梁的弯曲(应力、变形)
梁的弯曲(应力、变形)

2
回顾与比较
内力
应力
F
A
FAy
编辑ppt
T
IP
M
?
?
FS
3
§9-6 梁的弯曲时的应力及强度计算
一、弯曲正应力 Normal stress in bending beam
梁段CD上,只有弯矩,没有剪力--纯弯曲Pure bending
梁段AC和BD上,既有弯矩,又有剪力--剪力弯曲Bending by
transverse force
编辑ppt
4
研究对象:等截面直梁 研究方法:实验——观察——假定
编辑ppt5Leabharlann 实验观察——梁表面变形特征
横线仍是直线,但发生 相对转动,仍与纵线正交
纵线弯成曲线,且梁的 下侧伸长,上侧缩短
以上是外部的情况,内部如何? 想象 —— 梁变形后,其横截面仍为平面,且垂直
x
61.7106Pa61.7MPa
编辑ppt
13
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
M ql /867.5kNm 2
x
2. C 截面最大正应力
120
B
x
180
K
30 C 截面弯矩
z
MC60kN m
FBY
y
C 截面惯性矩
IZ5.83120 5m 4
x 90kN
C max
M C y max IZ
于变形后梁的轴线,只是绕梁上某一轴转过一个角度 透明的梁就好了,我们用计算机模拟 透明的梁
编辑ppt
6
编辑ppt
7
总之 ,由外部去 想象内部 —— 得到
梁的弯曲正应力实验报告

梁的弯曲正应力实验报告梁的弯曲正应力实验报告引言:弯曲是一种常见的力学现象,广泛应用于工程和建筑领域。
梁是一种常见的结构,在受到外力作用时会发生弯曲变形。
为了研究梁的弯曲行为,本实验通过对梁进行弯曲试验,测量梁上的正应力分布,以便了解梁的强度和稳定性。
实验目的:1. 通过实验测量梁上的正应力分布,了解梁的弯曲行为;2. 分析梁的弯曲现象对梁的强度和稳定性的影响;3. 探究不同材料和截面形状对梁的弯曲正应力分布的影响。
实验原理:当一根梁受到外力作用时,梁会发生弯曲变形。
在梁的顶部和底部,会出现正应力和负应力。
本实验主要关注梁上的正应力分布。
根据梁的弯曲理论,梁上的正应力与梁的截面形状、材料性质、外力大小和位置等因素有关。
实验装置和步骤:实验装置包括一根长梁、测力计、测量仪器等。
具体步骤如下:1. 将长梁固定在实验台上,确保梁的两端支持牢固;2. 在梁上设置几个不同位置的测力计,用于测量梁上的正应力;3. 施加外力于梁上,使其发生弯曲变形;4. 通过测力计测量梁上各位置的正应力,并记录数据;5. 根据实验数据,绘制梁上的正应力分布曲线。
实验结果与分析:根据实验数据,我们可以得出梁上的正应力分布曲线。
通常情况下,梁上的正应力分布呈现出一定的规律性。
在梁的顶部和底部,正应力较大,逐渐向中间递减,最终趋近于零。
这是因为在梁的顶部和底部,受力较大,产生了较大的正应力;而在梁的中间,受力相对较小,正应力逐渐减小。
实验中还可以观察到不同材料和截面形状对梁的弯曲正应力分布的影响。
例如,对比不同材料的梁,我们可以发现不同材料的梁上的正应力分布曲线有所差异。
这是因为不同材料的梁具有不同的弹性模量和抗弯强度,从而导致不同的正应力分布。
此外,梁的截面形状也对梁的弯曲正应力分布有影响。
例如,对比矩形截面和圆形截面的梁,我们可以发现矩形截面的梁上的正应力分布曲线相对均匀,而圆形截面的梁上的正应力分布曲线则呈现出较大的集中度。
梁的应力计算公式全部解释

梁的应力计算公式全部解释应力是材料受力时产生的内部力,它是描述材料内部抵抗外部力的能力的物理量。
在工程领域中,计算材料的应力是非常重要的,可以帮助工程师设计和选择合适的材料,以确保结构的安全性和稳定性。
梁的应力计算公式是计算梁在受力时产生的应力的公式,它可以帮助工程师了解梁在不同条件下的应力情况,从而进行合理的设计和分析。
梁的应力计算公式是由弹性力学理论推导而来的,它可以根据梁的几何形状、受力情况和材料性质来计算梁的应力。
在工程实践中,梁的应力计算公式通常包括弯曲应力、剪切应力和轴向应力三种类型的应力。
下面将分别对这三种类型的应力计算公式进行详细解释。
1. 弯曲应力计算公式。
