小学五年纪奥数(数字谜)

合集下载

(小学奥数)乘除法数字谜(二)

(小学奥数)乘除法数字谜(二)

5-1-2-3.乘除法數字謎(二)教學目標數字謎是杯賽中非常重要的一塊,特別是迎春杯,數字謎是必考的,一般學生在做數字謎的時候都採用嘗試的方式,但是這樣會在考試中浪費很多時間.本模組主要講乘除豎式數字謎的解題方法,學會通過找突破口來解決問題.最後通過例題的學習,總結解數字謎問題的關鍵是找到合適的解題突破口.在確定各數位上的數字時,首先要對填寫的數字進行估算,這樣可以縮小取值範圍,然後再逐一檢驗,去掉不符合題意的取值,直到取得正確的解答.知識點撥1.數字謎定義:一般是指那些含有未知數字或未知運算符號的算式.2.數字謎突破口:這種不完整的算式,就像“謎”一樣,要解開這樣的謎,就得根據有關的運算法則,數的性質(和差積商的位數,數的整除性,奇偶性,尾數規律等)來進行正確的推理,判斷.3.解數字謎:一般是從某個數的首位或末位數字上尋找突破口.推理時應注意:⑴數字謎中的文字,字母或其他符號,只取0~9中的某個數字;⑵要認真分析算式中所包含的數量關係,找出盡可能多的隱蔽條件;⑶必要時應採用枚舉和篩選相結合的方法(試驗法),逐步淘汰掉那些不符合題意的數字;⑷數字謎解出之後,最好驗算一遍.模組一、與數論結合的數字謎(1)、特殊數字【例 1】 如圖,不同的漢字代表不同的數字,其中“變”為1,3,5,7,9,11,13這七個數的平均數,那麼“學習改變命運”代表的多位數是 .1999998⨯学习改变命运变【考點】與數論結合的數字謎之特殊數字 【難度】2星 【題型】填空【關鍵字】學而思杯,4年級,第9題【解析】 “變”就是7,19999987285714÷=【答案】285714【例 2】 右邊是一個六位乘以一個一位數的算式,不同的漢字表示不同的數,相同的漢字表示相同的數,其中的六位數是______ 。

杯小9望99999×赛赛希学【考點】與數論結合的數字謎之特殊數字 【難度】3星 【題型】填空【關鍵字】希望杯,4年級,初賽,20題【解析】 賽×賽的個位是9,賽=3或7,賽=3,小學希望杯賽=333333,不合題意,舍去;故賽=7,小學希望杯賽=999999÷7=142857【答案】142857【例 3】 右面算式中相同的字母代表相同的數字,不同的字母代表不同的數字,問A 和E 各代表什麼數字?E AE D E E E E E ×3C B【考點】與數論結合的數字謎之特殊數字 【難度】3星 【題型】填空例題精講【解析】 由於被乘數的最高位數字與乘數相同,且乘積為EEEEEE ,是重複數字根據重複數字的特點拆分, 將其分解質因數後為:=37111337EEEEEE E ⨯⨯⨯⨯⨯,所以3A =或者是7A =①若A =3,因為3×3=9,則E =1,而個位上1×3=3≠1,因此,A≠3。

五年级奥数专题-数字谜

五年级奥数专题-数字谜

五年级奥数专题-数字谜(一)数字谜小朋友们都玩过字谜吧,就是一种文字游戏,例如“空中码头”(打一城市名)。

谜底你还记得吗?记不得也没关系,想想“空中”指什么?“天”。

这个地名第1个字可能是天。

“码头”指什么呢?码头又称渡口,联系这个地名开头是“天”字,容易想到“天津”这个地名,而“津”正好又是“渡口”的意思。

这样谜底就出来了:天津。

算式谜又被称为“虫食算”,意思是说一道算式中的某些数字被虫子吃掉了无法辨认,需要运用四则运算各部分之间的关系,通过推理判定被吃掉的数字,把算式还原。

“虫食算”主要指横式算式谜和竖式算式谜,其中未知的数字常常用□、△、☆等图形符号或字母表示。

文字算式谜是前两种算式谜的延伸,用文字或字母来代替未知的数字,在同一道算式中不同的文字或字母表示不同的数字,相同的数字或字母表示同一个数字。

文字算式谜也是最难的一种算式谜。

在数学里面,文字也可以组成许许多多的数学游戏,就让我们一起来看看吧。

①横式字谜一、例题与方法指导例1 □,□8,□97在上面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。

