max];//////////////////////////////////////////////////////////// // 函数声明void printColonyState( int nextAge );//////////////////////////////////////////////////////////// //初始化群体void colonyInit(){int i , j;int w;for( i = 0 ; i < colonySize ; i++ ){//保证找到一个符合约束的染色体w = limitWeight + 1;while( w > limitWeight ){w = 0;for( j = 0 ; j < packageNum && w <= limitWeight ; j++ ){colonyState[i][currAge][j] = rand() % 2;w += packageWeight[j] * colonyState[i][currAge][j];}}}}//对个体进行评价int cmp( const void *a , const void *b ){IndividualMsg *x = (IndividualMsg *)a;IndividualMsg *y = (IndividualMsg *)b;return y->value - x->value;}void individualEstimate(){int i , j;for( i = 0 ; i < colonySize ; i++ ){individualMsg[i].index = i;individualMsg[i].value = 0;for( j = 0 ; j < packageNum ; j++ )individualMsg[i].value += packageValue[j] * colonyState[i][currAge][j]; }qsort( individualMsg , colonySize , sizeof(IndividualMsg) , cmp );}//终止循环的条件bool stopFlag(){//进行n 代进行后停止static int n = 50;if( n-- <= 0 )return true;elsereturn false;}//赌轮选择int gambleChoose(){int wheel[max] = { 0 };int i = colonySize - 1;int choose;wheel[i] = individualMsg[i].value;for( i-- ; i >= 0 ; i-- )wheel[i] = ( individualMsg[i].value + wheel[i+1] ) + colonySize * ( colonySize - i ); int seed = abs( wheel[0] - ( rand() % ( 2 * wheel[0] ) + 1 ) );choose = colonySize - 1;while( seed > wheel[choose] )choose--;// cout<<"----------------------------------------"<<endl;// cout<<"wheel :"<<endl;// for( i = 0 ; i < colonySize ; i++ )// cout<<setw(5)<<wheel[i];// cout<<endl;// cout<<"seed = "<<seed<<endl;// cout<<"choose "<<choose<<endl;return choose;}//交叉void across( int male , int female , int index ){int nextAge = (currAge+1)%2;int i , j , t;int acrossBit = rand() % (packageNum-1) + 1;for( j = 0 ; j < packageNum ; j++ ){colonyState[index][nextAge][j] =colonyState[individualMsg[male].index][currAge][j];colonyState[index+1][nextAge][j] =colonyState[individualMsg[female].index][currAge][j];}for( i = 0 ; i < acrossBit ; i++ ){t = colonyState[index][nextAge][i];colonyState[index][nextAge][i] = colonyState[index+1][nextAge][i];colonyState[index+1][nextAge][j] = t;}}//变异void aberrance( int index ){int seed , nextAge;nextAge = (currAge+1)%2;//只有1/3 的概率发生异变seed = rand() % ( packageNum * 3 );if( seed < packageNum )colonyState[index][nextAge][seed] = ( colonyState[index][nextAge][seed] + 1 ) % 2;}//处理死亡个体void dealDeath(){int i , j;int weight , w;int nextAge = (currAge+1)%2;for( i = 0 ; i < colonySize ; i++ ){weight = 0;for( j = 0 ; j < packageNum ; j++ )weight += packageWeight[j] * colonyState[i][nextAge][j];if( weight > limitWeight ){//随机生成新的个体w = limitWeight + 1;while( w > limitWeight ){w = 0;for( j = 0 ; j < packageNum && w <= limitWeight ; j++ ){colonyState[i][nextAge][j] = rand() % 2;w += packageWeight[j] * colonyState[i][nextAge][j];}}}}printColonyState( nextAge );}//最优个体保护void saveBest(){int i , j;int min , minp , value;int nextAge = ( currAge+1)%2;min = individualMsg[0].value;minp = -1;for( i = 0 ; i < colonySize ; i++ ){value = 0;for( j = 0 ; j < packageNum ; j++ )value += packageValue[j] * colonyState[i][nextAge][j]; if( value <= min ){min = value;minp = i;}}if( minp >= 0 ){for( j = 0 ; j < packageNum ; j++ ){colonyState[minp][nextAge][j] =colonyState[individualMsg[0].index][currAge][j];}}}//////////////////////////////////////////////////////////// void setProblem(){int i;packageNum = 5;int w[] = { 5 , 4 , 3 , 2 , 1 };int v[] = { 8 , 9 , 3 , 1 , 2 };for( i = 0 ; i < packageNum ; i++ ){packageWeight[i] = w[i];packageValue[i] = v[i];}limitWeight = 13;colonySize = 5;}void printProblem(){int i;cout<<"----------------------------------------"<<endl;cout<<"problem state:"<<endl;cout<<"packageNum = "<<packageNum<<endl;cout<<"limitWeight = "<<limitWeight<<endl;cout<<"Weight: ";for( i = 0 ; i < packageNum ; i++ )cout<<setw(3)<<packageWeight[i];cout<<endl;cout<<"Value: ";for( i = 0 ; i < packageNum ; i++ )cout<<setw(3)<<packageValue[i];cout<<endl;}void printColonyState( int k ){cout<<"----------------------------------------"<<endl;cout<<"colonyState-->";if( k == currAge )cout<<"currAge:"<<endl;elsecout<<"next age:"<<endl;int i , j;for( i = 0 ; i < colonySize ; i++ ){for( j = 0 ; j < packageNum ; j++ )cout<<setw(2)<<colonyState[i][k][j];cout<<endl;}}void printIndividualMsg(){int i;cout<<"----------------------------------------"<<endl;cout<<"Individual Msg:"<<endl;for( i = 0 ; i < colonySize ; i++ ){cout<<individualMsg[i].index<<"\t"<<individualMsg[i].value<<endl; }}////////////////////////////////////////////////////////////void main(){srand( (unsigned int)time(NULL) );setProblem();printProblem();//初始群体colonyInit();printColonyState( currAge );while( !stopFlag() ){//评价当前群体individualEstimate();//生成下一代for( int i = 0 ; i < colonySize ; i += 2 ){int male = gambleChoose();int female = gambleChoose();across( male , female , i );aberrance( i );aberrance( i + 1 );}//处理死亡个体dealDeath();//最优个体保护saveBest();//现在的下一代变成下一轮的当前代currAge = ( currAge + 1 ) % 2;//printColonyState( currAge );}//输出问题解individualEstimate();cout<<"近似解:"<<endl;int j , w = 0;cout<<setw(10)<<"Value:";for( j = 0 ; j < packageNum ; j++ )cout<<setw(5)<<packageValue[j];cout<<endl;cout<<setw(10)<<"Weight:";for( j = 0 ; j < packageNum ; j++ ){w += packageWeight[j] * colonyState[individualMsg[0].index][currAge][j]; cout<<setw(5)<<packageWeight[j];}cout<<endl;cout<<setw(10)<<"Choose:";for( j = 0 ; j < packageNum ; j++ )cout<<setw(5)<<colonyState[individualMsg[0].index][currAge][j];cout<<endl;cout<<"limitWeight: "<<limitWeight<<endl;cout<<"总重量: "<<w<<endl;cout<<"总价值: "<<individualMsg[0].value<<endl; }////////////////////////////////////////////////////////////。
遗传算法的01背包问题(c语言)