梁在受到外部力的作用时,会产生弯曲应力。
弯曲应力是由于梁在受力时产生的弯曲变形所引起的,它可以通过以下公式进行计算:σ = M c / I。
其中,σ表示梁的弯曲应力,单位为N/m^2;M表示梁的弯矩,单位为N·m;c表示梁截面内的距离,单位为m;I表示梁的惯性矩,单位为m^4。
弯曲应力计算公式可以帮助工程师了解梁在受力时产生的弯曲应力大小,从而进行合理的设计和分析。
在工程实践中,通常会根据梁的几何形状和受力情况选择合适的弯曲应力计算公式进行计算。
2. 剪切应力计算公式。
梁在受到外部力的作用时,会产生剪切应力。
剪切应力是由于梁在受力时产生的剪切变形所引起的,它可以通过以下公式进行计算:τ = V Q / (I b)。
其中,τ表示梁的剪切应力,单位为N/m^2;V表示梁的剪力,单位为N;Q 表示梁的截面偏心距,单位为m;I表示梁的惯性矩,单位为m^4;b表示梁的截面宽度,单位为m。
剪切应力计算公式可以帮助工程师了解梁在受力时产生的剪切应力大小,从而进行合理的设计和分析。
在工程实践中,通常会根据梁的几何形状和受力情况选择合适的剪切应力计算公式进行计算。
3. 轴向应力计算公式。
梁在受到外部力的作用时,会产生轴向应力。
轴向应力是由于梁在受力时产生的轴向变形所引起的,它可以通过以下公式进行计算:σ = N / A。
梁的弯曲应力与强度计算

max
FS
S
* z
I zb
Sz*3 2(R2 t)33 2(R2 t)3 2R2t
Iz4(R2 t)44(R2 t)4R3t
b2t
max
2
FS
2Rt
2
FS A
8.3 梁的剪应力及其强度条件
8.3.2 梁的剪应力强度条件
一般情况,在剪力为最大值的截面的中性轴上,出现最大剪
应力
max
F S* Smax max Izb
zdA
A
Mz
ydA
A
FN
dA0
A
(c)
My
zdA0
A
(d)
Mz AydAMe
(e)
将式 E y
代入式(c),得
AdAAEydA0
E
=常量,
E
y dA 0
A
Sz 0
z 轴(中性轴)通 过截面形心。
梁的轴线在中性层内,其长度不变。
8.1 梁弯曲时横截面上的正应力
E y
(b)
将式(b)代入式(d),得
E y
(b)
1 M EI z
由上面两式,得纯弯曲时正应力的计算公式:
M y Iz
将弯矩 M 和坐标 y 按规定的正负代入,所得到的正应力若为 正,即为拉应力,若为负则为压应力。
一点的应力是拉应力或压应力,也可由弯曲变形直接判定。 以中性层为界,梁在凸出的一侧受拉,凹入的一侧受压。
只要梁有一纵向对称面,且载荷作用于这个平面内,上面的 公式就可适用。
8.1 梁弯曲时横截面上的正应力
8.1.2 横力弯曲时横截面上的正应力 在工程实际中,一般都是横力弯曲,此时,梁的横截面上不
梁的弯曲正应力实验

梁的弯曲正应力实验梁的弯曲正应力实验概述梁的弯曲正应力实验是一种用于测试材料在受弯曲载荷作用下的变形和应力的实验。
该实验可以帮助工程师和科学家了解材料的性能和特性,以便更好地设计和制造各种产品。
实验原理当一根梁在两端受到垂直于其长度方向的载荷时,它会发生弯曲变形。
这种变形会导致梁内部产生正应力和剪切应力。
在弯曲过程中,梁上表面会发生拉伸,下表面会发生压缩,因此产生的正应力称为弯曲正应力。
根据材料的不同特性和几何形状,弯曲正应力可以通过不同的公式计算得出。
通常使用的公式包括:σ = M*y/I其中σ是弯曲正应力,M是载荷矩,y是距离中心轴线最远点的距离(也称为截面离心距),I是截面惯性矩。
实验装置进行梁的弯曲正应力实验需要使用一些特殊设备。
以下是常见的实验装置:1. 弯曲试验机弯曲试验机是用于施加载荷并记录变形的设备。
它通常由一个移动横梁和两个支架组成。
被测试的梁被放置在支架上,然后通过移动横梁施加载荷。
试验机可以记录载荷和变形数据,并计算出弯曲正应力。
2. 梁样品梁样品是进行实验的材料样本。
它们可以采用不同的几何形状和尺寸,以适应不同类型的实验。
通常使用的梁样品包括简支梁、固定端梁、自由端梁等。
3. 测量仪器测量仪器用于测量载荷和变形数据。
常见的测量仪器包括负荷传感器、位移传感器、应变计等。
实验步骤进行梁的弯曲正应力实验需要按照以下步骤进行:1. 准备工作首先需要准备好所有所需设备和材料,包括弯曲试验机、梁样品、测量仪器等。
