(完整版)六年级下册抽屉原理习题答案版
六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。
二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。
模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。
【练习1】把4支铅笔放进3个笔筒中,有()种放法。
【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。
【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。
【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。
【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。
规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。
那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。
你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。
六年级奥数抽屉原理含答案

抽屉原理知识框架一、 知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、 抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、 抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.重难点抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。
本讲的主要教学目标是: (1) 理解抽屉原理的基本概念、基本用法; (2) 掌握用抽屉原理解题的基本过程; (3) 能够构造抽屉进行解题;(4)利用最不利原则进行解题;(5)利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。
例题精讲(一)、直接利用公式进行解题(1)求结论【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【考点】抽屉原理【难度】1星【题型】解答【解析】6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的.利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”,6511÷=,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子.【答案】对【巩固】年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生日.”你知道张老师为什么这样说吗?【考点】抽屉原理【难度】1星【题型】解答【解析】略.【总结】题目中并没有说明什么是“抽屉”,什么是“物品”,解题的关键是制造“抽屉”,确定假设的“物品”,根据“抽屉少,物品多”转化为抽屉原理来解.【答案】从题目可以看出,这道题显然与月份有关.我们知道,一年有12个月,把这12个月看成12个抽屉,这道题就相当于把13个苹果放入12个抽屉中.根据抽屉原理,至少有一个抽屉放了两个苹果.因此至少有两个同学在同一个月过生日.【例 2】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。
六年级下册抽屉原理习题答案版word精品

抽屉原理练习题习题精选一:-找“抽屛”找“苹果”三个小朋友同行,其中必有两个小朋友性别相同,为什么?两种性别:2个“抽屉”三个小朋友:3个“苹果”3^2=1 (个)1 (个) 1 + 1=2 (个)2、六年级一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友岀生在同一周。
1年有52周:52个“抽屉” 53个学生:53个“苹果”53 ^52=1 (个)1 (个)1+1=3 (个)3、从电影院里任意找来13个观众,至少有两个人属相相同,为什么?12个属相:12个“抽屉”13个观众:13个“苹果”13^12=1 (个)1 (个) 1 + 1=2 (个)4、用五种颜色给正方体的各面涂色(每面只涂一种颜色),请你证明至少有两个面涂色相同。