基于遗传算法的0-1背包问题的求解摘要:一、前言组合优化问题的求解方法研究已经成为了当前众多科学关注的焦点,这不仅在于其内在的复杂性有着重要的理论价值,同时也在于它们能在现实生活中广泛的应用。
比如资源分配、投资决策、装载设计、公交车调度等一系列的问题都可以归结到组合优化问题中来。
但是,往往由于问题的计算量远远超出了计算机在有效时间内的计算能力,使问题的求解变为异常的困难。
尤其对于NP 完全问题,如何求解其最优解或是近似最优解便成为科学的焦点之一。
遗传算法已经成为组合优化问题的近似最优解的一把钥匙。
它是一种模拟生物进化过程的计算模型,作为一种新的全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算的地位。
背包问题是一个典型的组合优化问题,在计算理论中属于NP-完全问题, 其计算复杂度为)2(O n ,传统上采用动态规划来求解。
设w[i]是经营活动 i 所需要的资源消耗,M 是所能提供的资源总量,p[i]是人们经营活动i 得到的利润或收益,则背包问题就是在资源有限的条件下, 追求总的最大收益的资源有效分配问题。
二、问题描述背包问题( Knapsack Problem)的一般提法是:已知n 个物品的重量(weight )及其价值(或收益profit )分别为0>i w 和0>i p ,背包的容量(contain )假设设为0>i c ,如何选择哪些物品装入背包可以使得在背包的容量约束限制之内所装物品的价值最大?该问题的模型可以表示为下述0/1整数规划模型:目标函数:∑==ni i i n x c x x x f 121),,(max Λ⎪⎩⎪⎨⎧=∈≤∑=),2,1(}1,0{t .s 1n i x p x w i n i i i i Λ (*) 式中i x 为0-1决策变量,1=i x 时表示将物品i 装入背包中,0=i x 时则表示不将其装入背包中。
遗传算法的0-1背包问题(c语言)
基于遗传算法得0—1背包问题得求解摘要:一、前言组合优化问题得求解方法研究已经成为了当前众多科学关注得焦点,这不仅在于其内在得复杂性有着重要得理论价值,同时也在于它们能在现实生活中广泛得应用。
比如资源分配、投资决策、装载设计、公交车调度等一系列得问题都可以归结到组合优化问题中来、但就是,往往由于问题得计算量远远超出了计算机在有效时间内得计算能力,使问题得求解变为异常得困难。
尤其对于NP完全问题,如何求解其最优解或就是近似最优解便成为科学得焦点之一、遗传算法已经成为组合优化问题得近似最优解得一把钥匙。
它就是一种模拟生物进化过程得计算模型,作为一种新得全局优化搜索算法,它以其简单、鲁棒性强、适应并行处理以及应用范围广等特点,奠定了作为21世纪关键智能计算得地位。
背包问题就是一个典型得组合优化问题,在计算理论中属于NP-完全问题,其计算复杂度为,传统上采用动态规划来求解。
设w[i]就是经营活动i 所需要得资源消耗,M就是所能提供得资源总量,p[i]就是人们经营活动i得到得利润或收益,则背包问题就就是在资源有限得条件下,追求总得最大收益得资源有效分配问题。
二、问题描述背包问题( Knapsack Problem)得一般提法就是:已知n个物品得重量(wei ght)及其价值(或收益profit)分别为与,背包得容量(contain)假设设为,如何选择哪些物品装入背包可以使得在背包得容量约束限制之内所装物品得价值最大?该问题得模型可以表示为下述0/1整数规划模型:目标函数:(*)式中为0-1决策变量,时表示将物品装入背包中,时则表示不将其装入背包中。
三、求解背包问题得一般方法解决背包问题一般就是采取动态规划、递归回溯法与贪心方法、动态规划可以把困难得多阶段决策变换为一系列相互联系比较容易得单阶段问题、对于背包问题可以对子过程用枚举法求解,而且约束条件越多,决策得搜索范围越小,求解也越容易。
它得主要缺点就是用数值方法求解时会随着状态变量得个数呈指数级得增长,往往对于求解背包问题得实际问题就是不现实得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遗传算法求解背包问题信管专业李鹏 201101002044一、遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。
在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。
二、背包问题描述背包问题是一个典型的组合优化问题,在计算理论中属于NP完全问题,主要应用于管理中的资源分配,资金预算,投资决策、装载问题的建模。
传统“0/1”背包问题可以描述为:把具有一定体积和价值的n件不同种类物品放到一个有限容量的背包里,使得背包中物品的价值总量最大。
三、数学模型背包问题可以描述如下:假设有n个物体,其重量用表示,价值用表示,背包的最大容量为b。
这里和b都大于0。
问题是要求背包所装的物体的总价值最大。
背包问题的数学模型描述如下:(1)(2)(3)约束条件(3)中表示物体i被选入背包,反之,表示物体i没有被选入背包。
约束条件(2)表示背包的容量约束。
四、使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。
这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。
五、程序整体流程(1)读取存取包的限种、商品的重要和价值的TXT文件;(2)初始化种群;(3)计算群体上每个个体的适应度值(Fitness) ;(4)评估适应度,对当前群体P(t)中每个个体Pi计算其适应度F(Pi),适应度表示了该个体的性能好坏;(5)依照Pc选择个体进行交叉操作;(6)仿照Pm对繁殖个体进行变异操作(7)没有满足某种停止条件,则转第3步,否则进入8 ;(8)输出种群中适应度值最优的个体。