2. 安装样品将所选样品安装在支架上,并根据需要调整其位置和方向。
3. 施加载荷使用弯曲试验机施加载荷,直到梁样品发生弯曲变形。
记录载荷和变形数据。
4. 计算弯曲正应力根据所选的公式计算出弯曲正应力。
将载荷和变形数据输入计算器或电脑程序中,即可得到结果。
5. 分析数据对实验结果进行分析,了解材料的性能和特性。
如果需要,可以进行多次实验以获取更准确的数据。
应用领域梁的弯曲正应力实验广泛应用于各个领域,如材料科学、土木工程、机械工程、航空航天等。
梁的弯曲(应力、变形)

梁的弯曲类型
01
02
03
自由弯曲
梁在受到外力作用时,其 两端不受约束,可以自由 转动。
简支弯曲
梁在受到外力作用时,其 一端固定,另一端可以自 由转动。
固支弯曲
梁在受到外力作用时,其 两端均固定,不能发生转 动。
梁的弯曲应用场景
桥梁工程
桥梁中的梁常常需要进行弯曲变形以承受车辆和 行人等载荷。
稳定性。
06 梁的弯曲研究展望
CHAPTER
新材料的应用研究
高强度材料
随着材料科学的进步,高强度、轻质的新型 材料不断涌现,如碳纤维复合材料、钛合金 等。这些新材料在梁的弯曲研究中具有广阔 的应用前景,能够显著提高梁的承载能力和 刚度。
功能材料
新型功能材料如形状记忆合金、压电陶瓷等, 具有独特的力学性能和功能特性,为梁的弯 曲研究提供了新的思路和解决方案。
反复的弯曲变形可能导致疲劳裂纹的 产生和扩展,影响结构的疲劳寿命。
对使用功能的影响
弯曲变形可能导致结构使用功能受限 或影响正常使用。
04 梁的弯曲分析方法
CHAPTER
理论分析方法
弹性力学方法
01
基于弹性力学理论,通过数学公式推导梁在弯曲状态下的应力
和变形。
能量平衡法
02
利用能量守恒原理,通过计算梁在不同弯曲状态下的能量变化,
详细描述
常见的截面形状有矩形、工字形、圆形等。应根据梁的用途和受力情况选择合适的截面形状。例如, 对于承受较大弯矩的梁,采用工字形截面可以有效地提高梁的承载能力和稳定性。
支撑结构优化
总结词
支撑结构是影响梁弯曲性能的重要因素,合理的支撑结构可以提高梁的稳定性,减小梁 的变形。
工程力学第8章梁的弯曲应力与强度计算

弯曲应力的大小与外力矩、截面尺寸 和材料性质等因素有关。
弯曲应力的产生原因
当梁受到外力矩作用时,梁的横截面上的内力分布不均匀, 产生弯曲应力。
弯曲应力的产生与梁的弯曲变形有关,是梁在受到外力矩作 用时,抵抗弯曲变形的能力的表现。
弯曲应力的分类
正弯曲应力
当梁受到外力矩作用时,在横截面上产生的正应 力称为正弯曲应力。
剪切弯曲应力
当梁受到外力矩作用时,在横截面上产生的剪切 应力称为剪切弯曲应力。
扭曲弯曲应力
当梁受到外力矩作用时,在横截面上产生的扭曲 应力称为扭曲弯曲应力。
03
梁的弯曲应力计算
纯弯曲梁的正应力计算
01
公式:$sigma = frac{M}{I}$
方向的力,梁的宽度是截面的几何尺寸。
弯曲正应力和剪切应力的关系源自公式$sigma + tau = frac{M}{I} + frac{V}{b}$
描述
该公式表示弯曲正应力与剪切应力之间的关系,两者共同作用在梁上,决定了梁的强度和刚度。
04
梁的强度计算
强度计算的依据
梁的弯曲应力
01
梁在弯曲时,其内部的应力分布情况是决定其强度的关键因素。
机械零件
在机械零件设计中,如起 重机的吊臂、汽车的车身 等,梁的强度计算是保证 其正常工作的基础。
05
梁的弯曲应力与强度的关系
弯曲应力对强度的影响
弯曲应力是梁在受到垂直于轴线的力时产生的应力,它会 导致梁发生弯曲变形。弯曲应力的大小和分布与梁的跨度 、截面形状和材料等因素有关。
弯曲应力对梁的强度有显著影响。当弯曲应力过大时,梁 可能会发生断裂或过度变形,导致其承载能力下降。因此 ,在进行梁的设计和强度计算时,必须考虑弯曲应力的影 响。
梁弯曲知识点总结

梁弯曲知识点总结一、弯曲概念在物理学和工程力学中,弯曲是指在材料受到外力作用下,产生一种曲率变化的变形形式。
在梁的情况下,当梁受到外部载荷作用时,梁将发生一种曲率变化,即梁的一部分受到压力而另一部分受到拉力,使得梁产生一种弯曲的变形形式。
梁的弯曲是梁理论研究的重要内容之一。
