动态规划应用(含程序)

合集下载

C++语言在动态规划方法上的应用

C++语言在动态规划方法上的应用

1引言
我 们 以前 研 究 的 一 些 数 学 模 型 的 特 点 是 一 个 阶 段 的 最 佳 决 策 , 有 些 问 题 的 决 策 是 由 不 同 阶 段 的 一 但 系 列 决 策 所 构 成 , 们 必 须 对 每 一 个 阶 段 做 出 决 策 , 终 才 能 做 出 总 的 决 策 , 就 是 多 阶 段 决 策 问 题 。 动 我 最 这 态 规 划 就 是 解 决 多 阶段 决 策 问题 的一 种 方 法 。 下 面 我 们 首 先 讨 论 一 个 具 体 的 例 子 , 投 资 金 额 分 配 的 问 是
的 方案选 择 。因此 各 阶段 的方 案是相 互联 系 的 , 面我 们用 动态 规划 的方法来 解 这一 问题 。 下 设 投 资 的 顺 序 是 , c, 应 地 对 项 目 投 资 称 为 第 1阶 段 , 项 目 曰投 资 称 为 第 2阶 段 , 项 目 c投 曰, 相 对 对 资 称 为 第 3阶段 。 对 每 个 阶段 的 决 策 , 先 决 定 于 有 多 少 剩 余 资 金 在 此 阶 段 分 配 。 们 称 阶 段 k的 剩 余 资 金 额 为 此 阶 段 首 我 的 状 态 , 以 s , 阶 段 的 决 策 记 为 ( 资 方 案 ) 在 第 k阶段 决 策 为 时 的 效 益 值 记 为 d ( ) 阶 段 1 记 该 投 , s, 。
变 得 轻 松 容 易 了 , 算 的准 确 性 会 更 高 , 算 的速 度 也会 更 快 。 计 计 关 键 词 : 态 规划 ; 阶段 决 策 ; +语 言 动 多 C+
作者简 介 : 玉坤 (9 7一) 女 , 韩 15 , 黑龙江齐齐哈 尔人 , 大庆师 范学院计算机 系教 师。 中图分 类号 .P 1 文献标识码 : 文章编号 :0 6—2 6 (0 7 0 0 5 0 收稿 日期 :0 7— 1 5 T3 1 A 10 15 20 )2— 0 3— 5 20 0 —1

c++的dp公式

c++的dp公式

c++的dp公式摘要:一、C++中的动态规划介绍1.动态规划基本概念2.C++中动态规划的应用场景二、C++中的动态规划公式1.动态规划基本思想2.动态规划公式推导3.C++中动态规划的实现方法三、C++动态规划实例分析1.背包问题动态规划实例2.最长公共子序列动态规划实例正文:C++中的动态规划是一种解决复杂问题的方法,通过将问题分解成子问题,并将子问题的解存储起来,以避免重复计算,从而提高程序的运行效率。

C++中动态规划广泛应用于求解最优化问题,如背包问题、最长公共子序列等。

在C++中,动态规划公式是通过递归关系推导出来的。

以背包问题为例,给定一组物品,每种物品都有一定的价值和重量,要求在限定的总重量内,选取若干物品,使得选取物品的总价值最大。

我们可以用动态规划方法解决这个问题,设f[i][j] 表示在前i 个物品中选择,总重量不超过j 的情况下,所能获得的最大价值。

根据状态转移方程,我们可以得到动态规划公式:f[i][j] = max(f[i-1][j], f[i-1][j-w[i]] + v[i]),其中w[i] 和v[i] 分别表示物品i 的重量和价值。

在C++中实现动态规划,通常需要使用数组来存储子问题的解,并通过循环遍历所有可能的解,更新动态规划数组。

在实际编程过程中,我们可以使用递归或迭代的方式实现动态规划算法。

以背包问题为例,C++代码实现如下:```cpp#include <iostream>#include <vector>#include <algorithm>using namespace std;int knapsack(int W, const vector<int>& weights, constvector<int>& values) {int n = weights.size();vector<vector<int>> dp(n + 1, vector<int>(W + 1, 0));for (int i = 1; i <= n; ++i) {for (int w = 1; w <= W; ++w) {if (weights[i - 1] <= w) {dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1]);} else {dp[i][w] = dp[i - 1][w];}}}return dp[n][W];}int main() {int W = 10;vector<int> weights = {1, 3, 4, 5};vector<int> values = {10, 40, 50, 70};cout << "Maximum value that can be put in the knapsack is: " << knapsack(W, weights, values) << endl;return 0;}```总之,C++中的动态规划是一种求解复杂问题的方法,通过将问题分解成子问题,并将子问题的解存储起来,以避免重复计算。