五种颜色:5个“抽屉”六个面:6个“苹果”6^5=1 (个)1 (个) 1 + 1=2 (个)5、六年级四个班去春游,自由活动时,有6个同学聚在一起,那么这6个同学中至少有几人是同一班的?四个班:4个“抽屉”6个同学:6个“苹果”6^4=1 (个)2 (个) 1 + 1=2 (个)6、一张扑克牌有四种花色,从中任意抽牌,问:至少要抽出多少张牌,才能保证有两张牌是同一花色的?四种花色:4个“抽屉”抽牌:“苹果”4+1=5 (张)习题术青选二:——求至少数二商(苹果数宁抽屉数)+11>大家玩过“剪刀、石头、布”的游戏吗?如果两个同学出17次,至少有几次手势是相同的?列式:17^3=5 (次)2 (次)5+仁6 (次)(分析:把剪刀、石头、布看做3个抽屉,把17次平均放入3个抽屉中,至少有一个抽屉里有5+1次,所以至少有6次手势是相同的。
)2、六年级有152人参加体育活动,安排跳绳、投篮、爬杆三项活动,每位同学至少参加一项活动,参加相同活动种类最多的学生至少有多少人?列式:152 ^3=50 (人)2 (人)50+仁51 (人)(分析:把跳绳、投篮、爬杆三项活动看做3个抽屉,把152人平均放入3个抽屉中,至少有一个抽屉里有50+1人,所以参加相同活动种类最多的学生至少有51人。
小学数学 抽屉原理 完整版题型训练+详细答案

抽屉原理例题讲解:板块一:基础题型1.将60个红球、8个白球排成一条直线,至少会有多少个红球连在一起?答案:7详解:60÷(8+1)=6……6,6+1=7个。
2.17名同学参加一次考试,考试题是3道判断题(答案只有对或错),每名同学都在答题纸上依次写上了3道题目的答案.请问:至少有几名同学的答案是一样的?答案:3详解:答案的结果有23=8种情况,即8个抽屉。
17÷8=2……1,2+1=3名。
3.任意写一个由数字1、2组成的六位数,从这个六位数中任意截取相邻两位,可得一个两位数,请证明:在从各个不同位置上截得的所有两位数中,一定有两个相等.详解:两位数的情况共4种:12,21,11,22。
六位数可以截取出5个两位数,所以必有重复。
4.将1至6这6个自然数随意填在图2,图中的六个圆圈中,试说明:图中至少有一行的数字之和不小于8。
详解:1+2+3+4+5+6+7=21,21÷3=7,图形总共有3行,第一行只有一个数,最大填6,那么后两行至少有一行是大于7的整数,即不小于8。
5.从l,2,3,…,99,100这100个数中任意选出51个数,请说明:(1)在这51个数中,一定有两个数的差等于50;详解:构造差为50的抽屉:(1,51)、(2,52)、……、(50,100),共50个抽屉。
选出51个数,必有两数来自一组,即差为50.(2)在这51个数中,一定有两个数差1.详解:构造差为1的抽屉:(1,2)、(3,4)、……、(99,100),共50个抽屉。
必有两数来自一组,即差为1.6.从1,2,3,…,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?答案:12详解:构造差为4的抽屉:(1,5)、(2,6)、(3,7)、(4,8)、(9,13)、(10,14)、(11,15)、(12,16)、(17,21)、(18)、(19)、(20)共12个抽屉,最多取12个数。
小学六年级奥数抽屉原理含答案

小学六年级奥数抽屉原理含答案Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】抽屉原理知识要点1.抽屉原理的一般表述(1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。
它的一般表述为:第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
(2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。
它的一般表述为:第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
2.构造抽屉的方法常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。
例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。
一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。
