多边形重要知识点总结

合集下载

多边形内角和知识点

多边形内角和知识点

多边形内角和知识点1. 多边形内角和那可是很关键的知识呢呀!就说三角形吧,内角和就是180 度,这就像一个稳定的小团体,三个角紧紧相依。

比如我们常见的直角三角形,一个直角 90 度,那另外两个锐角加起来不就是 90 度嘛!2. 哎呀呀,四边形的内角和是 360 度哟!你想想看,把四边形分成两个三角形,不就清楚啦。

就好比一间房子有四个角,它们的和就是 360 度啊。

像长方形,四个角都是直角,加起来就是 360 度呢!3. 多边形内角和会随着边数增加而变化呢,神奇吧!五边形的内角和是540 度呀。

这就好像是一个更复杂的团队,角度的组合更多啦。

比如五边形的地砖,那里面的角度组合起来就是 540 度哦!4. 你知道吗,多边形内角和的规律超有趣呀!六边形内角和是 720 度呢。

这就如同一个更大型的图案,蕴含着更多的秘密。

像蜂巢的形状,不就是六边形嘛,它们的内角和就有 720 度呀!5. 多边形内角和还能让我们解决很多问题呢!七边形内角和是 900 度哟。

就像是一个难解的谜题,等我们去探索。

好比一个奇特的七边形徽章,它的内角和就是 900 度呢。

6. 哇塞,八边形内角和有 1080 度呢!是不是很惊讶呀!这就像一个超级复杂的结构,需要我们仔细研究。

比如一个八边形的花坛,里面的角度加起来就是 1080 度呀。

7. 多边形内角和真的好神奇呀,九边形内角和是 1260 度呢!就像一个神秘的图案等待我们解开。

像一些特别的九边形装饰,内角和就是1260 度。

8. 多边形内角和可是数学里的宝贝呀!十边形内角和是 1440 度哦!这就如同一个宏伟的计划,充满了未知与挑战。

像一个华丽的十边形图案,那其中的内角和真是让人惊叹!总之,多边形内角和是非常有意思且重要的知识呀!。

多边形重要知识点总结

多边形重要知识点总结

多边形重要知识点总结多边形重要知识点总结 1一、多边形1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。