动态规划教案课程

动态规划教案课程

吉林师范大学计算机学院案教)(算法部分称C 程序设计课程名系级院级计算机学院计算机科学与技术095101 系、实验室() 计算机基础教研室教研室计算机科学与技术3班班级09 授课郑言生实习滕国文导教师系指吉林师范大学计算机学院二○一二年四月二十五日(星期三5,6节)课型章节:动态规划基本思想基要本参教考材资和料主:算法设计与分析》教学目的:本课程以C语言为教授程序设计的描述语言,结合语言介绍程序设计的基本原理、技巧和方法。

主要讲授内容包括程序设计动态规划基本概念,动态规划的基本步骤,动态规划问题的特。

通过本课程的学习,为算法更好的学习,以及能用计算机解决一些实际问题打下坚实的征基础。

教学基本要求:掌握C语言中动态规划的基本概念,。

并能熟练使动态规划的基本步骤,动态规划问题的特征用C语言动态规划思想解决一些简单程序问题;掌握一些基本算法结构及相关方法;熟悉程序设计的思想和编程技巧。

重点:动态规划基本概念,。

动态规划的基本步骤,动态规划问题的特征难点:动态规划的基本步骤课型:理论课教法:1.多媒体讲解2.举例讲解教学内容及过程:1.课前回顾:枚举法: 在进行归纳推理时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么这结论是可靠的,这种归纳方法叫做枚举法.2. 数塔问题有形如下图所示的数塔,从顶部出发,在每一结点可以选择向左走或是向右走,一直走到底层,要求找出一条路径,使路径上的值最大。

简单的进行选举方法的引导,让同学们主动思考到动态规划的思想上了。

考虑一下:从顶点出发时到底向左走还是向右走应取决于是从左走能取到最大值还是从右走能取到最大值,只要左右两道路径上的最大值求出来了才能作出决策。

同样,下一层的走向又要取决于再下一层上的最大值是否已经求出才能决策。

这样一层一层推下去,直到倒数第二层时就非常明了。

如数字2,只要选择它下面较大值的结点19前进就可以了。

所以实际求解时,可从底层开始,层层递进,最后得到最大值。

最短路径动态规划问题及其程序设计

最短路径动态规划问题及其程序设计
[ ] 建 华 . 流 产业 竞 争力 评 价 指 标 体 系 研 究 [ ] 商 业 经 济 文 荟 , 1姚 物 J.
2 0 ( )2 2 . 0 6 1 :0— 3
( )对 和 U作 综 合 评 价 。 3 对 作 综 合 评 价 , 有 B 则 ,=
Al×Rl: ( . 5 0 3 03,. 2 0 0 06), 2=A 0 3 68, . 8 0 2 22, . 4 B 2×R2
—....... . ......... . . . . .. L
最 短路 径 动 态规 划 问题 及 其 程 序 设 计 7 2 7 6 4 l 7 1 ∞
0 0 0 0 O O O O
林旭 东
( 圳 大 学 管理 学 院 , 东 深圳 5 8 6 ) 深 广 1 0 0
0. 4Байду номын сангаас
0. 8 26
样 , 色 综 合 评 价 法 对 区 域 物 流 竞 争 力 的 评 价 , 有 一 定 的 灰 仍 局 限性 和 不 确 定 性 。 比 如 指 标 设 置 的 代 表 性 程 度 、 家 评 分 专
R2 =
0. 63 0 9 2 .3 4
0. 81 0. 9 2 32 0. 08 0 4 3 .3 6
d ( , , , ’ i ) 一组 P ( , , i ) … , ’ i ) i)… d (, 和 。 i )P ( , , P ( √ 。
[ 者 简 介 】 旭 东 ( 9 2一) 男 , 北 武 汉 人 , 圳 大 学 管 理 学 作 林 17 , 湖 深 院 副 教授 , 士 后 , 要 研 究 方 向 : 量 模 型 与 决 策 分 析 。 博 主 数
20 0 9年 5月