如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。
点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。
点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。
解(1)13×2+1=27(张) (2)9×4+1=37(张)例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。
解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。
(2)要保证有5人的属相相同的最少人数为4×12+1=49(人)不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。
小学数学抽屉原理完整版题型训练+详细答案

小学数学抽屉原理完整版题型训练+详细答案抽屉原理例题讲解:板块一:基础题型1.将60个红球、8个白球排成一条直线,至少会有多少个红球连在一起?答案:7详解:60÷(8+1)=6……6,6+1=7个。
2.17名同学参加一次考试,考试题是3道判断题(答案只有对或错),每名同学都在答题纸上依次写上了3道题目的答案.请问:至少有几名同学的答案是一样的?答案:3详解:答案的结果有23=8种情况,即8个抽屉。
17÷8=2……1,2+1=3名。
3.任意写一个由数字1、2组成的六位数,从这个六位数中任意截取相邻两位,可得一个两位数,请证明:在从各个不同位置上截得的所有两位数中,一定有两个相等.详解:两位数的情况共4种:12,21,11,22。
六位数可以截取出5个两位数,所以必有重复。
4.将1至6这6个自然数随意填在图2,图中的六个圆圈中,试说明:图中至少有一行的数字之和不小于8。
详解:1+2+3+4+5+6+7=21,21÷3=7,图形总共有3行,第一行只有一个数,最大填6,那么后两行至少有一行是大于7的整数,即不小于8。
5.从l,2,3,…,99,100这100个数中任意选出51个数,请说明:(1)在这51个数中,一定有两个数的差等于50;详解:构造差为50的抽屉:(1,51)、(2,52)、……、(50,100),共50个抽屉。
选出51个数,必有两数来自一组,即差为50.(2)在这51个数中,一定有两个数差1.详解:构造差为1的抽屉:(1,2)、(3,4)、……、(99,100),共50个抽屉。
必有两数来自一组,即差为1.6.从1,2,3,…,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?答案:12详解:构造差为4的抽屉:(1,5)、(2,6)、(3,7)、(4,8)、(9,13)、(10,14)、(11,15)、(12,16)、(17,21)、(18)、(19)、(20)共12个抽屉,最多取12个数。
抽屉原理习题(含答案)

抽屉原理习题讲解1.一个篮球运动员在15分钟内将球投进篮圈20次,证明总有某一分钟他至少投进两次.2.有黑、白、黄筷子各8只,不用眼睛看,任意地取出筷子来,使得至少有两双筷子不同色,那么至少要取出多少只筷子才能做到?3.证明:在1,2,3,…,10这十个数中任取六个数,那么这六个数中总可以找到两个数,其中一个是另一个的倍数.4.证明:任意502个整数中,必有两个整数的和或差是998的倍数.5.任意写一个由数字1,2,3组成的30位数,从这30位数任意截取相邻三位,可得一个三位数,证明:在从各个不同位置上截得的三位数中至少有两个相等.6.证明:把任意10个自然数用适当的运算符号连接起来,运算的结果总能被1890整除.7.七条直线两两相交,所得的角中至少有一个角小于26°.8.用2种颜色涂3行9列共27个小方格,证明:不论如何涂色,其中必至少有两列,它们的涂色方式相同.9.用2种颜色涂5×5共25个小方格,证明:必有一个四角同色的矩形出现.10.求证存在形如11…11的一个数,此数是1987的倍数.抽屉原理习题答案(苹果数总是比抽屉数少)1、平均分假设,每分钟投进一个,那么还有5个球没时间投,无论在哪个一分钟内投都能够使得这一分钟投进至少两球。
2、11只,最倒霉原则,先取出8只黄筷子,然后一黑一白,在任意取一只必能满足结果!3、首先找到5个数,任意数都不是其他数的倍数!可能是4、5、6、7、9或者5、6、7、8、9,这能是这两种组合,然后任意再挑一个,都会出现倍数关系。