2、多边形的边:组成多边形的各条线段叫做多边形的边。

3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。

4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。

5、多边形的周长:多边形各边的长度和叫做多边形的周长。

6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。

说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。

今后所说的多边形,如果不特别声明,都是指凸多边形。

7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。

8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。

注意:多边形的外角也就是与它有公共顶点的内角的邻补角。

二、平行四边形1、平行四边形:两组对边分别平行的四边形叫做平行四边形。

2、平行四边形性质定理1:平行四边形的对角相等。

3、平行四边形性质定理2:平行四边形的对边相等。

4、平行四边形性质定理2推论:夹在平行线间的平行线段相等。

5、平行四边形性质定理3:平行四边形的对角线互相平分。

6、平行四边形判定定理1:一组对边平行且相等的四边形是平行四边形。

7、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形。

8、平行四边形判定定理3:对角线互相平分的四边形是平行四边形。

9、平行四边形判定定理4:两组对角分别相等的四边形是平行四边形。

说明:(1)平行四边形的定义、性质和判定是研究特殊平行四边形的基础。

同时又是证明线段相等,角相等或两条直线互相平行的重要方法。

(2)平行四边形的定义即是平行四边形的一个性质,又是平行四边形的一个判定方法。

三、矩形矩形是特殊的平行四边形,从运动变化的观点来看,当平行四边形的一个内角变为90°时,其它的边、角位置也都随之变化。

多边形的知识点梳理

多边形的知识点梳理

多边形的知识点梳理
多边形是指由多个边组成的封闭图形。

初中阶段,学生需要掌握多边形的基本概念、属性以及常见的多边形类型。

以下是初一多边形的知识点梳理:
1. 多边形的定义
多边形是由多条线段构成的封闭图形。

多边形的每条线段称为边,相邻边之间的交点称为顶点。

2. 多边形的属性
多边形有以下几个重要的属性:
- 边数:多边形有多少条边,可以根据边的数量来命名,如三边形、四边形等。

- 顶点数:多边形有多少个顶点,也可以根据顶点的数量来命名。

- 内角和:多边形内所有角的和,根据多边形的边数可以使用公式来计算。

- 外角和:多边形外所有角的和,也可以根据多边形的边数使用公式计算。

3. 常见的多边形类型
在初中阶段,学生需要了解以下常见的多边形类型:
- 三角形:具有三条边和三个顶点的多边形。

- 矩形:具有四个直角和四条相等且相邻的边的多边形。

- 正方形:具有四个直角和四条相等的边的矩形。

- 平行四边形:具有两组平行边的四边形。

- 梯形:具有两边平行的四边形。

4. 多边形的性质
多边形还有一些重要的性质:
- 内角和定理:任意一个n边形的内角和等于180度乘以(n-2)。

- 外角和定理:任意一个凸n边形的外角和等于360度。

以上是初一多边形的知识点梳理,掌握这些基本概念和属性,
可以帮助学生更好地理解和应用多边形的相关内容。

多边形的特性与分类知识点总结

多边形的特性与分类知识点总结

多边形的特性与分类知识点总结多边形是由若干条线段构成的封闭图形,它在几何学中占据着重要的地位。

本文将总结多边形的特性与分类知识点,以帮助读者更好地理解和应用多边形的相关概念。

一、多边形的特性1. 边和顶点:多边形由若干条线段组成,这些线段被称为边。

对于多边形内的每个交点,我们称之为顶点。

2. 闭合性:多边形是封闭的,即它的起点和终点相连,形成一个封闭的图形。

3. 内角和外角:多边形的内角是指多边形内部两条邻边之间的角度。

而多边形的外角是指多边形的一条边的延长线与相邻边之间的角度。

4. 对角线:多边形内部的两个非相邻顶点可以通过一条线段连接,这条线段被称为对角线。

二、多边形的分类根据边的数量和长度,多边形可分为以下几类:1. 三角形:三角形是指有三条边和三个顶点的多边形。

根据三条边的长度关系,三角形可以进一步分为等边三角形、等腰三角形和一般三角形。

- 等边三角形:三条边的长度相等。

- 等腰三角形:两条边的长度相等。

- 一般三角形:三条边的长度都不相等。

2. 四边形:四边形是指有四条边和四个顶点的多边形。

根据四条边的性质,四边形可以进一步分为矩形、正方形、平行四边形和菱形。

- 矩形:四个角都是直角的四边形。

- 正方形:四条边的长度都相等且四个角都是直角的四边形。

- 平行四边形:有两对边是平行的四边形。

- 菱形:四条边的长度都相等的四边形。

3. 多边形(五边形及以上):多边形除了三角形和四边形之外,还包括五边形、六边形等。

根据边的数量,多边形可以被进一步细分。

通过边数分类:- 五边形:有五条边和五个顶点的多边形。

- 六边形:有六条边和六个顶点的多边形。

- 七边形:有七条边和七个顶点的多边形。

- 八边形:有八条边和八个顶点的多边形。

通过角数分类:- 正多边形:所有内角和边数相等的多边形。

- 凸多边形:从多边形内部选择两个顶点,与其他顶点的连线完全在多边形内部的多边形。

需要注意的是,多边形的分类并不是互斥的,一个多边形可能符合多个分类标准。

多边形知识点总结

多边形知识点总结

多边形知识点总结按照不同的标准,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。

由在同一平面且不在同一直线上的三条或三条以上的线段首尾顺次连结且不相交所组成的封闭图形叫做多边形。

在不同平面上的多条线段首尾顺次连结且不相交所组成的图形也被称为多边形,是广义的多边形。

组成多边形的线段至少有3条,三角形是最简单的多边形。

组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点;多边形相邻两边所成的角叫做多边形的内角;连接多边形的两个不相邻顶点的线段叫做多边形的对角线。

