硅质耐火材料综述
耐火材料概论知识点总结

硅砖的应用:是焦炉、玻璃熔窑、高炉热风炉、硅砖倒焰窑和隧道窑、有色冶炼和酸性炼钢炉及其它一些热工设备的良好筑炉材料。
粘土质耐火材料的原料软质粘土生产过程中通常以细粉的形式加入,起到结合剂和烧结剂的作用。
苏州土和广西泥是我国优质软质粘土的代表。
硬质粘土通常以颗粒和细粉的形式加入,前者起到配料骨架的作用,后者参与基体中高温反应,形成莫来石等高温形矿物。
结合剂水和纸浆废液粘土质耐火材料制品原料来源丰富,制造工艺简单,产量很大,广泛用于各种工业窑炉和工业锅炉上。
如隧道窑,加热炉和热处理炉等的全部或大部分炉体,排烟系统内衬用耐火材料,其中钢铁冶金系统是粘土质耐火材料制品的大用户,用于盛钢桶,热风炉、高炉、焦炉等使用温度在1350℃以下的高温部位。
铝矾土的加热变化a. 分解阶段(400~1200℃)b 二次莫来石化阶段(1200~1400℃或1500℃)二次莫来石化时发生约10%的体积膨胀c. 重结晶烧结阶段(1400~1500℃)。
• 高铝质耐材的应用• 由于高铝质耐火材料制品的优良性能,因而被广泛应用于高温窑炉一些受炉气、炉渣侵蚀,温度高承受载荷的部位。
例如高铝风口、热风炉炉顶、电炉炉顶等部位。
• 硅线石族制品具有较高的荷重软化温度、热震稳定性好、耐磨性和抗侵蚀性优良,因此适用于钢铁、化工、玻璃、陶瓷等行业,如用作烟道、燃烧室、炉门、炉柱、炉墙及滑板等。
在高炉上,为确保内衬结构的稳定性、密封性,避免碱性物的侵入和析出,或风口漏风,在出铁口、风口部位,选择内衬大块型组合砖结构的硅线石族耐火材料,延长了使用寿命。
• 莫来石制品的抗高温蠕变、抗热震性能力远远优于包括特等高铝砖在内的其它普通高铝砖 ,广泛应用于冶金工业的热风炉、加热炉、钢包,建材工业的玻璃窑焰顶、玻璃液流槽盖、蓄热室,机械工业的加热炉,石化工业的炭黑反应炉,耐火材料和陶瓷工业的高温烧成窑及其推板、承烧板等窑具。
刚玉耐材的原料氧化铝所有熔点在2000℃以上的氧化物中,氧化铝是一种最普通、最容易获得且较为便宜的氧化物。
玻璃熔窑用到的20种耐火砖大全【附理化指标】

玻璃熔窑⽤到的20种耐⽕砖⼤全【附理化指标】1玻璃窑⽤硅砖是以鳞⽯英为主的⽤于砌筑玻璃池窑⾼温部位所⽤的硅质耐⽕制品。
玻璃窑⽤硅砖应具有下列特征。
①⾼温体积稳定,不会因温度波动⽽引起炉体变化由于硅砖的荷重软化温度⾼,蠕变率⼩、玻璃窑在1600℃下可以保持炉体不变形,结构稳定。
②对玻璃液⽆污染硅砖主要成分是SiO2,,在使⽤时如有掉块或表⾯熔滴,不影响玻璃液的质量。
③耐化学侵蚀上部结构的硅砖受玻璃配料中含R2O的⽓体侵蚀,表⾯⽣成⼀层光滑的变质层,使侵蚀速度变低,起到保护作⽤。
④体积密度⼩可减轻炉体重量。
玻璃窑⽤硅砖理化指标见表1-1所⽰。
表1-1玻璃窑⽤硅砖的理化指标(2)中国建材⾏业标准(JC/T616=1996)将玻璃窑⽤优质硅砖按单重⼤⼩分为3种牌号:单重不⼤于15kg的为XBG-96;15~25kg的为ZBG-96;25~40kg的为DBG-96。
其理化指标、见表1-1-2所⽰。
表1-2 玻璃窑⽤优质硅砖的理化指标2黏⼟砖的性质及使⽤注意事项.中国冶标(YB/T5108-1993)规定了玻璃窑⽤⼤型黏⼟质耐⽕砖的理化指标,见表1-3所⽰。