3、另解:把1到10分成5个组{5,10}、{3,9}、{1,2,4,8}、{6}、{7}咱要从5个组里取6个数出来,必须从1个组里取2个数出来,而任意组拿出来的2个数都是倍数关系。
4、998=499*2=500+498,0-499这500个数,不能满足条件,任意拿到一个数加上或者减这500个数中的一个数,必然是998的倍数4、另解:每个整数被998除,余数必是0,1,2,…,997中的一个.把这998个余数制造为(0),(1,997),(2,996),…,(497,501),(498),(499),(500)共501个抽屉,把502个整数按被998除的余数大小分别放入上述抽屉,必有两数进入同一抽屉.若余数相同,那么它们的差是998的倍数,否则和为998的倍数.5、从30位数中截出个3位数来,这个三位数共有多少中情况呢?111,112,113。
_抽屉原理精华及习题(附答 案)

第九讲 抽屉原理1、知识点:1.把27个苹果放进4个抽屉中,能否使每个抽屉中苹果数均小于等于6?那么至少有一个抽屉中的苹果数大于等于几?2.把25个苹果放进5个抽屉中,能否使每个抽屉中苹果数均小于等于4?那么至少有一个抽屉中的苹果数大于等于几?上述两个结论你是如何计算出来的?★规律:用苹果数除以抽屉数,若余数不为零,则“答案”为商加1,若余数为零,则“答案”为商。
★抽屉原则一:把个以上的苹果放到个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有两个苹果。
★抽屉原则二:把多于×个苹果放到个抽屉中,无论怎样放,一定能找到一个抽屉,它里面至少有(+1)个苹果。
2、基础知识训练(再蓝皮书)1、把98个苹果放到10个抽屉中,无论怎么放,我们一定能找到一个含苹果最多的抽屉,它里面至少含有个苹果。
2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少含有只鸽子。
3、从8个抽屉中拿出17个苹果,无论怎么拿。
我们一定能找到一个拿苹果最多的抽屉,从它里面至少拿出了个苹果。
4、从个抽屉中(填最大数)拿出25个苹果,才能保证一定能找到一个抽屉,从它当中至少拿了7个苹果。
3、 思路与方法:在抽屉原理问题,难在有些题目抽屉没有直接给出,要求我们自己根据题意去造抽屉,但我们也不要为此感到困难,往往在题目有一句关键的话,告诉我们抽屉的性质,我们可以根据此性质来构造抽屉即可。
训 练 题1.六(1)班有49名学生。
数学王老师了解到在期中考试中该班英文成绩除3人外均在86分以上后就说:“我可以断定,本班同学至少有4人成绩相同。
”请问王老师说的对吗?为什么?2.从这100个数中任意挑选出51个数来,证明在这51个数中,一定:(1)有2个数互质;(2)有两个数的差为50;3.圆周上有2000个点,在其上任意地标上(每一点只标一个数,不同的点标上不同的数)。
求证:必然存在一点,与它紧相邻的;两个点和这点上所标的三个数之和不小于2999。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉原理练习题习题精选一:------找“抽屉”,找“苹果”1、三个小朋友同行,其中必有两个小朋友性别相同,为什么?两种性别:2个“抽屉”三个小朋友:3个“苹果”3÷2=1(个)···1(个) 1+1=2(个)2、六年级一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。
1年有52周:52个“抽屉” 53个学生:53个“苹果”53÷52=1(个)···1(个) 1+1=3(个)3、从电影院里任意找来13个观众,至少有两个人属相相同,为什么?12个属相:12个“抽屉” 13个观众:13个“苹果”13÷12=1(个)···1(个) 1+1=2(个)4、用五种颜色给正方体的各面涂色(每面只涂一种颜色),请你证明至少有两个面涂色相同。
五种颜色:5个“抽屉”六个面:6个“苹果”6÷5=1(个)···1(个) 1+1=2(个)5、六年级四个班去春游,自由活动时,有6个同学聚在一起,那么这6个同学中至少有几人是同一班的?四个班:4个“抽屉” 6个同学:6个“苹果”6÷4=1(个)···2(个) 1+1=2(个)6、一张扑克牌有四种花色,从中任意抽牌,问:至少要抽出多少张牌,才能保证有两张牌是同一花色的?四种花色:4个“抽屉”抽牌:“苹果”4+1=5(张)习题精选二:-------求至少数=商(苹果数÷抽屉数)+11、大家玩过“剪刀、石头、布”的游戏吗?如果两个同学出17次,至少有几次手势是相同的?列式:17÷3=5(次)···2(次) 5+1=6(次)(分析:把剪刀、石头、布看做3个抽屉,把17次平均放入3个抽屉中,至少有一个抽屉里有5+1次,所以至少有6次手势是相同的。
