3.2 第3课时 建立平面直角坐标系描述图形的位置
3.2.3平面直角坐标系第3课时(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了平面直角坐标系的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对坐标表示方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-各象限内点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)。
-实际问题中的应用:运用坐标方法解决几何问题,如计算线段长度、判断点与线段的关系等。
2.教学难点
-难点内容:坐标特征的推理与应用。
-推理难点:学生需要理解为什么坐标轴上点的坐标特点如此,以及如何从坐标特点推断点的位置。
-举例:使用坐标系图,让学生亲自标出各象限内点的坐标,加深对坐标特征的理解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《3.2.3平面直角坐标系第3课时》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要标明位置的情况?”(如电影院选座、地图定位等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平面直角坐标系的奥秘。
b.帮助学生掌握坐标轴上点的坐标特点。
c.引导学生探索并掌握各象限内点的坐标特征。
d.应用坐标表示方法解决实际问题,提高学生的实际应用能力。
二、核心素养目标
1.培养学生空间观念和直观想象能力,通过平面直角坐标系的学习,使学生能够将点与坐标相互转化,形成数形结合的思想。
-能够在坐标系中表示出给定坐标的点。
平面直角坐标系(第三课时)教学设计与反思

北师大版八年级上第五章《平面直角坐标系》135页---137页《平面直角坐标系(第三课时)》教学设计与教学反思合肥市第四十五中学何钧设计理念根据基础教育课程的具体目标,结合学习是学习者主动建构知识的过程的建构主义理论,把握学生的独立探索与教师的引导支持之间的辩证关系。
教学中,关注学生的学习兴趣和经验,让学生主动参与学习活动,进行多向、充分的探索交流,在课堂活动中感悟知识的生成、发展与变化,形成良好的情感、态度、价值观。
教材分析本节内容选于《义务教育课程标准实验教科书—数学》(北师大版)第五章第2节,本章前面已初步介绍平面直角坐标系由点定坐标和用坐标描点等基本知识,本节课的内容以“建立适当的直角坐标系”为核心内容,内容的处理以“Z+Z智能平台”的辅助工具,学生自主动手完成。
经历根据已知图形建立适当的直角坐标系并确定各顶点坐标的过程,进一步发展学生数形结合意识,培养良好的学习情感、态度以及主动参与、合作交流的意识。
本课重在学生自己动脑、动手,培养创造精神和探究意识,因而在教学中,教师要热情鼓励学生自主探究和大胆创新,对每一位同学建立不同的直角坐标系的方法给予鼓励和足够的重视。
学生分析(1)学生已初步感知了平面直角坐标系、由点定坐示和用坐标描点等基本知识;(2)这个年龄阶段的学生有很强的好奇心,学习中学生会选择不同的点为原点建立直角坐标系,因而教学过程中尽可能多给学生表现的机会,激发学生探究意识。
资源分析本节课利用“Z+Z智能教育平台”教学。
《三角函数》新世纪版可演示建立直角坐标西的过程,并可移动已建成的平面直角坐标系,有利于学生的探究讨论。
教学目标(1)经历根据已知图形建立适当的坐标系并确定各顶点坐标的过程,进一步发展学生形数结合意识和合作交流意识。
(2)会根据已知图形建立适当的坐标系写出图形的顶点坐标。
教学重点会选择并建立适当的平面直角坐标系写出图形的顶点坐标。
教学难点(1)直角坐标系的选择;(2)根据已知图形建立适当的直角坐标系。
2 平面直角坐标系 第3课时

C (0 , 0 )
0
D ( 6 , 0)
x
交流:在上面的问题中,你还可以怎样建立直角坐标
系?与同伴交流。 y
y
0
x
0x y
0x
y
0
x
例3 如图,对于边长为2的等边三角形ABC,建立 适当的直角坐标系,并写出各个顶点的坐标。
解: 如图,以边AB所在
的直线为x 轴,以边AB
C
的中垂线y 轴建立直角
直角梯形上底3,y 下底5,底角60˚
o
x
坐标系。
由正三角形的性质可
2
知CO= 3 ,正三角形
ABC各个顶点A, B, A
C的坐标分别为
( -1 , 0 ) 0
A (-1,0);B (1,0);
C (0, 3 )。
y
(0,3 )
B
(1,0) x
交流:在上面的问题中,你还可以怎样建立直角坐 标系?与同伴交流。
y C0
(0,0) x
2
A ( -1 , -3 )
B ( 1 , -3 )
议一议
随堂练习
ቤተ መጻሕፍቲ ባይዱ
小结
1. 坐标平面内的点与有序实数对是一一对应的。
2. 给出坐标平面内的一点,可以用它所在象限或 坐标轴来描述这个点所在平面内的位置。
3.要记住各象限内点的坐标的符号,会根据对称的 知识找出已知点关于坐标轴或原点的对称点。
作业
A类:课本习题5.4。 B类:完成A类同时,补充: (1)已知点A到x轴、y轴的距离均为4,求A点坐标; (2)已知x轴上一点A(3,0),B (3,b) ,且 AB=5, 求b的值 。 C类:建立坐标系表示右面图形各顶点的坐标。
〖2021年整理〗《平面直角坐标系》第三课时参考优秀教案

课题第五章平面直角坐标系
课时分配
本节共需 3 课时
本节课为第 3 课
时
平面直角坐标系(3)
教学目标1.在同一直角坐标系中,探索位置变化与数量变化的关系、图形位置的变化与点的坐标变化的关系.