表1-3 玻璃窑⽤⼤型黏⼟质耐⽕砖的理化指标3⾼岭⼟砖是含Al2O3 40%~44%的耐⽕材料,以⾼岭⼟为原料。
有压制、捣打与浇筑三种⽣产⽅法。
前两种⽅法的⽣产过程与⼀般耐⽕材料相同。
我国于1964年试验成功浇筑法并正式投产。
它以焦宝⽯熟料为主(75%)配以软质黏⼟调制成泥浆。
加⼊⽔玻璃做稀释剂使泥浆具有良好的流动性。
加⼊NaCl与NH4Cl作厚化剂能加速泥浆的凝固作⽤。
泥浆浇于⽯膏模中,脱模后⽤电⼲燥,再在窑内烧成。
⽬前产品有池炉⼤砖(砌池底或池壁)、供料槽砖、换热器筒形砖及坩埚等。
浇筑法的优点是制品结构致密均⼀,耐玻璃侵蚀性好,⽣产机械化程度较⾼。
缺点是尺⼨公差较⼤,有时略有扭曲。
4⾼铝砖耐⽕材料的性质化学结合⾼铝砖具有热震稳定性好,荷重软化温度较⾼和常温耐压强度⾼的特点。
碳化硅质耐火材料(总)

碳化硅质耐火材料材料科学与工程学院 10材料2班李佳摘要:本文介绍了碳化硅质耐火材料的性质,发展和应用关键字:碳化硅质耐火材料,性质,发展,应用碳化硅具有较高的耐火性能和化学稳定性, 因此被广泛应用于各种耐火材料中, 但目前我国尚无完整的不同含量碳化硅耐火材料的化学分析方法。
碳化硅质耐火材料的分析项目一般有: 游离碳、二氧化硅、碳化硅、游离硅、三氧化二铁、三氧化铝。
1.游离碳分析游离碳有3 种方法, 即燃烧重量法、气体容量法、气体重量法。
燃烧重量法只适用于纯碳化硅试样, 含有机物、结晶水以及其它可挥发物性质的耐火材料不适用此法来测定; 气体容量法由于分析速度快, 精度高, 操作简便, 最为常用; 气体重量法由于测试时间长, 精度不高, 不常用, 但此法可以任意延长试样的分解时间, 同时, 二氧化碳吸收量较大, 故适用于测定碳化硅质耐火材料中含碳高的耐火材料。
2.碳化硅分析碳化硅有直接法及间接法。
间接法又分为以测定碳化硅中的碳来换算和以测定碳化硅中的硅来换算两大类。
间接法测硅方法对仪器要求低, 换算系数小, 但测试时间长, 操作复杂, 不易掌握, 测碳方法快速, 简便,干扰小, 适用范围宽, 但对仪器精密度要求高, 换算系数大。
常用气体容量法和气体重量法及红外吸收法测碳。
直接法快速简便, 但适用范围窄。
3.二氧化硅分析二氧化硅有重量- 钼蓝光度法、挥散法、硅钼蓝比色法3 种。
挥散法只适应于纯碳化硅试样, 采用硝酸、氢氟酸处理试样, 游离硅和二氧化硅发生反应, 生成四氟化硅逸出, 而碳化硅则不与氢氟酸反应, 从总量中扣除游离硅含量, 即可得二氧化硅含量。
此方法理论上的准确度高, 但整个操作流程相对比较复杂, 测定周期长, 所以主要用于测碳化硅质制品中的总硅量。
然后通过计算, 得出二氧化硅量。
4.游离硅分析游离硅采用硅钼蓝比色法测定, 可分为直接法和间接法两种。
直接法是采用游离硅能溶于热的氢氧化钠溶液的性质, 将其与二氧化硅及碳化硅分离, 然后采用硅钼蓝比色, 从而得其含量。
第2章 硅石耐火材料

真密度,g/cm3 2.65 2.53 2.37~2.35 2.24 2.23 2.31~2.32 2.23 2.20
稳定温度范围,℃ >573 573~870 <117 117~163 870~1470 <180~270 1470~1723 <1713(急冷)
问题三:SiO2 各变体间的 转变可分为哪两类,各包 括什么内容?