C++动态规划

C++动态规划
动态规划
概念
动态规划程序设计是对解最优化问题的 一种途径、一种方法,而不是一种特殊 算法。不象前面所述的那些搜索或数值 计算那样,具有一个标准的数学表达式 和明确清晰的解题方法。动态规划程序 设计往往是针对一种最优化问题,由于 各种问题的性质不同,确定最优解的条 件也互不相同,因而动态规划的设计方 法对不同的问题,有各具特色的解题方 法,而不存在一种万能的动态规划算法, 可以解决各类最优化问题。
分类
动态规划一般可分为线性动规,区域动 规,树形动规,背包动规四类。
线性动规:拦截导弹,合唱队形,挖地 雷等
区域动规:石子合并, 加分二叉树,统 计单词个数等
树形动规:贪吃的九头龙,二分查找树 等
背包问题:装箱问题,挤牛奶等
基本思想
动态规划算法通常用于求解具有某种最优性质的问题。 在这类问题中,可能会有许多可行解。每一个解都对 应于一个值,我们希望找到具有最优值的解。动态规 划算法与分治法类似,其基本思想也是将待求解问题 分解成若干个子问题,先求解子问题,然后从这些子 问题的解得到原问题的解。与分治法不同的是,适合 于用动态规划求解的问题,经分解得到子问题往往不 是互相独立的。若用分治法来解这类问题,则分解得 到的子问题数目太多,有些子问题被重复计算了很多 次。如果我们能够保存已解决的子问题的答案,而在 需要时再找出已求得的答案,这样就可以避免大量的 重复计算,节省时间。我们可以用一个表来记录所有 已解的子问题的答案。不管该子问题以后是否被用到, 只要它被计算过,就将其结果填入表中。
一个最优化策略具有这样的性质,不论过去状态和决策如何,
对前面的决策所形成的状态而言,余下的诸决策必须构成最优
策略。简而言之,一个最优化策略的子策略总是最优的。一个

【java】矩阵的最大子矩阵(动态规划)

【java】矩阵的最大子矩阵(动态规划)