2.能建立适当直角坐标系,将实际问题数学化,用直角坐标系解决问题.
重点领会实际模型中确定位置的方法,会正确画出平面直角坐标系.
难点领会实际模型中确定位置的方法,会正确画出平面直角坐标系.
教学过程
教法摘要、学法指
导、教学设计修改问题的引入
站在中心广场,如果没有直角坐标系,即便有课本图中所示
的方格标记,人们也难以说清各景点的准确位置;在自动化生产
过程中,如果没有建立直角坐标系,机械手就无法将元器件准确
插入相应的位置,从而引导学生感受在日常生活中常常需要通过
建立平面直角坐标系来确定物体的位置.教学中,也可以另行设
计贴近学生生活的实例,例如,出示当地或某地旅游景点分布图,
让学生感受建立平面直角坐标系的必要性.
探索活动
(1)在尝试说明各景点位置时,学生可能会有许多方法,
但往往难以简明、准确地表达,从而感受建立直角坐标系的必要
性和优越性.
(2)具体问题的讨论,使学生知道:在同一问题中,可以有
多种建立直角坐标系的方法;在不同直角坐标系中,同一点的坐
标是不同的.
例题精讲
已知正方形ABCD的边长为4,建立适当的平面直角坐标系,分别写出各顶点的坐标.
讨论:还能建立不同的平面直角坐标系,表示正方形各顶点的坐标吗?
课堂练习
1.随堂演练(t展示)
2.完成课本P127页练习1、2
总结
通过这节课你学到了什么?
作业课本P129第5、6题。
3.2简单图形的坐标表示

陬市镇中学八年级《数学》科<<导学案>>
备课日期:2014-3-11 设计:刘芬上课教师:
上课日期:__月__日第____周星期____第节第课时(总节数)课题:3.2简单图形的坐标表示
根据图形特点和问题的需要能够灵活建立平面直角坐标系
教
学
目
标
教学重点:有选择的建立平面直角坐标系并表示图形上点的坐标
教学难点:如何根据图形的特点及不同问题的需要,建立恰当的平面直角坐标系
教学程序
教学要求教学内容与方法二次备课
一、创设情景激情导入
1、平面直角坐标系的概念
2、怎样表示平面直角坐标系中点的坐标?