多边形还可以分为正多边形和非正多边形。

正多边形各边相等且各内角相等。

多边形也可以分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形上面的此定理只适用于凸多边形,即平面多边形,空间多边形不适用。

1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。

2、多边形的边:组成多边形的各条线段叫做多边形的边。

3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。

4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。

5、多边形的周长:多边形各边的长度和叫做多边形的周长。

6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。

说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。

今后所说的多边形,如果不特别声明,都是指凸多边形。

7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。

8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。

注意:多边形的外角也就是与它有公共顶点的内角的邻补角。

1、平行四边形:两组对边分别平行的四边形叫做平行四边形。

2、平行四边形性质定理1:平行四边形的对角相等。

3、平行四边形性质定理2:平行四边形的对边相等。

多边形及内角和知识点汇总

多边形及内角和知识点汇总

知识要点梳理180°(n-2)。

360°.n边形得对角线条数等于1/2·n(n-3)3、4、6/。

拼成360度得角):3、4。

、多边形得定义:在平面内,由一些线段首尾顺次相接组成得图形叫做多边边:组成多边形得各条线段叫做多边形得边。

顶点:每相邻两条边得公共端点叫做多边形得顶点。

内角:多边形相邻两边组成得角叫多边形得内角,一个n边形有n个内角。

ﻫ外角:多边形得边与它得邻边得延长线组成得角叫做多边形得外角。

(2)在定义中应注意:ﻫ①一些线段(多边形得边数就是大于等于3得正整数);②首尾顺次相连,二者缺一不可;ﻫ③理解时要特别注意“在同一平面内”这个条件,其目得就是为了排除几个点不共面得情况,即空间ﻫ多边形、ﻫ2、多边形得分类:ﻫ(1)多边形可分为凸多边形与凹多边形,画出多边形得任何一条边所在得直线,如果整个多边形都在这ﻫ条直线得同一侧,则此多边形为凸多边形,反之为凹多边形(见图1)、本章所讲得多边形都就是指凸多边形、ﻫ凸多边形凹多边形ﻫ图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形。

三角形、四边形都属于多边形,其中三角形就是边数最少得多边形.ﻫ知识点二:正多边形ﻫ各个角都相等、各个边都相等得多边形叫做正多边形.如正三角形、正方形、正五边形等.ﻫ正三角形正方形正五边形正六边形正十二边形要点诠释:ﻫ各角相等、各边也相等就是正多边形得必备条件,二者缺一不可、如四条边都相等得四边形不一定就是正方形,四个角都相等得四边形也不一定就是正方形,只有满足四边都相等且四个角也都相等得四边形才就是正方形知识点三:多边形得对角线多边形得对角线:连接多边形不相邻得两个顶点得线段,叫做多边形得对角线、如图2,BD为四边形ABCD得一条对角线。

ﻫ要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

ﻫ(2)n边形共有条对角线。

ﻫ证明:过一个顶点有n—3条对角线(n≥3得正整数),又∵共有n个顶点,∴共有n(n—3)条对角线,但过两个不相邻顶点得对角线重复了一次,∴凸n边形,共有条对角线。

多边形及内角和知识点汇总

多边形及内角和知识点汇总

知识要点梳理定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。

凸多边形凹多边形正多边形:各边相等,各角也相等的多边形叫做正多边形。

非正多边形:1、n 边形的内角和等于 180°( n-2 )。

多边形的定理2 、任意凸形多边形的外角和等于 360°。

3 、n 边形的对角线条数等于 1/2 ·n ( n-3)只用一种正多边形: 3、 4、 6/ 。

只用一种非正多边形(全等) :3、 4。

知识点一:多边形及有关概念1、 多边形的定义: 在平面内,由一些线段首尾顺次相接组成的图形叫做多边形 .( 1)多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点. 内角:多边形相邻两边组成的角叫多边形的内角,一个 n 边形有 n 个内角。