【java】矩阵的最⼤⼦矩阵(动态规划)⼀、实验⽬的练习使⽤动态规划算法解决实际问题(使⽤Java语⾔实现)。

⼆、实验内容【问题描述】有⼀个包含正数和负数的⼆维数组。

⼀个⼦矩阵是指在该⼆维数组⾥,任意相邻的下标是1*1或更⼤的⼦数组。

⼀个⼦矩阵的和是指该⼦矩阵中所有元素的和。

本题中,把具有最⼤和的⼦矩阵称为最⼤⼦矩阵。

【⽰例】给出以下⼆维数组:0 -2 -7 09 2 -6 2-4 1 -4 1-1 8 0 -2这个数组的最⼤⼦矩阵为:9 2-4 1-1 8其和为15。

【输⼊】输⼊包含多组测试数据。

每组输⼊的第⼀⾏是⼀个正整数N(1<=N<=100),表⽰⼆维⽅阵的⼤⼩。

接下来N⾏每⾏输⼊N个整数,表⽰数组元素,范围为[-127,127]。

【输出】输出最⼤⼦矩阵和。

【思路提⽰】求最⼤⼦矩阵和问题是求最⼤⼦段和问题在⼆维空间上的推⼴,可参考求最⼤⼦段和问题。

三、 程序代码(1)maxSumList1package maxSumList;2import java.util.Scanner;34public class maxList{5 //public static int[][] list=new int[10][10];6 static int n;7 private maxSingleList maxSingleList=new maxSingleList();8 private final maxSingleList[] maxSingleLists;9 private int numberOfmaxSingleLists;1011 public maxList() {12 //创建计算每个⼦段和的类的数组13 maxSingleLists=new maxSingleList[100];14 }15161617 public void InputList(int[][] list){1819 System.out.println("请输⼊⽅阵⼤⼩:");20 Scanner scanner=new Scanner(System.in);21 n=scanner.nextInt();22 for (int y=0;y<n;y++){23 System.out.println("请输⼊⽅阵第"+(y+1)+"⾏数据:");24 for (int x=0;x<n;x++)25 list[y][x]=scanner.nextInt();26 }27 }28 public void OutputMaxSumList(int[][] list){29 int m=0;30 int max=0;31 int max1=0;32 int maxnum=0;3334 for (m=0;m<=numberOfmaxSingleLists;m++) {35 max1=maxSingleLists[m].getSum();36 if (max1 > max) {37 max = max1;38 maxnum = m;39 }40 }41 System.out.println("请输出最⼤⼦段和:"+maxSingleLists[maxnum].getSum());42 System.out.println("请输出最⼤⼦段:");43 for(int i=maxSingleLists[maxnum].getY1();i<=maxSingleLists[maxnum].getY2();i++){44 for (int j=maxSingleLists[maxnum].getNum1();j<=maxSingleLists[maxnum].getNum2();j++){45 System.out.print(list[i][j]+" ");46 }47 System.out.println("\n");48 }49 }5051 public void subMaxList(int[][] matrix) {52 int m=0;53 int[][] total = new int[10][10];54 for (int y=0;y<n;y++){55 for (int x=0;x<n;x++)56 total[y][x]=matrix[y][x];57 }585960 for (int i = 1; i < n; i++) {61 for (int j = 0; j < n; j++) {62 total[i][j] += total[i-1][j];63 }64 }6566 int maximum = 0;//Integer.MIN_VALUE;67 for (int i = 0; i < n; i++) {//所在的list⾏68 for (int j = i; j <n; j++) {//相差的69 //result 保存的是从 i ⾏到第 j ⾏所对应的矩阵上下值的和70 int[] result = new int[matrix[0].length];//每次都重新定义存放⼦段和的结果数组71 for (int f = 0; f < n; f++) {72 if (i == 0) {73 result[f] = total[j][f];74 } else {75 result[f] = total[j][f] - total[i - 1][f];76 }77 }78 maxSingleList maxSingleList=new maxSingleList();79 int maximal=maxSingleList.MaxListNum(result,i,j);80 numberOfmaxSingleLists=m;81 maxSingleLists[m++]= maxSingleList;81 maxSingleLists[m++]= maxSingleList;82 if (maximal > maximum) {83 maximum = maximal;84 }85 }86 }87 }8889}(2)maxSingleList4 private int num1;5 private int num2;6 private int y1;7 private int y2;8 private int sum;9 public int getNum1(){10 return num1;11 }12 public int getNum2(){13 return num2;14 }15 public void setY1(int y11){16 y1=y11;17 }18 public void setY2(int y22){19 y2=y22;20 }21 public int getY1(){22 return y1;23 }24 public int getY2(){25 return y2;26 }27 public void setSum(int sum){28 this.sum=sum;29 }30 public int getSum(){31 return sum;32 }33 public int MaxListNum(int[] array,int i,int j){34 int number,b=0,begin=0,bestmin=0,bestmax=0;35 sum=0;36 for (number = 0; number < array.length; number++) {//sum没清零37 if (b >= 0)//去掉等号38 b += array[number];39 else {40 b = array[number];41 begin = number;42 }43 if (b > sum) {//加个+44 sum = b;45 bestmin = begin;46 bestmax = number;47 }4849 }50 num1 = bestmin;51 num2= bestmax;52 setSum(sum);53 setY1(i);54 setY2(j);55 return sum;56 // if (sum==0)和为0的⾏数组要去掉那⼀⾏5758 }5960 }(3)TestmMaxList4 public static int[][] list=new int[10][10];5 public static void main(String[] arg){6 maxList maxlist=new maxList();7 maxlist.InputList(list);8 maxlist.subMaxList(list);9 maxlist.OutputMaxSumList(list); 1011 }12}四、 实验结果(含程序运⾏截图)五、 出现问题及解决⽅法(⼀)出现的问题在于算法的设计上,⼀开始我认为最⼤⼦矩阵就是每⾏所构成的最⼤⼦段的⾏列的序号交集,后来发现不是这样的,这样没办法正确输出最⼤⼦矩阵,得到的结果不对,然后推翻⾃⼰写了⼀天的代码以及想法。

动态规划_多阶段决策问题的求解方法

动态规划_多阶段决策问题的求解方法

动态规划_多阶段决策问题的求解方法1.构造状态网络; :一:解决多阶段决策最优化的过程为动态规划方法在程序设计中,有一类活动的过程,由于它的特殊性,可将过程2.根据状态转移关系和状态转移方程建立最优值的分成若干个互相联系的阶段,在它的每一阶段都需要做出决策,从而3.按阶段的先后次序计算每个状态的最优值。