二、合作交流解决探究
三、范例讲解
四、练习P93
五、小结。
北师大版八年级数学上册《平面直角坐标系》第3课时示范课教学设计

第三章位置与坐标2 平面直角坐标系第3课时一、教学目标1.能结合所给图形的特点,建立适当的坐标系,写出点的坐标.2.能根据一些特殊点的坐标复原坐标系.3.经历建立坐标系描述图形的过程,进一步发展数形结合意识.4.通过学习建立直角坐标系的多种方法,体验数学活动充满着探索与创造,激发学习兴趣,感受数学在生活中的应用,增强数学应用意识.二、教学重难点重点:根据实际问题建立适当的坐标系,并能写出各点的坐标.难点::根据一些特殊点的坐标复原坐标系.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【情境导入】教师活动:教师出示课件,与学生一起做工兵排雷游戏.根据给出的坐标,找到地雷的位置,如果你找对了,地雷就爆炸了,如果找不对,地雷就不会爆炸哦!(-5,0)、(0,4)、(6,4)、(6,-4)、(2,3)、(-2,3)、(-3,-3)、(-5,6)、(2,-3)、(4,-3)、(0,0).预设:思考:你能写出图中几个点的坐标吗?预设:不能,因为没有建立直角坐标系.给出一个平面图形,要想写出图形中一些点的坐标,必须建立直角坐标系,而直角坐标系如何建立?建立方法是否唯一呢?我们一起来探索下!【探究】教师活动:通过探究活动,引导学生探究如何建立适当的平面直角坐标系.如图,长方形ABCD的长与宽分别是6和4,建立适当的直角坐标系,并写出各个顶点的坐标.思考:你是如何建立的直角坐标系?各顶点坐标如何求得?预设:(1)确定坐标原点;(2)确定x轴和y轴,建立直角坐标系;(3)根据条件中线段长度表示各顶点的坐标.解:如图,以点C为坐标原点,分别以CD,CB所在的直线为x轴,y轴建立直角坐标系. 此时C点坐标为( 0,0 ).由CD长为6,CB长为4,可得D,B,A的坐标分别为:D( 6 ,0 ),B( 0,4 ),A( 6,4).【议一议】还可以建立其他平面直角坐标系,表示长方形的四个顶点A,B,C,D的坐标吗?预设:成果展示教师引导学生多尝试,方法多样,合理即可.【想一想】由上得知,建立的平面直角坐标系不同,则【典型例题】教师活动:教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例如图,对于边长为4的等边三角形ABC,建立适当的直角坐标系,并写出各个顶点的坐标.解:如图,以边BC所在直线为x轴,以边BC的中垂线为y轴建立直角坐标系.由等边三角形的性质可知AO=23,顶点A,B,C的坐标分别为A (0,23);B (-2,0);C (2,0).提问:想一想,还有其他方法吗?预设:其他方法展示【议一议】在一次“寻宝”游戏中,寻宝人已经找到了坐标为(3,2)和(3,-2)的两个标志物A,B,并且知道藏宝地点的坐标为(4,4),除此外不知道其他信息.如何确定直角坐标系找到“宝藏”?预设:连接AB,作线段AB的中垂线,并以这条直线为横轴;将线段AB分成四等份,以其中的一份为单位长度,以线段AB的中点为起点,向【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.如图,建立适当的直角坐标系,并写出这个四角星的八个顶点的坐标.2.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(-2,2),黑棋(乙)的坐标为(-1,-2),则白棋(甲)的坐标为__________.3.对于边长为4的正方形,建立适当的直角坐标系,并写出各个顶点的坐标.4.如图所示,在某次行动中,当我方两架飞机处于A(-1,2)与B(3,2)位置时,雷达探测到有一架可疑飞机C 在(1,-2)位置. 请你建立适当的直角坐标系,找出可疑飞机C的位置.答案:1.解:各顶点坐标如下图:2.解:白棋(甲)的坐标为(2,1).3.解:如图,以顶点A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系.正方形四个顶点A,B,C,D的坐标分别为:A(0,0),B(4,0),C(4,4),D(0,4).方法不唯一.4.解:点C的位置如图所示:思维导图的形式呈现本节课的主要内容:。
北师大版八年级上册 第三章 位置与坐标 321 平面直角坐标系 教案

