场强的计算(无限长直线)

合集下载

电场强度的八种求解方法(无答案)

电场强度的八种求解方法(无答案)

3kq A. 3l2
3kq B. l2
3kq C. l2
2 3kq D. l2
3.2.4 对称法
利用空间上对称分布的电荷形成的电场具有对称性的特点,使复杂电场的叠加计算问题大为简化.
3 例如:如上图所示,均匀带电的4球壳在 O 点产生的场强,等效为弧 BC 产生的场强,弧 BC 产生的场强方向,又等效 为弧的中点 M 在 O 点产生的场强方向. 题6 如图所示,一半径为 R 的圆盘上均匀分布着电荷量为 Q 的电荷,在垂直于圆盘且过圆心 c 的轴线上有 a、b、d 三个点, a 和 b、b 和 c、c 和 d 间的距离均为 R,在 a 点有一电荷量为 q(q>0)的固定点电荷.已知 b 点处的场强为零,则 d 点处 场强的大小为(k 为静电力常量)( )
A.平行于 AC 边
B.平行于 AB 边
C.垂直于 AB 边指向 C
D.垂直于 AB 边指向 AB
2. 如图所示,真空中 O 点有一点电荷,在它产生的电场中有 a、b 两点,a 点的场强大小为 Ea,方向与 ab 连线成 60°⻆,
b 点的场强大小为 Eb,方向与 ab 连线成 30°⻆.关于 a、b 两点场强大小 Ea、Eb 的关系,以下结论正确的是( )
比较项目
等量异种点电荷
等量同种点电荷
电场线的分布图
连线中点 O 处的场强 连线上的场强大小 (从左到右)
沿中垂线由 O 点向外 场强大小
关于 O 点对称的 A 与 A′,B 与 B′的场强
连线上 O 点场强最小,指向负电荷一方 沿连线先变小,再变大 O 点最大,向外逐渐变小 等大同向
为零 沿连线先变小,再变大 O 点最小,向外先变大后变小
4q A.k h2

电场强度的几种计算方法

电场强度的几种计算方法

电场强度的几种求法一.公式法1.qF E =是电场强度的定义式:适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷无关,试探电荷q 充当“测量工具”的作用。

2.2r k Q E =是真空中点电荷电场强度的决定式,E 由场源电荷Q 和某点到场源电荷的距离r 决定。

3.dU E =是场强与电势差的关系式,只适用于匀强电场,注意式中的d 为两点间的距离在场强方向的投影。

二.对称叠加法当空间的电场由几个点电荷共同激发的时候,空间某点的电场强度等于每个点电荷单独存在时所激发的电场在该点的场强的矢量和,其合成遵守矢量合成的平行四边形定则。

例:如图,带电量为+q 的点电荷与均匀带电。

例:如图,带电量为+q 的点电荷与均匀带电薄板相距为2d ,点电荷到带电薄板的垂线通过板的几何中心,如图中a 点处的场强为零,求图中b 点处的场强多大例:一均匀带负电的半球壳,球心为O 点,AB 为其对称轴,平面L 垂直AB 把半球壳一分为二,L 与AB 相交于M 点,对称轴AB 上的N 点和M 点关于O 点对称。

已知一均匀带电球壳内部任一点的电场强度为零,点电荷q 在距离其为r 处的电势为r qk =ϕ。

假设左侧部分在M 点的电场强度为E 1,电势为1ϕ;右侧部分在M 点的电场强度为E 2,电势为2ϕ;整个半球壳在M 点的电场强度为E 3,在N 点的电场强度为E 4,下列说法中正确的是( )A .若左右两部分的表面积相等,有E 1>E 2,1ϕ>2ϕB .若左右两部分的表面积相等,有E 1<E 2,1ϕ<2ϕC .只有左右两部分的表面积相等,才有E 1>E 2,E 3=E 4D .不论左右两部分的表面积是否相等,总有E 1>E 2,E 3=E 4答案:D例:ab 是长为L 的均匀带电细杆,P1、P2是位于ab 所在直线上的两点,位置如图所示.ab 上电荷产生的静电场在P1处的场强大小为E 1,在P2处的场强大小为E2。