使整个过程达到最好的活动效果。

因此各个阶段决策的选取不能任逆向思维法是指从问题目标状态出发倒推回初始意确定,它依赖于当前面临的状态,又影响以后的发展。

当各个阶段态的思维方法。

动态规划的逆向思维法的要点可归纳为以决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条 1.分析最优值的结构,刻画其结构特征; 活动路线。

这种把一个问题看作是一个前后关联具有链状结构的多 2.递归地定义最优值; 阶段过程就称为多阶段决策过程,这种问题称为多阶段决策问题。

3.按自底向上或自顶向下记忆化的方式计算最优在多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列如果原问题可以分解成几个本质相同、规模较小的就是在变化的状态中产生出来的,故有"动态"的含义,我们称这种就会联想到从逆向思维的角度寻求问题的解决。

一般解决多阶段决策最优化的过程为动态规划方法。

策问题多采用动态规划逆向思维方法解决。

二、举:二:动态规划最优化原理 pascal 语例说明本文以信息学奥赛用语言——最优化原理是动态规划的基础。

任何一个问题,如果失去了这言为编程个最优化原理的支持,就不可能用动态规划方法计算。

这个“最优化说明,其他编程语言编写方法相同,语句类似。

原理”如果用数学化一点的语言来描述的话,就是:假设为了解决某 :一:问题描述一优化问题,需要依次作出 n 个决策 D1,D2,,Dn,如若这个决策设有 N 个不相同的整数组成的数列,记为: 序列是最优的,对于任何一个整数 k,1 < k < n,不论前面 k 个决策是怎样的,以后的最优决策只取决于由前面决策所确定的当前状态,即 ()且 ?? a1 a2 an aiajij以后的决策 Dk+1,Dk+2,,Dn 也是最优的。

动态规划写课程设计

动态规划写课程设计

动态规划写课程设计一、课程目标知识目标:1. 学生能理解动态规划的概念、原理和应用场景。

2. 学生能掌握动态规划问题的解题步骤,包括状态定义、状态转移方程、边界条件等。

3. 学生能运用动态规划解决经典问题,如背包问题、最长递增子序列等。

技能目标:1. 学生能够运用动态规划的思想分析问题,提高问题求解的效率。

2. 学生能够运用编程语言实现动态规划的算法,解决实际问题。

3. 学生能够通过动态规划的实践,培养逻辑思维和编程能力。

情感态度价值观目标:1. 学生通过学习动态规划,培养面对复杂问题时的耐心和毅力。

2. 学生在学习过程中,学会与他人合作、交流,培养团队协作精神。

3. 学生能够认识到算法在生活中的广泛应用,激发对计算机科学的兴趣和热爱。

课程性质:本课程为计算机科学或信息技术相关专业的核心课程,旨在培养学生解决实际问题的能力。

学生特点:学生已具备一定的编程基础和算法知识,具有一定的逻辑思维能力。

教学要求:教师需结合实际案例,引导学生掌握动态规划的核心思想,注重理论与实践相结合,提高学生的实际操作能力。

同时,关注学生的情感态度价值观的培养,激发学生的学习兴趣。

在教学过程中,将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. 动态规划基本概念:介绍动态规划的定义、特点和应用场景,使学生了解动态规划的核心思想。

教材章节:第二章 动态规划基础内容列举:动态规划的定义、动态规划与分治、贪心算法的关系、动态规划的应用场景。

2. 动态规划解题步骤:讲解动态规划问题的解题方法,包括状态定义、状态转移方程、边界条件等。

教材章节:第二章 动态规划基础内容列举:状态定义、状态转移方程、边界条件、动态规划算法的设计方法。

3. 经典动态规划问题:通过分析经典问题,使学生掌握动态规划的应用。

教材章节:第三章 动态规划经典问题内容列举:背包问题、最长递增子序列、最长公共子序列、矩阵链乘、最优二叉搜索树。

4. 动态规划实践:结合编程实践,让学生动手解决实际问题,提高动态规划的应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态规划算法的应用一、动态规划的概念近年来,涉及动态规划的各种竞赛题越来越多,每一年的NOI几乎都至少有一道题目需要用动态规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经不再停留于简单的递推和建模上了。