那么所填的3个数字之和是多少?思路导航:150*3-8-97-=345所以3个数之和为3+4+5=12。

例2 在下列算式的□中填上适当的数字,使得等式成立:(1)6□□4÷56=□0□,(2)7□□8÷37=□1□,(3)3□□3÷2□=□17,(4)8□□□÷58=□□6。

分析:(1) 6104/56=109(2)7548/37=204(3) 3393/29=117(4)8468/58=146例3 在算式40796÷□□□=□99……98的各个方框内填入适当的数字后,就可以使其成为正确的等式。

求其中的除数。

分析:40796/102=399...98。

例4 我学数学乐×我学数学乐=数数数学数数学学数学在上面的乘法算式中,“我、学、数、乐”分别代表的4个不同的数字。

高斯小学奥数五年级上册含答案_数字谜综合一

高斯小学奥数五年级上册含答案_数字谜综合一

第二十讲数字谜综合一在三四年级,我们学过加减法填空格,破译字母、汉字的竖式谜、横式谜,添算符等数字谜问题,其中既有加减法,也有乘除法.它们各有一些特定的解题方法和思路,像加减法的进位、借位、错位,乘除法里面的末位分析、首位及位数的估算等,这些方法我们当然还要进一步的学习和训练.但在这一讲中,我们将主要运用前一阵刚学过的数论知识来解决相应的数字谜问题.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.已知“BAD BAD GOOD+=”是一个正确的加法算式,其中相同的字母表示相同的数字,不同的字母表示不同的数字.已知GOOD不是8的倍数,那么四位数ABGD是多少?「分析」解决数字谜的题目,最关键在于找突破口.本题的突破口在哪里?练习1.在算式“+=路亨路亨刘吉吉”中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.已知刘吉吉是8的倍数,那么四位数亨吉刘路是多少?例题2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.⨯=⨯=952「分析」从算式来看,是要找出两个两位数的乘积为952.但是把952写成两个两位数的乘积,方法非常多,要从中选出两种满足题目条件还是挺麻烦的.我们不妨先把952分解质因数,通过分析它的构成来选出满足题目条件的填法.练习2.从1~9中选出8个数字填入下式的各个方框中,使等式成立.1026⨯=⨯=- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940.另外三个数可能是多少?「分析」其中四位数是2940,那么组成另外三个数的6个数字就确定了.这四个数两两互质,那么另外三个数都与2940互质,我们就从2940的质因数构成入手.练习3.用1、2、3、4、5、6、7这7个数字恰好组成一个一位数和两个三位数,每个数字只用一次,使得这三个数两两互质.已知其中一个三位数已填好,它是714,那么其他两个数是多少?在前面的例题中,我们通过分解质因数,分析其质因数的构成,从而解决了问题.那如果没有给出具体的数,而是由数字或字母构成的特殊形式又该如何?是否也能分解质因数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.数数科学学数学.⨯=在上面的算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?「分析」对于乘法数字谜问题,我们一般先考虑个位数字.“数”ד学”的个位数字是“学”,但符合这一条件的情况有好几种,讨论的过程会很长.我们不妨再来仔细观察算式,能发现题中的“数数”有什么特点吗?练习4.⨯数好学好=棒棒棒.在上面的乘法算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.那么“好棒”所代表的两位数是多少?例题5.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.“花相似人不同”代表的六位数是多少?⨯=年年岁岁花相似÷=÷岁岁年年人不同「分析」“年年”、“岁岁”都是11的倍数,那么“花相似”所代表的三位数又是多少的倍数呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在暑期中,我们学习了分数与循环小数的互化与四则运算,其实在数字谜里面也有分数与循环小数形式的问题.要解决这一类问题,需要我们灵活运用学过的循环小数的相关知识. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数0.33222a A B =&&.请问:a 是多少? 「分析」等式两边一个是分数,一个是循环小数,可以都化成分数来比较.美妙的竖式荣获斯大林奖金的前苏联数学家、教育家柯尔⋅詹姆斯基曾以开发心灵美为题,列举了一些令人叹服的巧妙算法,其中之一如下:⨯=.例:88883333296237048 8 8 8⨯ 3 3 3 32 42 4 2 42 4 2 4 2 42 4 2 4 2 4 2 42 4 2 4 2 42 4 2 42 42 9 6 23 7 0 4这道题如果只是要算出结果,办法有很多,甚至拿计算器一按答案就出来了.但结果并非是重点,趣味性才是它的精髓所在.作业1. 在算式12233221⨯=⨯的两个方框中填入一个相同的数字,使得等式成立且等式关于等号是对称的.作业2. 用0至9这十个数码各1次,组成四位数、三位数、两位数和一位数各1个,并使这四个数两两互质.