)2、六年级有152人参加体育活动,安排跳绳、投篮、爬杆三项活动,每位同学至少参加一项活动,参加相同活动种类最多的学生至少有多少人?列式:152÷3=50(人)···2(人) 50+1=51(人)(分析:把跳绳、投篮、爬杆三项活动看做3个抽屉,把152人平均放入3个抽屉中,至少有一个抽屉里有50+1人,所以参加相同活动种类最多的学生至少有51人。
)习题精选三:--------求物体数(当至少数=2时,直接判断物体数比抽屉数多1;当至少数>2时,物体数=抽屉数×(至少数--1)+1。
)1、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有2个球的颜色相同,则最少要取出多少个球?列式:3+1=4(个)(分析:把三种颜色看作3个抽屉,为保证取出的球中有两个球的颜色是相同的,说明一个抽屉中至少要有2个物体,物体数比抽屉数多1,所以至少要取出4个球。
)2、一个盒子里有红色、蓝色、黄色、白色球若干个,为保证取出的球中有5个球颜色相同,则最少要取出多少个球?列式:4×(5-1)+1=17(个)(分析:把四种颜色看做4个抽屉,为保证取出的球中有5个球的颜色是相同的,说明一个抽屉中至少要有5个物体,物体数=4×(5-1)+1=17个,所以至少要取出17个球。
)- 1 -测试题:1、一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有3张牌有相同的点数?(29张)将14种点数看作是14个抽屉,最少要抽取29张牌,方能保证其中至少有3张牌有相同的点数。
14×(3-1)+1=29(扑克牌中的点数说明:A--K分别为1—13点,大小王点数相同,共14种点数。
)2、有11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。
试证明:必有两个学生所借的书的类型相同。
(同举一反三例题一)证明:A、B、C、D四类书,根据题目条件,这些学生借书的组合可能有十种,分别是:因为有11名学生到老师家借书,而只有10种借书情况,因此必有两个学生所借的书的类型相同。
3、体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?(6名)(同举一反三例题一)根据题意,50名同学可拿球的组合有9种,分别是(足)、(排)、(篮)、(足足)、(排排)、(篮蓝)、(足排)、(足篮)、(排篮)。
把这9种配组看作9个抽屉。
因为50÷9=5(名)···5(个) 5+1=6(名)。
4、有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出多少只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。
三种颜色先各拿出一双半,也就是3只,再随意拿出一个,都会满足两双同色,故3×3+1=9(双)。
5、一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。
问:一次至少要取出多少木块,才能保证其中至少3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。
要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×(3-1)+1=9(件)物品。
6、饲养员给10只猴子分苹果,其中至少要有一只猴子得到7个苹果,饲养员至少要拿来多少个苹果?分析与解:将10只猴子看成10个抽屉。
要保证有一个抽屉中至少有7个苹果,根据抽屉原理2,至少要有10×(7-1)+1=61(个)苹果。
7、在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?因为任何整数除以3,其余数只可能是0,1,2三种情形.我们将余数的这三种情形看成是三个“抽屉”。
将四个自然数放入三个抽屉,至少有一个抽屉里放了不止一个数。
8、海天小学五年级学生身高的厘米数都是整数,并且在140厘米到150厘米之间(包括140厘米到150厘米),那么,至少从多少个学生中保证能找到4个人的身高相同?在140厘米至150厘米之间共有11个整厘米数,把这11个整厘米数看作11个抽屉,每个抽屉中放3个整厘米数,就要11×3个整厘米数,如果再取出一个整厘米数,放入相应的抽屉中,那么这个抽屉中便有4个整厘米数,也就是至少找出11×3+4=37个学生。