大学物理常用公式(电场磁场 热力学)

大学物理常用公式(电场磁场 热力学)

第四章 电 场一、常见带电体的场强、电势分布2)均匀带电球面(球面半径 )的电场:3)无限长均匀带电直线(电荷线密度为): E = ,方向:垂直于带电直线。

2r( rR ) 4)无限长均匀带电圆柱面(电荷线密度为):E =2r (rR )5)无限大均匀带电平面(电荷面密度为)的电场: E =/20 ,方向:垂直于平面。

二、静电场定理 1、高斯定理:e = ÑE v dS v = q 静电场是有源场。

Sq 指高斯面内所包含电量的代数和;E 指高斯面上各处的电场强度,由高斯面内外的全 部电荷产生; Ñ E vdS v 指通过高斯面的电通量,由高斯面内的电荷决定。

2、环路定理: Ñ E v dl v =0 静电场是保守场、电场力是保守力,可引入电势能三、求场强两种方法1、利用场强势叠加原理求场强 分离电荷系统: E v = E v i ;连续电荷系统: E v = dE v i =12、利用高斯定理求场强 四、求电势的两种方法n1、利用电势叠加原理求电势 分离电荷系统:U =U i ;连续电荷系统: U = dU i =1电势零点v v 2、利用电势的定义求电势 U =电势零点Edl五、应用vv b点电荷受力: F = qE电势差: U ab =U a -U b = b EdraE =1 qU =q4r 24r1)点电荷:E =0 (rR ) q2 (rR ) 4r 2U =q (r R ) 4r q (r R ) 4Ra 点电势能:W a = qU a由 a 到 b 电场力做功等于电势能增量的负值 A ab = -W = -(W b -W a )六、导体周围的电场1、静电平衡的充要条件: 1)、导体内的合场强为 0,导体是一个等势体。

2)、导体表面的场强处处垂直于导体表面。

E v ⊥表面。

导体表面是等势面。

2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。

电场强度的计算

电场强度的计算

6. 2. 5电场强度的计算在本知识点中,我们将给大家介绍使用迭加原理计算场强的方法。

重点是微积分的使用。

使用微积分计算场强的步骤大致有:1、建立坐标系:目的是便于表示场强的方向和选择积分的变量;2、选取元电荷:即对连续带电体进行微分;3、写出元电荷在考察点的场强大小;4、分析元电荷在考察点场强的方向:目的是为写分量做准备;5、写出元电荷在考察点场强的各个分量:目的是为对各个分量积分做准备;6、分别对各个分量积分,并在积分过程中选择恰当的积分变量和统一变量。

【例1】求电偶极子中垂线上任意一点的电场强度。

电偶极子的电场【解】如上图所示。

设电偶极子的电量分别为+ q和-q,用l表示从负电荷指向正电荷的矢量。

设中垂线上任意一点P相对于+ q和-q的位置矢量分别为r +和r -,而r + =r -。

+ q和-q在P点处产生的场强以r表示电偶极子中心到P点距离,则在距离电偶极子甚远时,即r >> l时,取一级近似有P点的总场强为十口一二4sr%r式中p = q l是电偶极子的电矩,这样上述结果又可以写成此结果表明,电偶极子在其中垂线上距电偶极子中心较远处各点电场强度与电偶极子的电矩成正比,与该点离电偶极子中心的距的三次方成反比,方向与电矩的方向相反。

【例2】试求一均匀带电直线外任意一点处的场强。

设直线长为L (见下图),电荷线密度(即单位长度上的电荷)为'(设“对)设直线外场点P到直线的垂直距离为代,P点与带电直线的上下端点的连线与垂线的夹角分别为日1和苗。