鳞石英矛头双晶显 微结构照片
其次,不同的氧化硅晶型在加热冷却过程中产生的膨胀也 不同。 图中给出三种不同SiO2晶型在加 热过程中的膨胀。由图可见,当 温度高于600℃时,鳞石英的膨 胀率最小,当温度低于600℃时 ,石英的膨胀率最小。 因此,从膨胀率来看,鳞石英的 含量高有利于提高制品的抗热震 性与体积稳定性。
3
硅砖生产的工艺要点
1
硅砖的组成、显微结构与性质
1.1 硅砖的组成结构及对性质的影响
硅砖的矿物组成主要是鳞石英、方石英、少量的残余石英与玻璃相。
硅砖的化学及矿物组成大致如下:
化学成分(%) :
SiO2 93-98 Al2O3 0.5-2.5 Fe2O3 0.3-2.5 CaO 0.2-2.7 R2O 1-1.5
还可以在硅砖中引入一些含硅的化合物,如Si、SiC、Si3N4 等来降低其气孔率,提高其导热系数。
3
硅砖的生产工艺要点
3.1 原料
硅石的分类
分类 结晶硅石 岩石分类 脉石英 石英岩 变质石英岩 石英砂 砂岩 玉髓 燧石岩 显微结构和特征 晶粒很大,纯净,转变困难 晶粒较小,纯净,中速转变 晶粒受地壳压力而发生扭曲,易转变 晶粒较大,纯度不定 以胶结石英为基质的砂岩 由玉髓组成 以玉髓为基质 国内原料示例 吉林 本溪 包头
矿化剂与氧化硅所形成的熔液中O:Si比值愈小,矿化作用愈 好。
硅质矿物原料

耐火矿物原料概述
耐火材料是指耐火度不低于1580℃的无机非金属 材料。其功能是抵抗高温及由高温产生或衍生的磨蚀、 冲击、化学侵蚀等破坏力,主要用于冶金、建筑材料、 化工等领域。
耐火材料在早期大多以粘土、硅石、三石、菱镁矿 、白云石等为原料制成。目前,大量人工合成原料成为 应用的主体。
下面将以耐火材料的基本化学组成为分类,分别介 绍不同类别耐火材料所需的天然矿物原料和人工合成原 料。
4、主要性能:
1)属于酸性耐火材料,对酸性炉渣侵蚀抵抗能力强;
2)其荷重软化点高(1640-1680C)。鳞石英 (1670C)、方石英(1713C)
3)炉衬有良好的气密性。在使用过程中,加热到 1450C时约有1.5%-2.2%的总体积膨胀,此种残余 膨胀会使砖缝密合。
4)热震稳定性低,使其应用范围受到了限制。熔融石 英例外。
2)隐晶质异种:
玉髓(石髓):呈钟乳状、肾状、葡萄状、 皮壳状等外貌,具蜡状光泽半透明的纤维状异 种,常呈乳白、黄、褐、深蓝等色,尚有红褐 色(光玉髓)、苹果绿(绿玉髓)、绿色中夹有红 色碧玉小斑点(血玉髓,血滴石,鸡血石)。
玛瑙: 不同颜色的玉髓条带或 同心环状相间分布。 有缠丝玛瑙、 苔纹玛瑙、缟玛瑙、 截子玛瑙等。
4、硅砂和硅石类型 硅砂:
1)根据产区不同,习惯上将天然砂分作内陆砂 和海滨砂;
一般来说,海滨砂优于内陆砂质量。 2)按颜色不同,天然砂又有黄色砂和白色砂;
硅石:
1)按岩石类型或形成原因分:
脉石英、石英岩、石英砂岩、燧石岩
类型 脉石英 石英岩
石英砂 岩
燧石岩
石英砂
成因
特征
用途
由地下岩浆分泌出来的氧化 硅热液充填在岩石裂缝中形 成
硅酸铝系耐火材料硅质耐火材料课件

VS
详细描述