3.2.1平面直角坐标系教学目标知识与技能:1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念.2.认识并能画出平面直角坐标系.3.能在给定的直角坐标系中,由点的位置写出它的坐标.过程与方法:1.从现实情境入手,感受建立平面直角坐标系的必要性,然后抽象出平面直角坐标系的相关概念.2.通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识.情感态度与价值观:由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实生活的密切联系,让学生认识数学与生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.教学重难点【重点】学生能正确画出平面直角坐标系,并能在平面直角坐标系中,根据定义写出给定点的坐标,以及根据坐标描出点的位置.【难点】理解坐标和平面上的点的一一对应的关系,体会数形结合思想.教学准备【教师准备】多媒体课件,画图工具,教材图3 - 4,3 - 5,3 - 6的情境图.【学生准备】画图工具,方格纸.教学过程一、导入新课导入一:同学们,你们喜欢旅游吗? 假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,在科技大学的小亮如何给来访的朋友介绍该市的几个风景点的位置呢?尽可能给出简洁的表示方法,并与同伴交流.大成殿:;中心广场:;碑林:.[设计意图]试图通过介绍景点回顾前一节中确定位置的方法,体会不同的介绍方法中的共性——一般需要两个数据.导入二:[过渡语]同学们,结合以前学过的知识,请根据示意图,回答问题.你是怎样确定各个景点的位置的?[处理方式]学生口答完成,对于回答不完整的由学生补充改正!教师引导性地进行语言说明,在数轴上我们能够用一个数字来表示点的坐标,那么平面内能否用一个数来表示景点的具体的位置呢?既复习了旧知识,又为下面用类比的方法学习新知识做铺垫.此处学生回答的方法多种多样,只要合理即可,还有没有更好的方法,进而提出问题.一一感受建立平面直角坐标系的必要性.[设计意图]通过播放图片,调动学生的热情,既复习回顾了旧知识,又激发起进一步学习的兴趣,吸引学生的注意力,用类比的方法学习平面直角坐标系,为学习新知识进行铺垫.引导学生猜想、探索,鼓励学生积极思考,调动学习积极性,并在活动中培养学生的探究、合作、交流的能力.二、构建新知[过渡语]生活中到处都是确定物体位置的问题,谁能用学过的知识完成下面的做一做呢?(1)、做一做(一)(1)小红在旅游示意图上画上了方格,标上数字,如图(1)所示,并用(0,0)表示科技大学的位置,用(5,7)表示中心广场的位置,那么钟楼的位置如何表示?(2,5)表示哪个地点的位置?(5,2)呢?(1)(2)按照小红的方法,(5,2)中的2表示,(2,5)中的2表示.(2)如果小亮和他的朋友在中心广场,并以中心广场为“原点”,做了如图(2)所示的标记,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?(通常将(0,0)点称为原点)[过渡语]在上一节课,我们已经学习了许多确定位置的方法,对于这个问题,大家看用哪种方法比较合适?如果城市比较大,地图还需要向右上方扩展,你能类似地表示右上部分其他点的位置吗?[设计意图]以方格纸为背景,可以方便地利用有序数对描述各景点的位置.生活中用两个距离表示位置时,一般不用负数,而直角坐标系中的坐标是可正可负的,为此,设计了本问题.(2)、相关概念思路一:给出定义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y轴统称坐标轴,它们的公共原点O称为直角坐标系的原点.如图所示,对于平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标.如图所示,在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫做第一象限,其他三部分按逆时针方向依次叫做第二象限、第三象限和第四象限.坐标轴上的点不在任何一个象限内.思路二:活动内容1:认识平面直角坐标系.[过渡语]请同学们打开教材第59页,结合自学提纲阅读课本例1之前的部分内容,并将重点内容标注出来.(多媒体展示)问题1:什么是平面直角坐标系?简称什么?两条数轴如何放置?如何称呼?方向如何确定?它们的交点叫什么?问题2:坐标轴将平面分为哪几个部分?它们的名称分别是什么?坐标轴上的点属于哪个部分?问题3:在方格纸上画出平面直角坐标系.问题4:象限是怎样划分的?[处理方式]给学生5~8分钟的时间先结合自学提纲自学课本,然后根据自己的理解在方格纸上画出平面直角坐标系,并标出各部分名称.学生之间相互提问解答.最后找学生代表发言,教师要求学生尽量不看课本,对于问题1和问题2,学生根据课本内容回答应该问题不大,但是此处教师应该补充正方向的确定不是唯一的,我们为了习惯,通常取向右与向上的方向分别为两条数轴的正方向.