外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。

( 2)在定义中应注意: ①一些线段(多边形的边数是大于等于 3 的正整数); ②首尾顺次相连,二者缺一不可 ;③理解时要特别注意“在同一平面内”这个条件 , 其目的是为了排除几个点不共面的情况 , 即空间 多边形 .2、多边形的分类 : (1)多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这 条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图 1). 本章所讲的多边形都是指凸多边形 .凸多边形(2) 多边形通常还以边数命名,多边形有形是边数最少的多边形.知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。

如正三角形、正方形、正五边形等。

拼成 360 度的角图1n 条边就叫做 n 边形.三角形、四边形都属于多边形,其中镶嵌要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可 . 如四条边都相等的四边形不一定是正方形,四个 角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形 知识点三:多边形的对角线多边形的对角线 :连接多边形不相邻的两个顶点的线段,叫做多边形的对角线 . 如图 2,BD 为四边形 ABCD 的一 条对角线。

多边形(基础) 知识讲解

多边形(基础)  知识讲解

多边形(基础)知识讲解【学习目标】1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n边形的一个顶点可以引(n-3)条对角线,n边形对角线的条数为(3)2n n;(3)过n边形的一个顶点的对角线可以把n边形分成(n-2)个三角形.知识点二、多边形内角和n边形的内角和为(n-2)·180°(n≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;凸多边形凹多边形(2)正多边形的每个内角都相等,都等于(2)180nng°;知识点三、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【典型例题】类型一、多边形的概念1.如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF 分成哪几个三角形?【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形重要知识点总结
导读:一、多边形
1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。

2、多边形的边:组成多边形的各条线段叫做多边形的边。

3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。

4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。

5、多边形的周长:多边形各边的长度和叫做多边形的周长。

6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。

说明:一个多边形至少要有三条边,有三条边的叫做三角形;有四条边的叫做四边形;有几条边的叫做几边形。

今后所说的多边形,如果不特别声明,都是指凸多边形。

7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。

8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。

注意:多边形的外角也就是与它有公共顶点的内角的邻补角。

二、平行四边形
1、平行四边形:两组对边分别平行的四边形叫做平行四边形。

2、平行四边形性质定理1:平行四边形的对角相等。

3、平行四边形性质定理2:平行四边形的对边相等。

4、平行四边形性质定理2推论:夹在平行线间的平行线段相等。

5、平行四边形性质定理3:平行四边形的对角线互相平分。

6、平行四边形判定定理1:一组对边平行且相等的四边形是平行四边形。

7、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形。

8、平行四边形判定定理3:对角线互相平分的四边形是平行四边形。

9、平行四边形判定定理4:两组对角分别相等的四边形是平行四边形。

说明:(1)平行四边形的定义、性质和判定是研究特殊平行四边形的基础。

同时又是证明线段相等,角相等或两条直线互相平行的重要方法。

(2)平行四边形的定义即是平行四边形的一个性质,又是平行四边形的一个判定方法。

三、矩形
矩形是特殊的平行四边形,从运动变化的观点来看,当平行四边形的一个内角变为90°时,其它的边、角位置也都随之变化。

因此矩形的性质是在平行四边形的基础上扩充的。

1、矩形:有一个角是直角的平行四边形叫做短形(通常也叫做长方形)
2、矩形性质定理1:矩形的四个角都是直角。

3.矩形性质定理2:矩形的对角线相等。

4、矩形判定定理1:有三个角是直角的四边形是矩形。

说明:因为四边形的内角和等于360度,已知有三个角都是直角,那么第四个角必定是直角。

5、矩形判定定理2:对角线相等的平行四边形是矩形。

说明:要判定四边形是矩形的方法是:
法一:先证明出是平行四边形,再证出有一个直角(这是用定义证明)
法二:先证明出是平行四边形,再证出对角线相等(这是判定定理1)
法三:只需证出三个角都是直角。