高炉内衬需要承受高温、高压和化学侵蚀 等恶劣条件,因此需要选用具有良好耐火 性能和结构强度的硅质耐火材料。常见的 硅质耐火材料包括硅砖、硅质捣打料等。 在施工时,需要严格控制砌筑质量,确保 内衬的尺寸精度和表面平整度,同时采取 适当的维护措施,延长内衬的使用寿命。
案例二:连铸中间包内衬的选用及施工方法
良好的抗热震性能
硅质耐火材料具有较好的抗热 震性能,能在温度急变的情况 下保持稳定性。
良好的机械性能
硅质耐火材料具有较高的密度 和硬度,耐磨、耐压性能良好
。
硅质耐火材料的应用场景
高炉内衬
硅质耐火材料因其高温稳定性、化学 稳定性和良好的抗热震性能,广泛应 用于高炉内衬。
玻璃窑炉
玻璃窑炉内衬需要抵抗高温和化学侵 蚀,硅质耐火材料是常用的材料之一 。
采用清洁能源
在硅质耐火材料生产过程中,应 尽量采用清洁能源,如电力、天 然气等,以减少燃煤和燃油的使
用,从而降低污染物排放。
优化生产工艺
通过技术改造和升级,优化硅质耐 火材料的生产工艺,提高设备的能 源利用效率,减少能源浪费和排放 。
废弃物资源化利用
对于硅质耐火材料生产过程中产生 的废渣和废气,应进行资源化利用 ,如回收废渣制作建筑材料、废气 回收再利用等。
等方面的不同需求。技术创新能够开发出适应市场需求的新产品,提高
企业的市场竞争力。
硅质耐火材料的研发方向
提高热学性能
研发新型的硅质耐火材料,提高其热学性能,如热导率、热膨胀系 数等,以满足高温工业炉窑对材料的高温适应性要求。
提高抗腐蚀性能
针对化工、钢铁等领域的高温、高压、强腐蚀等极端环境,研发具 有优异抗腐蚀性能的硅质耐火材料。
碳化硅质耐火材料化学分析方法综述

烧 . 量 印得 碳 化 硅 的 古 量 . i 应 于 纯碳 化 硅 试 样 对 于 杂质 较 多 的试 称 此 击适 样 不 宜 采 用 第二 种 是 试 样 经 氢 氟 酸 硫 酸处 理 . 留 物用 焦 硫 酸 钾 熔 融 ・ 残
以 盐 酸 溶 液 最 取 后 过 滤 . 溶 物 印 为 碳 化 硅 t 法 适用 于 结台 剂 能 被 伟 然 不 此
碳 化 硅 具 有较 高 的 耐 火 性 能 和化 学 稳 定 性 . 因此 被 广 泛 应 用 于 各 种 耐 火 材 料 中 , 目前 我 国 尚无 完 整 的 不 同含 量 碳化 硅 耐 火 材料 的化 学 分析 但
测 碳化 硅质 树 品中 的 总 硅 量 然后 通 过 计 算 , 出 二 氧 化 硅 量 得
去 二 氧 化硅 的 含 量换 算 而 得
5
三 氧 化 二 铁
采 用邻 二 复 杂 非 光 度法 、 基木 扬 醢 光 度 法 、 DT 容 量 法 测 定 邻 二 磺 E A
氟 杂 菲 灵 敏 度 高 . 确 度 好 . 定 酸度 允 许 范 围 宽 磺 基 东橱 酸 灵 敏 度 低 . 准 对低 古 量铁 的试 样 测 定 准确 度 不 够 。E DTA 窖 量 法 操 作 简 便 硅 制 品 试 样 . 珐 准 确 度 不 高 . 得 值 为 近似 值 故 要 求 该 测
试 样 中定 量地 挥 发除 去 加 盐 酸 后 过 滤 以昧 去 可 溶 性 物 质 . 不 溶残 渣 妁 将
液 酸 度 . 度 . 定 速 度 有严 格 要 求 . 易 偏 高 温 墒 容
6
三 氧化 二 铝