已知组成的四位数是1860,那么其他的三个数是多少?作业3. 将1~9这九个数字各一个填到下面的横式中,使等式成立(其中1,5,6已经填好).156⨯=⨯=作业4. 在算式“⨯⨯⨯=钓钓钓鱼岛钓鱼岛钓鱼岛钓鱼岛”中,“钓”、“鱼”、“岛”各代表一个不同的数字,要使算式成立,那么钓鱼岛表示的三位数是多少?作业5. 已知a 是一个自然数,b 是一个1至9中的数字,如果0.43555a b =&&,那么a 是多少?第二十讲 数字谜综合一例题1. 答案:3810详解:列竖式,易知D 是0,G 是1,且O 是偶数.那么GOOD 可能是1220、1440、1660和1880,其中1220和1660不是8的倍数,对应的加法算式分别是6106101220+=和8308301660+=,只有第二个满足.那么ABGD 是3810.例题2. 答案:56172834952⨯=⨯=详解:39522717=⨯⨯.考虑最大的质因数17,可知等号两边的两位数中都有17的倍数,可能是17、34、68.那么952可以拆成5617⨯、2834⨯和1468⨯.考虑到8个数字不重复,只能是56172834952⨯=⨯=.例题3. 答案:1、67、583或1、67、853详解:2229402357=⨯⨯⨯,则另外三个数不能有质因数2、3、5、7.其中一位数只能是1.还剩3、5、6、7、8这五个数字.两位数要分情况讨论:(1)个位数字为3,有53、73、83三组符合要求.对应的,三位数的三个数字分别为6、7、8;5、6、8;5、6、7.经检验,均不符合要求.(2)个位数字为7,有37、67两组符合要求.对应的,三位数的三个数字分别为5、6、8;3、5、8.经检验,有583、 853符合要求.综上所述,一共有:1、67、583;1、67、853两组答案.例题4. 答案:16详解:数数是11的倍数,所以学数学也是11的倍数.三位数中满足学数学这种形式,又是11的倍数的数有:121、242、363、484、616、737、858、979.依次验证几种情况,发现:当学数学为616,那么“学”为6,“数”为1,“⨯=数数科学学数学”变为“116616⨯=科”,可知“科”为5,符合题意.其它情况逐一检验,没有符合题目要求的答案.所以“数学”代表的两位数为16.例题5. 答案:968510详解:第一个算式可以变为“121⨯⨯=年岁花相似”,所以“花相似”是121的倍数.121的倍数中,三位数有121、242、363、484、605、726、847、968,共8个.“花相似”中没有重复数字,所以只可能是605、726、847、968之一.依次验证几种情况,发现:当“花相似”是968,那么“⨯年岁”为8,只能分别是1、8或2、4.其中1、8这种情况与“似”等于8矛盾,2、4这种情况满足要求.由第二个算式可以看出,“岁”小于“年”,因此岁2=,年4=.第二个算式为2244÷=÷人不同,已经用过的数字为2、4、6、8、9,所以“人”、“不”、“同”只能在0、1、3、5、7中取,只能分别是5和10.综上所述,“花相似人不同”所代表的六位数是968510.例题6. 答案:83详解:按照混循环小数化分数的方法,3330.339990A B A B-=&&,因此等式变为3332229990a A B -=,即4533399909990a A B -=,可知45333a A B ⨯=-.那么333A B -一定是45的倍数,即为5和9的倍数,因此333A B -计算结果的个位一定是0后者5,那么33A B 的个位一定是3或者8,即3B =或8B =.当3B =时,3333333330A B A A -=-=一定是9的倍数,可知3A =,原数为0.3333L 不符合题意.当8B =时,3333383335A B A A -=-=是9的倍数,可知7A =,原数为0.3738&&,符合题意,可知453735a ⨯=,a 为83.练习1. 答案:2417简答:易知刘是1,且吉是偶数.那么刘吉吉可能是100、122、144、166、188,其中只有144是8的倍数.那么算式应该是7272144+=,要求的四位数是2417.练习2. 答案:1026简答:310262319=⨯⨯.考虑最大的质因数19.等号两边都有19的倍数,可以是19、38、57.1026可以拆成1954⨯、3827⨯或5718⨯.考虑到8个数字互不相同,只能是195438271026⨯=⨯=.练习3. 答案:5和263简答:还有2、3、5和6可以用.71423717=⨯⨯⨯,一位数只能是5.剩下的三位数只能以3结尾,而623是7的倍数,不满足条件,只能是263.练习4. 答案:79简答:棒棒棒是37的倍数,说明等号左边一定有37的倍数,可能是37或74.经验证算式只能是2737=999⨯.作业1. 答案:1223113221⨯=⨯简答:21中有质因数7,所以23应该是7的倍数,只能填1或8,经检验,应填1.作业2. 答案:7,43,529简答:2186023531=⨯⨯⨯,一位数只能是7,另外两个数的末尾只能是3和9.剩下的数字之和除以3余2,只能拆成两个除以3余1的组合,所以4和2、5是分成两组,49是7的倍数,所以两位数只能是43,259是7的倍数,所以三位数只能是529.⨯=⨯=作业3.答案:439278156⨯=⨯=.简答:21562313=⨯⨯,所以是439278156作业4.答案:137=⨯⨯,所以简答:两个重复的三位数组成的六位数一定是1001的倍数,而100171113“钓”、“鱼”、“岛”分别为1、3、7.作业5.答案:235b,b=2,a=235.简答:由分数化循环小数的方法可得,5943a b÷⨯=.所以943。