【解】均匀带电直线可以理解为实际问题中一根带电直棒的抽象模型,如果我们仅限于考虑离棒的距离比棒的截面尺寸大得多的地方的电场,则该带电直棒就可以看作一条带电直线。

P点处的场强可以通过微积分来求解。

在带电直线上任取一长为逾的元电荷,其电量幽=,仲。

以P点到带电直线的垂足O为原点,取如图所示坐标轴6 ,学。

元电荷d q 在P点的场强d E沿两个轴方向的分量分别为和拓)。

电磁学习题课lesson16

电磁学习题课lesson16

dfe dt
Ñò òò v v
H × dl
l
= Is
=
S
æ ç è
v j传导
+
v dD dt
ö ÷ ø
×
v dS
10
作业1分析
作业二: 1、如图所示,两个同心的均匀带电球面,内球面半径为 R1,带电量 Q1,外球面半径为 R2,带电量为 Q2。设无穷远处为电势零点。 求: (1) 空间各处电场强度的分布;
答:是等势体 如果把导体一分为二,两部分的电势不相等
14
3、当一个带电导体达到静电平衡时,表面曲率较大处电荷密度较大,故
其表面附近的场强较大。
( ×)
孤立导体达到静电平衡表面场强大小为 E = s e0
作业2平行板电容器,两极板面积均为 S,板间距离为 d( d远 小于极板线度),在两极板间平行地插入一面积也是S、厚度为 t(< d) 的金属片。 试求: (l)电容C等于多少? (2)金属片放在两极板间的位置对电容值有无影响?
20
3、一宽b=2.0cm,厚d=1.0mm的铜片,放在B=3.0T的磁场中,磁场垂 直通过铜片,如果铜片载有电流100A,已知铜片中自由电子的密度 是 n=8.4´1028m-3 求此时产生的霍耳电势差的大小是多少?
作业五:
UH
= RH
BI d
=1 nq
BI d
=
8.4
´1028
3´100 ´1.6 ´10-19
2、以下说法正确的是( A ) (A) 在电势不变的区域内,电场强度一定为零 (B) 在电势为零处,场强一定为零 (C) 场强为零处,电势一定为零 (D) 在均匀电场中,各点电势相等
13
3、在均匀电场中,各点的( B )

电场强度的八种求解方法

电场强度的八种求解方法

3kq A. 3l2
3kq B. l2
3kq C. l2
2 3kq D. l2
3.2.4 对称法
利用空间上对称分布的电荷形成的电场具有对称性的特点,使复杂电场的叠加计算问题大为简化.
3 例如:如上图所示,均匀带电的4球壳在 O 点产生的场强,等效为弧 BC 产生的场强,弧 BC 产生的场强方向,又等效 为弧的中点 M 在 O 点产生的场强方向. 题6 如图所示,一半径为 R 的圆盘上均匀分布着电荷量为 Q 的电荷,在垂直于圆盘且过圆心 c 的轴线上有 a、b、d 三个点, a 和 b、b 和 c、c 和 d 间的距离均为 R,在 a 点有一电荷量为 q(q>0)的固定点电荷.已知 b 点处的场强为零,则 d 点处 场强的大小为(k 为静电力常量)( )
1. 等值代换法是根据两个量之间具有的数值上的相等关系,通过计算一个量的数值从而间接求出另一个量的解题方法. 2. 等值代换法是解答物理题的重要方法之一.像求物体给接触面的正压力往往借助于牛顿第三定律求这一力的反作用力,
就是采用了等值代换法. 3. 求感应电荷的电场,要用到静电平衡状态的特点——导体内部场强处处为零.导体内的任一点,外部电场在该点的场
第2⻚
高中物理题型归类分析
题4 如图所示,xOy 平面是无穷大导体的表面,该导体充满 z<0 的空间,z>0 的空间为真空.将电荷量为 q 的点电荷置于 z 轴上 z=h 处,则在 xOy 平面上会产生感应电荷.空间任意一点处的电场皆是由点电荷 q 和导体表面上的感应电荷共同 h 激发的.已知静电平衡时导体内部场强处处为零,则在 z 轴上 z=2处的场强大小为(k 为静电力常量)( )
3.1.2 三个计算公式
公式
适用条件
说明