对于数轴的名称,多找几位学生回答,最后教师强调画平面直角坐标系应注意:①两条数轴互相垂直;②原点重合;③标注两坐标轴名称;④单位长度一般取相同的.问题3直接要求学生在所画平面直角坐标系中标出各个象限的名称,并引导学生得出坐标轴上的点不在任何一个象限内.(多媒体出示,同时给学生1分钟时间改正反思,查找错误的原因)注意:坐标轴上的点不属于任何象限,原点既在横轴上又在纵轴上.在上图建立的平面直角坐标系中,两条坐标轴将坐标平面分成四个部分(按逆时针方向)分别叫第一象限、第二象限、第三象限、第四象限.[设计意图]平面直角坐标系的产生是法国数学家迪卡尔的伟大发现,里边涉及的概念很难引导学生自己得出,因此可以通过自学的方式让学生掌握这些知识,培养学生自学能力、合作交流能力,体现学生主动学习的理念,对学生进行数学文化方面的熏陶和理想教育.培养作图能力和对概念的进一步认识,强化理解.活动内容2:点的坐标的定义.(多媒体出示)问题1:直角坐标系内,如何根据点的位置确定点的坐标?写出A 点的坐标(如图(1)所示).问题2:在平面直角坐标系内,如何根据点的坐标确定点的位置?找出坐标为(2,4)的C点(如图(2)所示).[处理方式]给学生3~4分钟的时间自学课本,然后根据自己的理解,写出A点的坐标,然后同桌比较写出的答案是否一样.找出不同的原因,然后再一次自学课本,小组内讨论得出正确答案:A(3,4).教师引导学生说明怎样得到点A的坐标,例如:①过点A分别向x轴和y 轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4).②用直角三角板中的直角,使直角顶点落在点A上,并且保证两条直角边与坐标系中x轴和y轴垂直,一条直角边通过x 轴上的坐标是3,另一条直角边通过y轴上的坐标是4,所以点A的坐标记作A(3,4).这些方法都可以得到点的坐标,此处学生容易出现错误,教师强调有序数对的横坐标在前,纵坐标在后,教师可以引导学生编顺口溜,利于学生理解辨别(平面直角坐标系,两条数轴来唱戏,一个点,两个数,先横后纵再括号,中间隔开用逗号).然后教师在平面直角坐标系中画出B点,要求学生写出点B的坐标,并板书在黑板上,学生讲评更正.对于问题2如何根据坐标找到平面上的点,学生独立思考,在方格纸上已经画好的平面直角坐标系中找出点C(2,4),组内探索交流后回答,并在黑板上演示,教师强调坐标要写在点旁边,书写格式要正确.(多媒体出示,同时给学生2分钟时间查缺补漏,查找错误的原因)[设计意图]以上两个问题的解决,是本节课的核心环节,教师的讲解配以多媒体的直观演示,能更好地突破难点,将枯燥的知识趣味化,同时,采用独立、对学、小组合作学习等多种形式相结合的学习方式,提高学生的学习兴趣,并及时地做练习,让学生将知识转化成自身的技能,注意到自己独立做题时所出现的错误,从而更好地实现本节课的教学目标.[过渡语]请同学们利用上面的知识,探究下面的例题.(3)、例题讲解(教材例1)写出图中的多边形ABCDEF各个顶点的坐标.解:各个顶点的坐标分别是:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).[设计意图]本课时的重点是通过坐标更好地理解平面直角坐标系的思想,认识到坐标与点的一一对应关系.例1和下面的“做一做”分别让学生“根据点的位置写出它的坐标”“根据坐标描出相应的点”,在此基础上进一步感受坐标与点的对应关系.(4)、做一做(二)(1)在下图所示的平面直角坐标系中,描出下列各点:A(-5,0),B(1,4),C(3,3),D(1,0),E(3,-3),F(1,-4).(2)依次连接A,B,C,D,E,F,A,你得到什么图形?(3)在平面直角坐标系中,点与实数对之间有何关系?【问题解决】(1)图略.(2)图形像“飞机”.(3)在直角坐标系中,对于平面上的任意一点,都有唯一的一对有序实数对(即点的坐标)与它对应;反过来,对于任意一对有序实数对,都有平面上唯一的一点与它对应.[设计意图]第(3)问是建立在例1和“做一做”前两问的基础上的,让学生经历根据坐标描出点的位置,由点的位置写出它的坐标的过程,体会平面上的点与有序实数对之间是一一对应的关系.结论:在直角坐标系中,对于平面上的任意一点,都有唯一的一对有序实数对(即点的坐标)与它对应;反过来,对于任意一对有序实数对,都有平面上唯一的一点与它对应.[知识拓展]由于平面直角坐标系中的点是用一个有序实数对来表示的,所以平面上的点和有序实数对是一一对应的关系.点(a,b)(a≠b)与点(b,a)一般是不同的两个点,在描点时应注意.三、课堂总结在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴.铅直的数轴叫做y轴或纵轴.x轴和y轴统称坐标轴.它们的公共原点O称为直角坐标系的原点.