小学奥数数字谜试题及答案

小学奥数数字谜试题及答案

小学奥数数字谜试题及答案一、数字谜题在小学奥数竞赛中,数字谜题常常是考察学生逻辑思维和数学运算能力的重要题型之一。

下面是几个常见的数字谜题,希望能帮助你培养数学思维和解题能力。

1. 数字排列将数字1、2、3、4、5、6、7、8、9组成一个9位数,使得每个数字出现且仅出现一次,并且每两个相邻的数字之间的差值都是一个质数。

请问有多少种可能的排列方式?2. 数字替换给定一个四位数abcd,满足条件:abcd * 4 = dcba。

请问abcd是多少?3. 数字矩阵在3x3的方格中填写数字1-9,使得每一行、每一列和对角线上的数字之和都相等。

请找出所有满足条件的填法。

二、数字谜题答案1. 数字排列的可能性有5040种。

解析:由于质数只有2、3、5、7,所以9位数中第一个数字只能是2或者5。

然后,考虑到相邻数字之间的差值为质数,我们可以根据2和5的不同情况来排列剩下的数字。

根据计算可知,数字排列的可能性有5040种。

2. abc*d = dcba,其中a、b、c、d是0-9的数字。

解析:由于abc * 4 = dcba,根据乘法的性质可知,a最大为2,且a 只能为1或2。

根据计算可知abcd为21978。

3. 数字矩阵的填法有8种。

解析:考虑到每一行、每一列和对角线上的数字之和都相等,由此可得数字矩阵的可能解。

2 9 47 5 36 1 84 3 89 5 12 7 66 7 21 5 98 3 48 1 63 5 74 9 24 9 23 5 78 1 62 7 69 5 14 3 86 1 87 5 32 9 48 3 41 5 96 7 2通过以上数学谜题的解析,我们可以锻炼和提升自己的逻辑思维和数学运算能力。

希望能够对大家的数学学习起到一定的帮助作用。

五年级奥数专题 数字谜(学生版)

五年级奥数专题 数字谜(学生版)

学科培优数学数字谜学生姓名授课日期教师姓名授课时长知识定位什么是数字谜?数字谜,一般是指那些含有未知数字或未知运算符号的算式。

这种不完整的算式,就像“谜”一样,要解开这样的谜,就得根据有关的运算法则、数的性质(和差积商的位数,数的整除性、奇偶性、尾数规律等)来进行正确的推理、判断。

重难点:1.横式迷问题2.竖式迷题中的除法式迷3.试验法在解决数字谜问题的应用考点: 1.复杂的横式迷题2.复杂的竖式谜题3.枚举和筛选相结合的方法(试验法)解决数字谜题知识梳理如何解决数字谜题?解数字谜,一般是从某个数的首位或末位数字上寻找突破口。

推理时应注意:(1)数字谜中的文字、字母或其它符号,只取0~9中的某个数字;(2)要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件;(3)必要时应采用枚举和筛选相结合的方法(试验法),逐步淘汰掉那些不符合题意的数字;(4)数字谜解出之后,最好验算一遍。

横式的补填空格和破译字母问题中,解题的基本方法有尾数分析,分情况试算,数值估算,以及因数分解等。

同学们在解题时要灵活应用。

例题精讲【试题来源】【题目】在下面的3个方框内分别填入恰当的数字,可以使得这3个数的平均数是150。

那么所填的3个数字之和是多少?□,□8,□97【试题来源】【题目】在下列各等式的方框中填入恰当的数字,使等式成立,并且算式中的数字关于等号左右对称:(1)12×23□=□32×21, (2)12×46□=□64×21,(3)□8×891=198×8□, (4)24×2□1=1□2×42, (5)□3×6528=8256×3□。