大学物理 静电场总结

大学物理 静电场总结

5. 电势定义:
a
Wpa q0
ur r E dl
a
静电场力作的功与电势差、电势能之间的关系:
b ur r
Aab qE dl q(a b ) (Wpb Wpa ) a
6. 电势分布的典型结论
1) 点电荷: q 4 0r
2) 均匀带电圆环轴线上:
4 0
q R2 x2
3) 均匀带电球面的电势分布:
1)平行板电容器 C 0S
d
2) 电容器的串并联:
串联 1 1 1 1
C C1 C2
Cn
并联 C C1 C2 Cn
4. 电场能量
电容器的静电能: W Q2
2C
电场能量密度:
w
1 2
0E2
各向同性的电介质:
电介质 电位移
D ε0E P
D ε0εr E εE
Gauss定理
2. 静电平衡时导体上的电荷分布 1) 实心导体: 电荷只分布在表面,导体内部没有净电荷.
2) 空腔导体: • 腔内无电荷 电荷分布在外表面,内表面无电荷. •:腔内有电荷: 腔体内表面所带的电量和腔内带电体所带 的电量等量异号。 • 接地空腔导体 外表面不带电, 静电屏蔽 :
3. 电容 C Q
q
4
q
0R
L L rR L L rR
40r
4) 无限长均匀带电直线: ln rB 20 r
(B 0)
7. 电势的计算 叠加法 定义法
第6章 静电场中的导体与电介质
1. 导体的静电平衡条件:
电场描述: ⑴ 导体内部任意一点的场强为零。 ⑵ 导体表面处的场强方向与该处表面垂直.
电势描述: 导体是一等势体,表面是一等势面.

电场强度——精选推荐

电场强度——精选推荐

电场强度1.电场强度电场强度是从力的角度描述电场的物理量,其定义式为 qF E =式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。

借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为22r Q k q r Qq k q F E ===式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。

2.场强的叠加原理在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。

原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。

3.电通量、高斯定理、(1)磁通量是指穿过某一截面的磁感应线的总条数,其大小为θsin BS =Φ,其中θ为截面与磁感线的夹角。

与此相似,电通量是指穿过某一截面的电场线的条数,其大小为θϕsin ES =, θ为截面与电场线的夹角。

高斯定量:在任意场源所激发的电场中,对任一闭合曲面的总通量可以表示为∑=i q k πϕ4(41πε=k )Nm C /1085.82120-⨯=ε为真空介电常数 式中k 是静电常量,∑iq 为闭合曲面所围的所有电荷电量的代数和。

由于高中缺少高等数学知识,因此选取的高斯面即闭合曲面,往往和电场线垂直或平行,这样便于电通量的计算。

(2)利用高斯定理求几种常见带电体的场强①无限长均匀带电直线的电场一无限长直线均匀带电,电荷线密度为η,如图所示。

考察点P 到直线的距离为r 。

由于带电直线无限长且均匀带电,因此直线周围的电场在竖直方向分量为零,即径向分布,且关于直线对称。

取以长直线为主轴,半径为r ,长为l 的圆柱面为高斯面,如图,上下表面与电场平行,侧面与电场垂直,因此电通量lηπππϕ⋅==⋅⨯=∑kl q k l r E i 442r k E η2=②无限大均匀带电平面的电场根据无限大均匀带电平面的对称性,可以判定整个带电平面上的电荷产生的电场的场强与带电平面垂直并指向两侧,在离平面等距离的各点场强应相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档