如图所示,两坐标轴把平面分成四个部分,右上方的部分叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限.四、课堂练习1.如果P点的坐标为(-1,2),那么P点的横坐标为,纵坐标为.解析:点的横坐标写在前,纵坐标写在后,用小括号括起来.答案:-1 22.如果Q点的坐标为(2,-3),那么Q点的横坐标为,纵坐标为.解析:点的横坐标写在前,纵坐标写在后,用小括号括起来.答案:2-33.如果M点的横坐标为-2,纵坐标为-1,那么M点的坐标为.解析:点的横坐标写在前,纵坐标写在后,用小括号括起来.故填(-2,-1).4.如图所示,分别写出点A,B,C,D,E,F,G的坐标.解:A(-1,-1),B(0,-3),C(2,-5),D(4,-1),E(3,2),F(-2,3),G(2,-2).五、板书设计3.2.1平面直角坐标系1.做一做(一).2.相关概念.3.例题讲解.4.做一做(二).六、布置作业(1)、教材作业【必做题】教材习题3.2第1,2题.【选做题】教材习题3.2第3,4题.(2)、课后作业【基础巩固】1.在平面直角坐标系中,点P(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限2.点P(2,3)的横坐标为,纵坐标是.【能力提升】3.点P(0,-3)的位置是在()A.x轴的正方向上B.x轴的负方向上C.y轴的正方向上D.y轴的负方向上4.已知P(3,-2),则P点到x轴的距离为,到y轴的距离为.5.已知A点在x轴上,且OA=3,则A点的坐标为.6.已知A(-1,4),B(-4,4),则线段AB的长为.【拓展研究】7.在图中的直角坐标系中描出下列各点.A(2,3),B(-2,3),C(0,-4),D(-2,0),E(-3,-1),F(3,-2).【答案与解析】1.B(解析:由象限的定义可知点P(-2,3)在第二象限.故选B.)2.2 33.D(解析:横坐标为0,在y轴上,纵坐标为负数,在负半轴上.)4.23(解析:点到x轴的距离为纵坐标的绝对值,到y轴的距离为横坐标的绝对值.)5.(3,0)或(-3,0)(解析:A点在x轴上,OA=3,则A点在O点的左侧或右侧,所以A点的坐标有两个.)6.3(解析:根据A(-1,4),B(-4,4)得AB平行于x轴,线段AB的长为A,B 两点横坐标差的绝对值.)7.解:根据点的坐标描出即可.图略.。
《平面直角坐标系》优秀教案(精选12篇)

《平面直角坐标系》优秀教案《平面直角坐标系》优秀教案(精选12篇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编为大家整理的《平面直角坐标系》优秀教案,仅供参考,欢迎大家阅读。
《平面直角坐标系》优秀教案篇1教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书,七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。
平面直角坐标系是图形与数量之间的桥梁,有了它我们便可以把几何问题转化为代数问题,也可以把代数问题转化为几何问题。
本章内容从数的角度刻画了第五章有关平移的内容,对学生以后的学习起到铺垫作用,6.1.2节平面坐标系主要是介绍如何建立平面坐标系,如何确定点的坐标和由点的坐标寻找点的位置,以及平面坐标系中特殊部位点的坐标特征,根据学生的接受能力,我把本内容分为2课时,这是第一课时,主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标根据新课标要求,数学的教学不仅要传授知识,更要注重学生在学习中所表现出来的情感态度,帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系,了解点与坐标的对应系;②在给定的直角坐标系中,能由点的位置写出点坐标。
数学思考:①通过寻找确定位置,发展初步的空间观念;②通过学习用坐标的位置,渗透数形结合思想解决问题:通过运用确定点坐标,发展学生的应用意识。
情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标,培养学生合作交流与探索精神;②通过介绍数学家的故事,渗透理想和情感的教育。
3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误,确定本节重难点为:重点:认识平面坐标系难点:根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征,以及他们现有知识水平,通过科学家发现点的坐标形成的经过启迪学生思维,通过小组合作与交流及尝试练习,促进学生共同进步,并用肯定和激励的言语鼓舞、激励学生。