【试题来源】【题目】在下列算式的□中填上适当的数字,使得等式成立:(1)6□□4÷56=□0□, (2)7□□8÷37=□1□,(3)3□□3÷2□=□17, (4)8□□□÷58=□□6。

小学生奥数数字谜及练习题(最新)

小学生奥数数字谜及练习题(最新)

1.小学生奥数数字谜1、世界上只有你和我(打一数字)——谜底:22、守住你的'人(打一数字)——谜底:153、没意思(打一数字)——谜底:5144、全部的爱比翼双飞(打一数字)——谜底:125、七拼八凑(打一数字)——谜底:156、白头偕老的恋人(打一数字)——谜底:1007、接二连三(打一数字)——谜底:148、瓜字初分(打一数字)——谜底:169、弱冠(打一数字)——谜底:2010、缺衣少食(打一数字)——谜底:911、及笄之年(打一数字)——谜底:1512、剪刀石头布(打一数字)——谜底:20513、白痴(打一数字)——谜底:8714、午安(打一数字)——谜底:5815、你找我(打一数字)——谜底:0952.小学生奥数数字谜1、杖朝之年长三岁(打一数字)——谜底:832、冕冠之年长一岁(打一数字)——谜底:193、碧玉年华两成双(打一数字)——谜底:324、弱冠之年减一轮(打一数字)——谜底:85、碧玉年华减一半(打一数字)——谜底:86、致政之年长两岁(打一数字)——谜底:727、而立之年减一轮(打一数字)——谜底:188、我心中只有你(打一数字)——谜底:519、髫年之女减一岁(打一数字)——谜底:610、碧玉年华增一轮(打一数字)——谜底:2811、豆蔻之年已渐逝,始终不及及笄年(打一数字)——谜底:1412、我深情依旧(打一数字)——谜底:5371913、一闪一闪亮晶晶(打一数字)——谜底:14、顺心如意的爱情(打一数字)——谜底:615、不三不四(打一数字)——谜底:3.53.小学生奥数练习题1、找规律填数1、2、4、7、11、16、22、()2、被减数、减数、差相加的和是100,被减数是()。

3、连续5个自然数的和是50,从小到大排列,第三个数是()。

4、两个数相除,商是5,余数是20,除数是()。

5、小强今年11岁,小军今年17岁,当两人的年龄和是38岁时,小强()岁。

五年级奥数数字谜综合一——分数小数数字迷

五年级奥数数字谜综合一——分数小数数字迷
分数与小数互化 分数与分数比较大小 难点:与数论结合 重点例题:例1,例2,例3,例5
答案
【例1】 1981 【例2】最后只有1.5×2.4=3.6和1.5.×4.2=6.3两个答案。 【例3】 5 【例4】 83 【例5】6.8
2
A 7
是最简分数且
A 7
7 10
,A最小是____。
【例4】(★★★) 已知a是一个自然数,A、B是1至9中的数字, 最简分数 a 0.3A3B 。请问:a是多少? 222
1
【例5】(★★★) 在下图的竖式中,填上数字,使竖式成立,那么 商最大是多少?
本讲总结:
基础:整数数字谜 新增:小数四则运算
小数数字谜
有一个四位整数,在它的某位数字前面加上一个
小数点,再与这个四位数相加,得数是 2000.81,
求这个四位数是多少?
【例2】(★★★) 把1至6填入下面的方框中,每个数字恰好使用一 次,使得等式成立。请写出乘积的所有答案。
【例3】(★★★)2012走美杯五年级

五年级奥数.数字谜综合

五年级奥数.数字谜综合

数字谜综合涉及分数与小数的各种类型的数字谜问题,包括竖式的补填、算式的构造、小数的舍人与变化等.较为复杂的数字问题,以及其他略有综合性的数字谜问题.1.有一个四位整数,在它的某位数字前面加上一个小数点,再与这个四位数相加,得数是2000.81.求这个四位数是多少?【分析与解】设四位整数4的某位数字前加上一个小数点得到一个新的数B,A与B 的和为2000.81,而小数只能由B得到,且0.81为B的小数部分,所以小数点加在A的百位与十位之间,即缩小了100倍.有A+0。

01A=2000。

81,所以A=1981.2.老师在黑板上写了13个自然数,让小明计算平均数(保留两位小数),小明计算出的答数是12.43.老师说最后一位数字错了,其他的数字都对.正确答案应该是什么?【分析与解】老师说最后一位数字错了,那么前3位数字是正确的,所以正确的平均数在12.40~12。