六、代码function Main()%定义全局变量global VariableNum POPSIZE MaxGens PXOVER PMutationVariableNum=3 %变量个数POPSIZE=50 %种群大小MaxGens=1000 %种群代数PXOVER=0.8 %交叉概率PMutation=0.2 %变异概率%读取数据文件load E:\现代优化算法\遗传算法\bound.txtVarBound=bound(:,1:2);global Pop newPopPop=zeros(POPSIZE+1,VariableNum);newPop=zeros(POPSIZE+1,VariableNum);%初始化种群for i=1:POPSIZEfor j=1:VariableNumPop(i,j)=VarBound(j,1)+rand()*(VarBound(j,2)-VarBound(j,1)); endend%计算适应值fitnessList=zeros(POPSIZE,1);for i=1:POPSIZEfitnessList(i,1)=fitness(Pop(i,1:VariableNum));end%保存最好值和最坏值Best=zeros(1,VariableNum+1);Worst=zeros(1,VariableNum+1);maxvalue=max(fitnessList);indexMax=find(fitnessList==maxvalue,1,'first');Best(1,1:VariableNum)=Pop(indexMax,1:VariableNum);Best(1,VariableNum+1)=maxvalue;minvalue=min(fitnessList);indexMin=find(fitnessList==minvalue,1,'first');Worst(1,1:VariableNum)=Pop(indexMin,1:VariableNum);Worst(1,VariableNum+1)=minvalue;genetation=1;while genetation<MaxGens%计算适应度区间sumfit=sum(abs(fitnessList));relativeFitness=zeros(POPSIZE,1);relativeFitness=abs(fitnessList)/sumfit;for i=2:POPSIZErelativeFitness(i)=relativeFitness(i-1)+relativeFitness(i); end%选择操作newPop=Select(Pop,relativeFitness);%交叉操作newPop=Xcross(newPop,VariableNum,PXOVER);%变异操作newPop=Mutation(newPop,VariableNum,PMutation,VarBound);%计算新种群适应值for i=1:POPSIZEfitnessList(i,1)=fitness(newPop(i,1:VariableNum));end%保存最好值和替换最坏值maxvalue=max(fitnessList);indexMax=find(fitnessList==maxvalue,1,'first');minvalue=min(fitnessList);indexMin=find(fitnessList==minvalue,1,'first');if Best<maxvalueBest(1,1:VariableNum)=newPop(indexMax,1:VariableNum); Best(1,VariableNum+1)=maxvalue;elsenewPop(indexMin,1:VariableNum)=Best(1,1:VariableNum); fitnessList(indexMin,1)=Best(1,VariableNum+1);end%用子代替换父代Pop=newPop;genetation=genetation+1;endBest=========================================================%选择操作function newPop=Select(Pop,Rfitness)for i=1:length(Rfitness)r=rand();index=1;for j=1:length(Rfitness)if r<=Rfitness(j,1)index=j;break;endendnewPop(i,:)=Pop(index,:);end======================================%交叉操作function newPop=Xcross(Pop,VariableNUM,CrossRate)point=1;sizePop=length(Pop);for i=0:sizePop/2Xrate=rand();if Xrate<CrossRate %如果交叉first_index=round(rand()*(sizePop-2)+1);second_index=round(rand()*(sizePop-2)+1);while first_index==second_index %排除两个个体一样的情况 second_index=round(rand()*(sizePop-2)+1);endif VariableNUM>1if VariableNUM==2point=1;elsepoint=round(rand()*(VariableNUM-2)+1);endtempOne=zeros(1,point);tempOne(1,1:point)=Pop(first_index,1:point);Pop(first_index,1:point)=Pop(second_index,1:point); Pop(second_index,1:point)=tempOne(1,1:point);endendendnewPop=zeros(size(Pop),1);newPop=Pop;====================================================%变异操作function newPop=Mutation(Pop,VariableNUM,MutationRate,bound) point=1;sizePop=length(Pop);for i=1:sizePopfor j=1:VariableNUMMrate=rand();if Mrate<MutationRate %如果发生变异Pop(i,j)= rand()*(bound(j,2)-bound(j,1))+ bound(j,1);endendendnewPop=zeros(size(Pop),1);newPop=Pop;=================================================%适应值函数或目标函数%函数 x1^2-x1*x2+x3function value=fitness(varargin)n=varargin{1,1};value=n(1,1)^2-n(1,1)*n(1,2)+n(1,3);七、结论遗传算法在处理背包问题时借助了大自然的演化过程,采用的是种群和随机搜索机制,它是一种多线索而非单线索的全局优化方法,能克服传统优化方法的缺点。