二、弯曲的原理梁的弯曲原理是由梁的弯矩和弯曲应力来描述的。
梁在弯曲时,横截面上的各个点受到的弯矩不同,由于弯矩的不平衡,在梁的上表面产生的张力,下表面产生的压力,产生了一种称为弯曲应力的内力形式。
弯曲应力的作用下,梁在弯曲的过程中产生了曲率变化,弯曲原理是用来描述梁在弯曲时的变形和内力情况的。
三、梁的弯曲方程梁的弯曲方程是用来描述梁在弯曲时的曲率和弯矩之间的关系的。
梁的弯曲方程可以通过力学原理和材料力学原理来推导出来。
梁的弯曲方程可以用来计算梁在受载时的弯曲变形和各个截面上的应力情况,对于工程结构的设计和分析具有非常重要的意义。
梁的弯曲方程通常包括以下几个方面:1.梁的弯曲变形方程:描述梁在弯曲时产生的曲率变化和曲线形状;2.梁的弯矩方程:描述梁在受力状况下产生的弯矩大小和分布情况;3.梁的弯曲应力方程:描述梁在弯曲状况下产生的应力大小和分布情况。
梁的弯曲方程是梁理论的核心内容,对于工程结构的设计和分析具有重要的意义。
四、梁的弯曲理论梁的弯曲理论是研究梁在受载时的弯曲变形和内力情况的理论。
梁的弯曲理论是以弹性理论和材料力学为基础的,通过对梁在弯曲时的力学原理和材料力学原理进行分析和推导,得出了梁在弯曲时的各种数学模型。
梁的弯曲理论可以应用于工程结构的设计和分析中,能够比较准确地描述梁在受载时的变形和内力情况,为工程结构的安全和稳定性提供理论依据。
梁的弯曲理论包括以下几个方面:1.梁的弯曲变形分析:描述梁在受载时产生的形状和曲率变化;2.梁的弯曲应力分析:描述梁在受载时产生的应力大小和分布情况;3.梁的弯曲挠度分析:描述梁在受载时产生的挠度大小和分布情况;4.梁的弯曲裂缝分析:描述梁在受载时产生的裂缝情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩形梁截面上的切应力分布
V
V为横截面上的剪力
Sz* A*yc* (h2y)by12(h2y)
b h2 (
y2)
24
Sz*为面积A*对 中性轴的静矩
V
A*
最大剪应力
maxFsmIaSxZbZ,max
精选ppt
V 3 FVS 2 A 17
bh 3 I z 12
讨论
1、沿高度方向抛物线分布
(y)
精选ppt
8
弯曲中
梁的中性层neutral surface —— 既不伸长又不缩短的纵面
截面的中性轴neutral ax精is选—ppt— 中性层与横截面的交线
9
纯弯曲时正应力公式
变形几何关系 y
物理关系 E
E y
静力学关系 1 M
EI Z
为曲率半径
1
My
IZ
为梁弯曲变形后的曲率
transverse force
精选ppt
4
研究对象:等截面直梁 研究方法:实验——观察——假定
精选ppt
5
实验观察——梁表面变形特征
横线仍是直线,但发生 相对转动,仍与纵线正交
纵线弯成曲线,且梁的 下侧伸长,上侧缩短
以上是外部的情况,内部如何? 想象 —— 梁变形后,其横截面仍为平面,且垂直
60 10 3 180 10 3
2 5 .832 10 5
92 .55 10 6 Pa 92 .55 MPa
精选ppt
14
q=60kN/m
A
1m
FAY
C
l = 3m
120
3. 全梁最大正应力
B
x
180
K
30 最大弯矩 z M ma x6.7 5kN m
FBY
y
截面惯性矩
FS 90kN
B y
b(h2y)y12(h2y)B 8(H2
h2
)b(h2 24
y2
)
精选ppt
19
(y)IV zb B 8(H2h2)b 2(h 42y2)
讨论
B
1、沿腹板高度方向抛物线分布
hH
2、y=0时,切应力值最大
3、腹板上下边处切应力最小
maxIVzbB8H 2 (Bb)h82 minIVzbB 8 H2h2
截面惯性积 Iyz = 0 推导时用到郑玄-胡克定律,但可用于已屈服的梁截面
P124例题9-13精选p源自t12q=60kN/m
A
1m
C
l = 3m
V 90kN
M ql /867.5kNm 2
1.C 截面上K点正应力
120
2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
2
回顾与比较
内力
应力
F
A
FAy
精选ppt
T
IP
M
?