5(不能取12。

5)之间,那么这13个数的和在161。

2~162.5(不能取162.5),因为这13个数都是自然数,所以它们的和也应该是自然数.那么这13个数的和只能是162,它们的平均数应该是162÷13≈12.46.所以正确的平均数应该是12。

46.3.两个带小数相乘,乘积四舍五人以后是22。

5.这两个数都只有一位小数,且个位数字都是4.这两个数的乘积四舍五入前是多少?【分析与解】因为这两个带小数均只有一位小数,那么给它们均乘以10,则这两个数均是整数.开始它们的乘积在22。

45~22.55(不能取22。

55)之间,所以在这两个数在均乘以10以后再相乘而得到的乘积应该在2245~2255(不能取2255)之间.一一验证,2245=5×449,2246=2×1123,2247=3×7×107,2248=2×2×2×281,2249=13×173,2250=2×3×3×5×5×5,2251为质数,2252=2×2×563,2253=3×751,2254=2×7×7×23.其中只有2254可以表达为(2×23)×(7×7)=46×49,两个十位数字均为4的数的乘积.所以,四舍五人前的乘积应为2254÷10÷10=22.54.即两个数的乘积四舍五人前是22。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字谜综合(ii)概述涉及质数与合数等概念,以及需要利用数的整除特征、分解质因数等数论手段解的数字谜问题.典型问题1.试将1,2,3,4,5,6,7分别填入下面的方框中,每个数字只用一次: 口口口(这是一个三位数).口口口(这是一个三位数),口(这是一个一位数),使得这三个数中任意两个都互质.已知其中一个三位数已填好,它是714,求其他两个数.【分析与解】714=2×3×7×17.由此可以看出,要使最下面方框中的数与714互质,在剩下未填的数字2,3,5,6中只能选5,也就是说,第三个数只能是5.现在来讨论第二个数的三个方框中应该怎样填2,3,6这3个数字.因为任意两个偶数都有公约数2,而714是偶数,所以第二个的三位数不能是偶数,因此个位数字只能是3.这样一来,第二个三位数只能是263或623.但是623能被7整除,所以623与714不互质.最后来看263这个数.通过检验可知:714的质因数2,3,7和17都不是263的因数,所以714与263这两个数互质.显然,263与5也互质.因此,其他两个数为263和5.2.如图19-1,4个小三角形的顶点处有6个圆圈.如果在这些圆圈中分别填上6个质数,它们的和是20,而且每个小三角形3个顶点上的数之和相等.问这6个质数的积是多少?【分析与解】设每个小三角形三个顶点上的数的和都是S.4个小三角形的和S相加时,中间三角形每个顶点上的数被算了3次,所以 4S=2S+20,即S=10.这样,每个小三角形顶点上出现的三个质数只能是2,3,5,从而六个质数是2,2,3,3,5,5,它们的积是:2×2×3×3×5×5=9003.在图19-2.所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立.a b和cd其中a、b、c、d的值只能取自2、3、5或7.【分析与解】记两个乘数为7由已知条件,b与c相乘的个位数字仍为质数,这只可能是b与c中有一个是5另一个是3、5或7,如果b 不是5,那么c 必然是5,但73×5=365、77×5=385的十位数字都不是质数.因此b 是5,c 是3、5、7中的一个,同样道理,d 也是3、5、7中的一个.再由已知条件,75a 的乘积的各位数字全是质数,所以乘积肯定大于2000,满足积大于2000且a 、c 取质数,只有以下六种情况:775×3=2325,575×5=2875,775×5=3875,375×7=2625,575×7=4025,775×7=5425.其中只有第一组的结果各位数字是质数,因此a=7,c=3,同理,d 也是3.最终算式即为775×33=255754.把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来的数加起来恰好是某个自然数的平方.那么这个和数是多少?【分析与解】 设原来的两位数为xy ,则交换十位数字与个位数字后的两位数为,两个数的和为yx ,两个数和为 xy +yx =1010x y x y +++()11x y =+是ll 的倍数,因为它是完全平方数,所以也是11 ×11=121的倍数.但是这个和小于100+100=200 <121×2,所以这个和数只能是121.5. 迎杯×春杯=好好好在上面的乘法算式中,不同的汉字表示不同的数字,相同的汉字表示相同的数字.那么“迎+春+杯+好”之和等于多少?