对 于 常 量 三氧 化 二 铝 的 测 定 有 强 碱 分 离 法 、 化 物 置 换 且 铁 铝 连 测 氯
硅砖生产的物理化学原理

砖生产的物理化学原理硅砖属于硅质耐火材料范畴,硅质耐火材料是以二氧化硅为主要成分的耐火材料,包括硅砖、特种硅砖、石英玻璃及其制品。
氧化硅质耐火材料突出特性是硅质制品属于酸性耐火材料,对酸性炉渣抵抗能力强,但受碱性渣强烈侵蚀,易被含AI2O3、K2O、Na2O等氧化物作用而破坏,对CaO、FeO、Fe2O3等氧化物有良好的抵抗性,其中典型的产品硅砖具有荷重变形温度高,波动在1640℃~1680℃之间,接近鳞石英,方石英熔点(1670℃、1713℃),残余膨胀保证了砌筑体有良好的气密性和结构强度。
最大的缺点是热震稳定性低,其次是耐火度不高。
硅质耐火材料主要原料有硅石,硅石原料有绞结硅石(胶结石英岩)和结晶硅石(结晶石英岩),此外还有脉石英;生产过程中废硅砖可作为原料使用,减少砖坯烧成膨胀,从而降低烧成废品;石灰是以石灰乳的形式加入坯料中;矿化剂主要有轧钢皮(铁鳞),平炉渣,硫酸渣,软锰矿等。
SiO2的同质多晶转变据资料报道,SiO2系中有11种主要变体,总共变体有22种,加上方英石为23种,其中包括9种鳞石英,5种非晶质变体。
但研究得最多的有七个结晶变体和一个非晶型变体,即β-石英、α-石英;γ-鳞石英、α-鳞石英、β-鳞石英;方石英、α-石英和石英玻璃(非晶型)。
上述晶型变体又可分为两类:第一类变体是石英、鳞石英和方石英。
它们在结构上和物理性质上极不相同,相互间的转化很慢;第二类变体是上述变体的亚种α、β、γ型。
它们在结构和性质方面很相似,相互间的转变很快。
在理论上它们之间的相互转变关系如图所示。
石英变体的理论转变关系图中水平方向的相互转变为慢速转变,这种转变一般是从晶体的表面边缘开始,极其缓慢地进展到晶体中心。
垂直方向的转变为快速转变。
这种转变在转变温度下会骤然发生,且是整个晶体骤然转变。
各种变体的基本性质如表所示。
上述慢速转化的温度界限只是在加热时间很长,原料粉碎很细,有强矿化剂存在的条件下,才是正确的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硅质耐火材料综述说明:本文主要介绍了硅质耐火材料、生产硅砖的原料及其主要成分不同变体之间的转变及工艺流程,并详细介绍了生产硅砖的机械设备及它们的工作原理和硅砖在实际生产中的应用。
关键词:硅砖原料工艺设备应用1.硅质耐火材料硅砖的矿物组成主要是鳞石英、方石英、少量的残余石英与玻璃相。
二氧化硅含量93%~98%,真密度一般为2.37~2.40g/cm3,具有抗酸性渣侵蚀性能,荷重软化温度在1640~1680℃之间,同时具有很高的导热系数。
当温度高于600℃时,其抗热震性也很好。
因而,它用作高炉热风炉及焦炉的砌筑材料。
在还原气氛下经1350~1430℃缓慢烧成,加热到1450℃时约有1.5~2.2%的总体积膨胀,这种残余膨胀会使切缝密合,保证砌筑体有良好的气密性和结构强度。
硅砖主要用于炼焦炉的炭化室和燃烧室的隔墙、炼钢平炉的蓄热室和沉渣室、均热炉、玻璃熔窑、耐火硅砖材料和陶瓷的烧成窑等窑炉的拱顶和其他承重部位。