(这是判定定理2)
四、菱形
菱形也是特殊的平行四边形,当平行四边形的两个邻边发生变化时,即当两个邻边相等时,平行四边形变成了菱形。

1、菱形:有一组邻边相等的平行四边形叫做菱形。

2、菱形的性质1:菱形的四条边相等。

3、菱形的性质2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。

4、菱形判定定理1:四边都相等的四边形是菱形。

5、菱形判定定理2:对角线互相垂直的平行四边形是菱形。

说明:要判定四边形是菱形的方法是:
法一:先证出四边形是平行四边形,再证出有一组邻边相等。

(这就是定义证明)。

法二:先证出四边形是平行四边形,再证出对角线互相垂直。

(这是判定定理2)
法三:只需证出四边都相等。

(这是判定定理1)
五、正方形
正方形是特殊的平行四边形,当邻边和内角同时运动时,又能使平行四边形的一个内角为直角且邻边相等,这样就形成了正方形。

1、正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形性质定理1:正方形的四个角都是直角,四条边都相等。

3、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。

4、正方形判定定理互:两条对角线互相垂直的矩形是正方形。

5、正方形判定定理2:两条对角线相等的菱形是正方形。

注意:要判定四边形是正方形的方法有
方法一:第一步证出有一组邻边相等;第二步证出有一个角是直角;第三步证出是平行四边形。

(这是用定义证明)
方法二:第一步证出对角线互相垂直;第二步证出是矩形。

(这是判定定理1)
方法三:第一步证出对角线相等;第二步证出是菱形。

(这是判
定定理2)
六、梯形
1、梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。

2、梯形的底:梯形中平行的两边叫做梯形的底(通常把较短的底叫做上底,较长的边叫做下底)
3、梯形的腰:梯形中不平行的两边叫做梯形的腰。

4、梯形的高:梯形有两底的距离叫做梯形的高。

5、直角梯形:一腰垂直于底的梯形叫做直角梯形。

6、等腰梯形:两腰相等的'梯形叫做等腰梯形。

7、等腰梯形性质定理1:等腰梯形在同一底上的两个角相等。

8、等腰梯形性质定理2:等腰梯形的两条对角线相等。

9、等腰梯形的判定定理l。

:在同一个底上钩两个角相等的梯形是等腰梯形。

10、等腰梯形的判定定理2:对角线相等的梯形是等腰梯形。

研究等腰梯形常用的方法有:化为一个等腰三角形和一个平行四边形;或两个全等的直角三角形和一矩形;或作对角线的平行线交下底的延长线于一点;或延长两腰交于一点。

七、中位线
1、三角形的中位线连结三角形两边中点的线段叫做三角形的中位线。

说明:三角形的中位线与三角形的中线不同。

2、梯形的中位线:连结梯形两腰中点的线段叫做梯形中位线。

3、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半。

4、梯形中位线定理:梯形中位线平行于两底,并且等于两底和的一半。

八、多边形的面积
说明:多边形的面积常用的求法有:
(1)将任意一个平面图形划分为若干部分再通过求部分的面积的和,求出原来图形的面积这种方法叫做分割法。

如图3-l,作六边形的最长的一条对角线,从其它各顶点向这条对角线引垂线,把六边形分成四个直角三角形和两个直角梯形,计算它们的面积再相加。

(2)将一个平面图形的某一部分割下来移放在另一个适当的位置上,从而改变原来图形的形状。

利用计算变形后的图形的面积来求原图形的面积的这种方法。

叫做割补法。

(3)将一个平面图形通过拼补某一图形,使它变为另一个图形,利用新的图形减去所补充图形的面积,来求出原来图形面积的这种方法叫做拼凑法。

注意:两个图形全等,它们的面积相等。

等底等高的三角面积相等。

一个图形的面积等于它的各部分面积的和。

【多边形重要知识点总结】
1.高数重要知识点总结怎么写
2.概率论重要知识点总结
3.合同法重要知识点
4.小说的重要知识点
5.《多边形》评课稿
6.初一上册生物重要知识点总结
7.初中语文重要知识点之趣味成语
8.《文言文两则》重要课文知识点
上文是关于多边形重要知识点总结,感谢您的阅读,希望对您有帮助,谢谢。

相关文档
最新文档