【分析与解】 好好好=好×111=好×3×37.那么37必定是“迎杯”或“春杯”的约数,不妨设为“迎杯”的约数,那么“迎杯”为37或74. 当“迎杯”为37时,“春杯”为“好”×3,且“杯”为7,此时“春杯”为27,“好”为9,“迎+春+杯+好”之和为3+2+7+9=21;当“迎杯”为74时,“春杯”为“好”×3÷2,且“杯”为4,此时“春杯”为24,“好”为16,显然不满足.所以“迎+春+杯+好”之和为3+2+7+9=21.6. 数数×科学=学数学在上面的算式中,每一汉字代表一个数字,不同的汉字代表不同的数字.那么“数学”所代表的两位数是多少?【分析与解】 “学数学”是“数数”的倍数,因而是“数”与1l 的倍数.学数学=学×101+数×10是“数”的倍数,而101是质数,所以“学”一定是“数”的倍数.又“学数学”是11的倍数,因而:“学+学-数”为11的倍数.因为“学”是“数”的倍数,从上式推出“数”是11的约数,所以“数”=1,“学”=(11+1)÷2=6. “数学”所代表的两位数是16.7.将1,2,3,4,5,6,7,8,9这9个数字分别填人下式的各个方框中,可使此等式成立:口口×口口=口口×口口口=3634.填好后得到三个两位数和一个三位数,这三个两位数中最大的一个是多少?【分析与解】 3634=2×23×79,表达为两个两位数的乘积只能是(2×23)×79,即46×79; 表达为一个两位数与一个三位数的乘积,只能是23×(2×79)=23×158.满足题意,所以这三个两位数中最大的一个是79.8.六年级的学生总人数是三位数,其中男生占35,男生人数也是三位数,而组成以上两个三位数的6个数字,恰好是l,2,3,4,5,6.那么六年级共有学生多少人?【分析与解】设六年级总人数为xyz,其中男生有abc人.有xyz×35=abc,即5abc=3xyz,其中xyz为5的倍数,所以z为5.而abc为3的倍数,所以其数字和a+b+c应为3的倍数,则在剩下的5个数中,a、b、c(不计顺序)只能为1,2,6或l,2,3或4,2,6或4,2,3.而c不能是偶数(不然z应为0),所以只能是l,2,6或1,2,3或4,2,3可能满足;又因为xyz最大为645,对应abc为387,即c不超过3.于是abc有可能为261,123,321,213,231,243这6种可能,验证只有当abc=261时,对应xyz为261÷3×5=435.所以六年级共有学毕435人.9.图19-3是三位数与一位数相乘的算式,在每个方格填入一个数字,使算式成立.那么共有多少种不同的填法?【分析与解】设1992=abc×d(a,b,c,d可以相同),有1992=2×2×2×3×83,其中d可以取2,3,4,6,8这5种,对应的算式填法有5种.10.在图19-4残缺的算式中,只写出3个数字l,其余的数字都不是1.那么这个算式的乘积是多少?【分析与解】如下图所示,为了方便说明,将某些数用字母标出.第4行口口1对应为AB×C,其个位为1,那么B×C的个位数字也是1,而B、C又均不能为1,所以只有3×7,9×9对应为1,那么B为9、7或3.第3行10口对应为AB×D,可能为100、102、103、104、105、106、107、108、109.103、107、109均为质数,没有两位数的约数,不满足;100、105没有个位数字为3、7、9的约数,不满足;102=17×6、104=13×8、106=53×2、108=27×4,但102、104对应的AB中4均为1,不满足.所以AB为53或27.当AB为27时,第4行为27×C,且个位数字为1,所以只能为27×3=8l,但不是三位数,不满足.当AB为53时,第4行为53×C,且个位数字为1,所以只能为53×7=371,因此被乘数必须为53,乘数为72,积为3816.11.图19-5是一个残缺的乘法竖式,在每个方框中填入一个不是2的数字,可使其成为正确的算式.那么所得的乘积是多少?【分析与解】方法一:由已知条件,最后结果的首位数字不能是2,因此只能是3.这说明千位上作加法时有进位.百位数上相加时最多向千位进2,所以要使千位数有进位,其中的未知数字至少是10-2-2=6,即三个三位数加数中的第二个至少是600.因为它是第一个乘数与一个一位数字的乘积,因此该乘数肯定大于60.第二个乘数的百位数字与第一个乘数的乘积在220~229之间,所以它只能是3(否则4×60>229).而220~229之间个位数字不是2且是3的倍数的只有225=3×75和228=3×76.如果第一乘数是75,又第二个乘数的百位数字是3,那么它们的乘积小于75×400=30000,它的首位数字也就不可能是3,不满足.乘数是76,另一个乘数就要大于30000÷76>394,那么只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.