而且硅砖抗硅酸盐玻璃成分侵蚀的能力较好,因而也可以用于玻璃熔窑上。
硅砖的主要缺点是,当温度低于600℃时,由于氧化硅的多晶转变导致较大的体积变化,使其在600℃以下的抗热震性差。
因此,使用硅砖的炉子不宜冷却至600℃以下。
硅砖以二氧化硅含量不小于96%的硅石为原料,加入矿化剂(如铁鳞、石灰乳)和结合剂(如糖蜜、亚硫酸纸浆废液),经混练、成型、干燥、烧成等工序制得。
2.SiO2的同质多晶转变二氧化硅在常压下有7个变体和1个非晶体,各变体间的转变可分为两类:第一类是高温型转变,即石英、鳞石英、方石英之间的转变,即图中水平方向的转变。
由于他们在晶体结构和物理性质方面差别较大,因此转变所需的活化能大,转变温度高而缓慢,并伴随有较大的体积效应。
第二类是低温型转变,即石英、鳞石英、方石英本身的α、β、γ型的转变,即图中垂直方向的转变。
由于他们在晶体结构和物理性质方面差别很小,因此转变温度低,转变速度快,且转变是可逆的,所伴随的体积效应也比高温型的小。
各种变体的基本性质如下表所示:上述慢速转化的温度界限只是在加热时间很长,原料粉碎很细,有强矿化剂存在的条件下,才是正确的。
实际上看到的转变关系是按下图所示进行的:图中所示石英转变为鳞石英的转化速度和程度,不仅与温度的高低和矿化剂的存在(种类和数量)有关,而且也与温度的作用时间、原料的颗粒大小、显微组织结晶大小)等因素有关。
温度高、高温作用时间长、颗粒小、结晶小、矿化剂作用强,则转化快,反之则慢。
无论是慢速转变或快速转变,都伴随有体积各变体的真密度不同,由真密度大的变体向真密度小的变变化。
这是因为SiO2体转化时,产生体积膨胀,反之则出现收缩。
氧化硅质耐火材料的主晶相为鳞石英。
鳞石英熔点1670℃,但鳞石英具有较高的体积稳定性。
硅砖中鳞石英具有矛头状双晶相互交错的网络状结构,因而使砖具有较高的荷重软化点及机械强度。
当硅砖中有残余石英存在时,由于在使用中它会继续进行晶型转变,体积膨胀大,易引起砖体结构松散。
所以,一般希望烧成后硅砖中含有大量鳞石英,方石英次之,而残余石英越少越好。
氧化硅质耐火材料采用矿化剂。
石英转变为鳞石英或方石英时,在矿物剂很少或几乎没有时,α-石英就形成α-方石英,这种转变称为“干转化”。
在干转化时,由于砖体的不均匀的体积膨胀很大,而又无液相缓冲应力,因而引起制品结构松散和开裂,不可能制得良好性能的制品。
当有足够数量的矿化剂存在时,α-石英、亚稳定方石英和矿化剂及杂质等相互作用形成液相,并侵入(石英颗粒在形成亚稳定方石英时出现)裂纹中,促进以α-石英和亚稳定方石英不断地溶解于所形成的液相中,使之成为硅氧的过饱和溶液,然后以稳定的鳞石英形态不断地从溶液中结晶出来。
这个转变速度取决于所加矿化剂的性质和数量,所形成的液相缓冲着由于体积膨胀所产生的应力,提高砖坯的加热体积稳定性和强度,防止焙烧过程中制品的松散和开裂现象。
3.硅质耐火砖生产3.1生产工艺流程硅质耐火砖一般硅含量高达95%以上,根据用途不同有不同规格的砖。
其生产工艺流程如下:破粉碎→筛分→混炼→湿碾成型→干燥→烧成→检验→包装(1)破粉碎:颚式破碎机破碎废砖及原料,圆锥粉碎至需要粒度,并除尘。