- 2 -举一反三题:王牌例题1----(当至少数=2时,求物体数)敬老院买来许多苹果、橘子和梨,每位老人任意选两个,那么,至少应有几位老人才能保证至少有2位老人所选的水果相同?“苹果”数:敬老院的人数;“抽屉”数:任意选的两种水果(苹果—苹果、苹果—橘子、苹果—梨、橘子—橘子、橘子—梨、梨—梨),6个;既然有6个“抽屉”,必须有6+1个“物体数”才能保证至少有2位老人所选的水果相同。
疯狂操练11、学校图书室买来许多故事书、科技书和连环画,每个同学任意选两本,那么,至少应该有几个同学才能保证至少有2位同学所选的书相同?“抽屉”6个:三种书两两组合数,6种;“苹果”:学生的人数6+1=7(个)2、布袋中有红、黄、橙三种颜色的木块若干块,每个小朋友任意摸两块木块,那么,至少有多少个小朋友才能保证至少有2个小朋友所选的木块相同?“抽屉”6个:三种颜色两两组合数,6种;“苹果”:小朋友的人数6+1=7(个)3、一个袋子中有红、黄、橙、紫四种颜色的小球,每人任意摸三个球,那么至少有几个人才能保证至少有2个人所选小球相同?“抽屉”20个:四种颜色三三组合数,20种;“苹果”:人数20+1=21(个)王牌例题2----(当至少数=2时,求物体数)盒子里混装着5个白色球和4个红色球,要想保证一次能拿出2个同颜色的球,至少要拿出多少个球?列式:2+1=3(个)(分析:把两种颜色看作2个抽屉,为保证取出的球中有两个球的颜色是相同的,说明一个抽屉中至少要有2个物体,物体数比抽屉数多1,所以至少要取出3个球。
)疯狂操练21、箱子里装有6个苹果和8个梨。
要保证一次能拿出2个同样的水果,至少要拿出多少个水果?“抽屉”2个:两种水果;“苹果”:拿出水果的数量2+1=3(个)2、书箱中混装着3本故事书和5本教科书,要保证一次能拿出2本同样的书,至少要拿出多少本书?“抽屉”2个:两类书;“苹果”:拿出书的数量2+1=3(个)3、书箱里混装着3本故事书和5本教科书,要保证一次一定能拿出2本故事书,至少要拿出多少本书?根据抽屉原理,考虑最不利的情况,把5本教科书都拿了,那只有再拿2本故事书,才能保证一次至少拿出2本故事书。
5+2=7(本)王牌例题3-----(考虑最不利的情况)一个布袋里装有红、黄、蓝袜子各5只,问一次至少取出多少只才能保证每种颜色至少有一只?(3个颜色看作3个抽屉)根据抽屉原理,从最不利的情况着手,如果先取5只全是红色,那么只能再取5只;假如取出的5只全是黄的,这时,再取1只一定就是蓝的了,因此取5×2+1=11(只)才能保证每种颜色至少有1只。
- 3 -疯狂操练31、抽屉里放着红、绿、黄三种颜色的球各3只,问一次至少摸出多少只才能保证每种颜色至少有一只?3×2+1=7(只)2、书箱里放着4本故事书,3本连环画,2本文艺书,问一次至少取出多少本书才能保证每种书至少有一本?4+3+1=8(本)3、盒子里放有3枝绿铅笔,3枝红铅笔和5枝蓝铅笔,如果闭上眼睛摸一次,必须摸几枝才能保证至少有1枝蓝铅笔?3+3+1=7(枝)王牌例题4----(求至少数)三(2)班有50个同学,在学雷锋活动中,每人单独做了些好事,他们共做好事155件,问是否有人单独做了4件或4件以上的好事?50个同学:50个“抽屉” 155件好事:155个“苹果”155÷50=3(件)···5(件) 3+1=4(件)疯狂操练41、幼儿园小班共有30个小朋友,他们每人自己都有一些玩具,他们共有玩具92件,问是否有人单独有4件或4件以上玩具?30个同学:30个“抽屉” 92件玩具:92个“苹果”92÷30=3(件)···2(件) 3+1=4(件)2、童星幼儿园有6个班,他们在植树节中每班都种了一些树,他们共种了14棵树,问是否有班级种了3棵或3棵以上的树?6个班:6个“抽屉” 14棵树:14个“苹果”14÷6=2(棵)···2(棵) 2+1=3(棵)3、明明、华华、颖颖三人,各有一些铅笔,他们共有铅笔14枝,问是否有人有5枝或者5枝以上的铅笔?3个人:3个“抽屉” 14枝铅笔:14个“苹果”14÷3=4(枝)···2(枝) 4+1=5(枝)王牌例题5在一次春游活动中,三(3)班有31人带了面包,有38人带了饮料,有36人带了水果,还有34人带了巧克力,全部共45人,可以肯定至少有多少人这四样都带了?由条件可知:若每人都带3样不同的,那么一共有45×3=135(样),而实际上他们一共带了31+38+36+34=139(样),多了139-135=4(样),可以肯定至少有4人这四样都带了。