算式中所得的乘积为30096.方法二:为了方便说明,将某些位置标上字母,如下图所示,因为干位最多进1,而最终的乘积万位又不能是2,所以只能是3:而第5行对应为22口=AB×C,其中C不可能为1,又不能为2,那么最小为3.当C为3时,22口=AB×3,那么A只能为7,B只能为4,5或6,(1)当B为4时,74×3=222,第5行个位为2,不满足题意;(2)当B为5时,AB×CDE对应为75×3DE,小于30000,不满足;(3)当B为6时,AB×CDE对应为76×3DE,D只能为9,此时第4行对应为AB×D即76×9=684.因为30000÷76>394,所以39E只有395、396、397、398、399这五种可能,它们与76的乘积依次为30020、30096、30172、30248、30324.由于各个数字都不能是2,所以只有76×396=30096满足题目的要求.验证C取其他值时没有满足题意的解.所以算式中所得的乘积为30096.12.请补全图19-6这个残缺的除法竖式.问这个除法算式的商数是多少?【分析与解】易知除号下第二行的首位为9.除号下第一行开头两位为1、0,商的十位为0.第二行9口对应为CD×A,(1)9口不可能为90,不然第一行前三位10口与第二行90的差不可能为一位数,不满足第三行特征;(2)9口对应为91时,第三行的首位对应为10口-91,最小为9,所以只能为9,那么有91=CD×A,928=CD×B,不可能;(3)9口对应为92时,第三行的首位对应为10口-92,最小为8,所以可能为8、9,①如果为9,那么对应有92=CD×A,928=CD×B,不可能;②如果为8,那么对应有92=CD×A,828=CD×B,不难得知A=l,B=9,CD=92时满足,那么被除数为92×109=10028.验证没有其他的情况满足,所以这个除法算式的商数为109.13.若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式学习好勤动脑×5=勤动脑学习好×8中,“学习好勤动脑”所表示的六位数最小是多少?【分析与解】设“学习好”为x,“勤动脑”为Y,则“学习好勤动脑”为1000X+Y,“勤动脑学习好”为1000y+x,有(1000x+Y)×5=(1000y+x)×8,化简有4992x=7995y,4992=128×3×13,7995=3×41×5×13,即128x=205y,有205,128x y =⎧⎨=⎩410,256x y =⎧⎨=⎩615,384x y =⎧⎨=⎩820512x y =⎧⎨=⎩ 所以,“学习好勤动脑”所表示的六位数可能为205128,410256,615384,820512,但是不能有重复数字,所以只有410256,615384满足,其中最小的是41025614.互为反序的两个自然数的积是92565,求这两个互为反序的自然数.(例如102和201,35和53,11和11,…,称为互为反序的数,但120和2l 不是互为反序的数.)【分析与解】 首先可以确定这两个自然数均为三位数,不然得到的乘积不可能为五位数. 设ABC ×C BA =92565,那么C 、A 中必定有一个为5,一个为奇数.不妨设C 为5. 5AB ×5BA =92565,那么A 只能为1,1551B B ⨯=92565.又注意到92565=3×3×5×11×1l×17. 验证只有15B 为165时满足,所以这两个自然数为165、561.15.开放的中国盼奥运×口=盼盼盼盼盼盼盼盼盼上面的横式中不同的汉字代表不同的数字,口代表某个一位数.那么,“盼”字所代表的数字是多少?【分析与解】 我们从“口”中所应填入的一位自然数开始分析,设A=“开放的中国盼奥运”,B=“盼盼盼盼盼盼盼盼盼”.于是B=A×口.显然口内不会是1.由于口是B 的约数,因此口不会是“盼”所代表的数字,要不然A 就等于111111111,这说明口内不会是5,而111111111不是7的倍数,说明口内也不会是7.如果口内填3,则“盼”只能是1或2,当“盼”是1时,B÷3=37037037,不符合要求;当“盼”时2时,B ÷3=74074074,也不符合要求;说明口内不能填入3.口内也不会是偶数数字2、4、6和8.因为口内是偶数数字时,“盼”也是偶数数字,口内显然不会是2,如果口内是4,根据被4整除的特征,“盼”只能是8,这时A 就成了一个九位数,说明口内不能是4;类似的,可以说明口内不能是6和8.综上所需,口的数字只能是9,这时利用91111...1 个=12345679×9,可以得到9个盼盼盼盼...盼=12345679×9 ×盼.于是“盼”代表的数字必须同时满足下面两个条件:经验证知◇=盼=7,即86419753×9=777777777.。

相关文档
最新文档