(2)筛分:斗式提升机提升至顶部筛分,细粉进入混炼机混合搅拌,粗粉继续进入圆锥粉碎机粉碎。
(3)混炼:加入纸浆等结合剂将原料混合均匀,避免局部成分过多,产生缺陷。
(4)湿碾成型:分为手工成型和机械成型,形状简单大批量生产选用机械成型。
成型完成后进行半检,不合格砖坯的重新成型,合格砖坯进入干燥车间。
(5)干燥:砖坯在干燥器中干燥,高温1小时,低温1.5小时。
(6)烧成:在隧道窑中烧成温度约为1430℃,燃料为煤气,烧成时间为7天。
(7)检验:成品出窑后检验,检验分为物检验和化检。
物检验包括对硅砖的长、宽、高、气孔以及高温蠕变的检验;化检一般对产品的成分是否达到要求的含量进行细致的检验。
检验后合格品包装,不合格产品作为原料重新进入颚式破碎机破碎再利用。
(8)检验合格后包装,不合格的返回破粉碎工序再利用。
3.2生产设备及工作原理3.2.1破粉碎车间主要设备的构造及工作原理(1)振动式喂料机振动式喂料机的激振方式一般为电磁振动,所以又称电磁振动喂料机。
电磁振动喂料机由斜槽、电磁激振器、减震器和电器控制箱组成。
工作原理:电磁振动喂料机是属于双质点定向强迫振动机械。
由槽体、连接叉、衔铁、工作弹簧的一部分以及约占斜槽容积10%~20%的物料等组成工作质量m1;由激振器壳体、铁芯、线圈及工作弹簧的另一部分等组成对衡质量m2。
质量m1和m2之间用激振器主弹簧连接起来,形成一个双质点定向强迫振动的弹性系统。
激振器电磁线圈的电流一般是经过单相半波整流。
电磁振动喂料机的供电,目前广泛使用可控硅调节的电流通过,在衔铁和铁芯之间便产生相互吸引的脉冲电磁力,使槽体向后运动,激振器的主弹簧发生变形而贮存了一定势能,在负半周内线圈中无电流通过,电磁力消失,借助弹簧贮存的势能使衔铁和铁芯朝相反方向离开,斜槽就向前运动。
这样电磁喂料机就以交流电源的频率作3000次/min 的往复振动。
由于激振力作用线与槽底成一定角度,激振力在任一瞬间可分解为垂直分力和水平分力。
前者使物料颗粒以大于重力加速度的加速度向上抛弃,而后者使物料颗粒在上抛期间作水平运动,综合效应就使物料间歇向前作抛物线式的跳跃运动。
(2)颚式破碎机颚式破碎机是由固定颚(又是机架的前壁)、悬挂在轴上的可动颚板、偏心轴、垂直连杆、肘板、传动飞轮、两颚板上的衬板、带有弹簧的拉杆、肘板座,调节块构成。
结构图如下:工作原理:电动机通过皮带使偏心轴旋转时,垂直连杆即向上向下运动,当垂直连杆向上时,带动两块肘板逐渐伸平,肘板迫使可动颚板向固定颚板推进,破碎腔(即由固定颚板和动颚组成的空间)中的矿石受到挤压、劈裂、折屈作用而破碎。
垂直连杆向下运动,肘板和可动颚板借弹簧和拉杆之力向后退,此时排矿口增大,被破碎的矿石由此排出。
可见颚式破碎机是间断破碎矿石的。
偏心轴每转一周只有半个周期用于破碎,其后半个周期用于排矿,两颚板靠近时物料即被破碎,当两颚板离开时小于排料口的料块由底部排出,其破碎动作是间歇进行的。
(3)圆锥破碎机中细碎圆锥破碎机主要部件是定锥(又称外锥)和动锥(又称内锥)。
定锥主要由调整套和定锥衬板组成;动锥主要由动锥驱体、主轴、动锥衬板和分配盘组成。
结构如下图:工作原理:圆锥破碎机中,破碎物料的部件是两个截锥体,动锥固定在主轴上,定锥是机架的一部分,是静置的,主轴的中心线与定锥的中心线成一定角度。