?
FS
3
§9-6 梁的弯曲时的应力及强度计算
一、弯曲正应力 Normal stress in bending beam
梁段CD上,只有弯矩,没有剪力--纯弯曲Pure bending
梁段AC和BD上,既有弯矩,又有剪力--剪力弯曲Bending by
x
90kN
Iz5.83120 5m 4
max
M max y max IZ
67 .5 10 3 180 10 3
2 5.832 10 5
M ql /867.5kN m 2
x
104 .17 10 6 Pa 104 .17 MPa
精选ppt
15
q=60kN/m
120
4. C 截面曲率半径ρ
精选ppt
10
梁截面上正应力
1、沿 y 轴线性分布
z
2、与 z 坐标无关
M y
Iz
y
minM Iz ymi n cmax
精选ppt
M
I y max
max z
tmax
11
正应力计算公式适用范围
M y Iz
剪力弯曲时,截面上有切应力,平面假设不严格成立但当梁跨度
l 与高度 h 之比大于5(即为细长梁)时,弹性力学指出:上述公式 近似成立
于变形后梁的轴线,只是绕梁上某一轴转过一个角度 透明的梁就好了,我们用计算机模拟 透明的梁
精选ppt
6
精选ppt
7
总之 ,由外部去 想象内部 —— 得到
梁弯曲假设:
横截面保持为平面 —— 变形后,仍为平面,且垂直 于变形后梁的轴线,只是绕 梁上某一轴转过一个角度
纵向各水平面间无挤压 —— 均为单向拉、压状态
V
h2 (
y2)
2IZ 4
3V (1 4 y 2 )
2bh h 2
2、y=0时,切应力值最大 3、梁上下表面处切应力为零
精选ppt
18
工字形梁腹板上的切应力分布
(y)
S
* z
V
Izb
腹板为矩形截面时
Hh
翼板
t b
z
y 腹板
S*z A*•y*c
A*
B(H 2 h2)h212(H 2 h2)
第九章 梁的弯曲
精选ppt
1
第九章 梁的弯曲
§9-1、平面弯曲 §9-2、梁的弯曲内力---剪力和弯矩 §9-3、用内力方程法绘制剪力图和弯矩图 §9-4、用微分关系法绘制剪力图和弯矩图 §9-5、用叠加法画弯矩图 §9-6、梁弯曲时的应力和强度计算 §9-7、梁的变形 §9-8、梁的应力状态
精选ppt
y
C 截面的曲率半径ρ
解:1. 求支反力 FAy90kN FBy 90kN
M C 9 1 0 6 1 0 0 .5 6k 0 m N
x 90kN
IZb 13h 2 0 .11 2 0 .1 238 5 .83 12 5 0 m 4
K
MC yK IZ
60103 (18030)103 2
5.832105
精选ppt
20
三、梁的强度条件
1、弯曲正应力强度条件
σmax
M
y max max Iz
σ
1.弯矩最大的截面上
2.离中性轴最远处
3.变截面梁要综合考虑 M 与 I z
4.脆性材料抗拉和抗压性能不同,二方面都要考虑
t,max t
c,max c
x
61.7106Pa61.7MPa
精选ppt
13
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
M ql /867.5kNm 2
x
2. C 截面最大正应力
120
B
x
180
K
30 C 截面弯矩
z
MC60kN m
FBY
y
C 截面惯性矩
IZ5.83120 5m 4
x 90kN
C max
M C y max IZ
A
1m
FAY
C
l = 3m
B
x
180
K
30 C 截面弯矩
z
MC60kN m
FBY
y
C 截面惯性矩
FS 90kN
x
IZ5.83120 5m 4 1M
EI
M
90kN
ql2 /867.5kNm
C
EIZ MC
200109 5.832105 60103
194.4m
x
精选ppt
16
二、弯曲剪应力 Shearing stress in bending beam