主轴悬挂在它们的焦点上,轴的下方活动地插在偏心衬套中。
衬套以一定偏心距绕定锥中心轴旋转,是动锥沿定锥的内表面作偏旋运动。
当靠近定锥时,物料受到动锥挤压和弯曲作用而被破碎;在偏离定锥处,已破碎的物料由于重力的作用从锥底落下。
因为偏心衬套连续转动,动锥也就连续旋转,故破碎过程和卸料过程沿着定锥的内表面连续依次进行。
(4)振动筛振动筛的筛面振动方向与筛面成一定角度,振动筛工作时,物料在筛面上主要是作相对滑动。
振动筛的运动特性有助于筛面上的物料分层,减少筛孔堵塞现象,强化筛分过程。
筛体以小振幅(振幅一般为0.5~5mm),高频率(振动为600~3000次/min)作强烈振动,消除物料堵塞现象,使筛机具有较高的筛分效率和处理能力。
动力消耗小,构造简单,维修方便。
使用范围广,不仅可以用于细筛,也可用于中、粗筛分,并且还可用于脱水和脱泥分力作业。
振动筛因其结构不和筛框运动轨迹不同,大致分为下列类型:单轴惯性振动筛:偏心振动筛、自定中心振动筛、圆形空间旋转筛。
工作原理:由于激振器的偏心质量作回转运动,它所产生的离心惯性力(称激振力)传递给筛箱,激起筛箱的振动,筛上物料受筛面运动的作用力而连续的作抛掷运动,即物料被抛起前进一段距离后再落至筛面上,这样实现了物料颗粒垂直于筛面的运动,从而提高了筛分效率和处理能力。
双轴惯性振动筛:双轴强制式机械同步振动筛、双电机自同步振动筛、电磁筛、概率筛。
工作原理:双轴惯性振动筛筛箱的振动是由双激振器来实现的。
激振器的两个主轴分别装有相同质量和偏心距的重块,两轴之间用一对速比为1的齿轮连接和一台电机驱动,因两轴回转方向相反,转速相等,故两偏心重块产生的离心惯性力在平行于筛面方向相互抵消,在垂直于筛面方向合成。
(5)胶带输送机胶带输送机是工业生产过程中最为普遍的一种连续输送机械,可用于水平方向和坡度不大的倾斜方向对粉体或成件物料的输送。
它主要由输送带、托辊、驱动装置、改向装置、拉紧装置、装料及卸料装置、清理装置、制动装置构成。
(6)球磨机球磨机主要由筒体、衬板、隔仓板、主轴承、进料卸料装置构成。
工作原理:球磨机一般为卧式筒形旋转装置,外沿齿轮传动,两仓,格子型球磨机。
物料由进料装置经入料中空轴螺旋均匀地进入磨机第一仓,该仓内有阶梯衬板或波纹衬板,内装不同规格钢球,筒体转动产生离心力将钢球带到一定高度后落下,对物料产生重击和研磨作用。
物料在第一仓达到粗磨后,经单层隔仓板进入第二仓,该仓内镶有平衬板,内有钢球,将物料进一步研磨。
粉状物通过卸料篦板排出,完成粉磨作业。
(7)斗式提升机斗式提升机主要由牵引构件、料斗、传动装置、张紧装置、机壳构成。
如下图工作原理:被输送的物料由进料口喂入后,连续被料斗舀起、提升,由机头出料口卸出。
3.2.2成型车间主要设备的构造及工作原理(1)湿碾机轮碾机通常用于粉碎中等硬度物料,也可作为混合物料之用。
主要由碾轮和碾盘组成。
为能将物料充分混合均匀,加料时应遵循“先粗后细”“先干后湿”的原则。
工作原理:物料是在碾盘平面与碾轮圆柱形表面之间受到挤压和研磨作用而被粉碎,被粉碎后的物料由固定刮板刮到筛板上,能够通过筛孔的物料在斜槽中由活动刮板送至卸料口卸出。