要了解动态规划的概念,首先要知道什么是多阶段决策问题。

1. 多阶段决策问题如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。

各个阶段的决策构成一个决策序列,称为一个策略。

每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。

策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果.2.动态规划问题中的术语阶段:把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。

在多数情况下,阶段变量是离散的,用k表示。

此外,也有阶段变量是连续的情形。

如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。

在前面的例子中,第一个阶段就是点A,而第二个阶段就是点A到点B,第三个阶段是点B到点C,而第四个阶段是点C到点D。

状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因素。

在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点。

在前面的例子中,第一个阶段有一个状态即A,而第二个阶段有两个状态B1和B2,第三个阶段是三个状态C1,C2和C3,而第四个阶段又是一个状态D。

过程的状态通常可以用一个或一组数来描述,称为状态变量。

一般,状态是离散的,但有时为了方便也将状态取成连续的。

当然,在现实生活中,由于变量形式的限制,所有的状态都是离散的,但从分析的观点,有时将状态作为连续的处理将会有很大的好处。

此外,状态可以有多个分量(多维情形),因而用向量来代表;而且在每个阶段的状态维数可以不同。

当过程按所有可能不同的方式发展时,过程各段的状态变量将在某一确定的范围内取值。

状态变量取值的集合称为状态集合。

无后效性:我们要求状态具有下面的性质:如果给定某一阶段的状态,则在这一阶段以后过程的发展不受这阶段以前各段状态的影响,所有各阶段都确定时,整个过程也就确定了。

换句话说,过程的每一次实现可以用一个状态序列表示,在前面的例子中每阶段的状态是该线路的始点,确定了这些点的序列,整个线路也就完全确定。

从某一阶段以后的线路开始,当这段的始点给定时,不受以前线路(所通过的点)的影响。

状态的这个性质意味着过程的历史只能通过当前的状态去影响它的未来的发展,这个性质称为无后效性。

决策:一个阶段的状态给定以后,从该状态演变到下一阶段某个状态的一种选择(行动)称为决策。

在最优控制中,也称为控制。

在许多间题中,决策可以自然而然地表示为一个数或一组数。

不同的决策对应着不同的数值。

描述决策的变量称决策变量,因状态满足无后效性,故在每个阶段选择决策时只需考虑当前的状态而无须考虑过程的历史。

决策变量的范围称为允许决策集合。

策略:由每个阶段的决策组成的序列称为策略。

对于每一个实际的多阶段决策过程,可供选取的策略有一定的范围限制,这个范围称为允许策略集合。

允许策略集合中达到最优效果的策略称为最优策略。

给定k阶段状态变量x(k)的值后,如果这一阶段的决策变量一经确定,第k+1阶段的状态变量x(k+1)也就完全确定,即x(k+1)的值随x(k)和第k阶段的决策u(k)的值变化而变化,那么可以把这一关系看成(x(k),u(k))与x(k+1)确定的对应关系,用x(k+1)=Tk(x(k),u(k))表示。

这是从k 阶段到k+1阶段的状态转移规律,称为状态转移方程。

最优性原理:作为整个过程的最优策略,它满足:相对前面决策所形成的状态而言,余下的子策略必然构成“最优子策略”。

D也是B1到D的最短路径……──事实正是如此,因此我们认为这个例子满足最优性原理的要求。

◊C2◊C2是A到C2的最短路径,B1◊B1◊D,这些点的选择构成了这个例子的最优策略,根据最优性原理,这个策略的每个子策略应是最优:A◊C2◊B1◊最优性原理实际上是要求问题的最优策略的子策略也是最优。

让我们通过对前面的例子再分析来具体说明这一点:从A到D,我们知道,最短路径是A动态规划练习题USACO 2.2 Subset Sums题目如下:对于从1到N的连续整集合合,能划分成两个子集合,且保证每个集合的数字和是相等的。

举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,他们每个的所有数字和是相等的:and {1,2}这是唯一一种分发(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数)如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分发的子集合各数字和是相等的:{1,6,7} and {2,3,4,5} {注1+6+7=2+3+4+5}{2,5,7} and {1,3,4,6}{3,4,7} and {1,2,5,6}{1,2,4,7} and {3,5,6}给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。

程序不能预存结果直接输出。

PROGRAM NAME: subsetINPUT FORMAT输入文件只有一行,且只有一个整数NSAMPLE INPUT (file subset.in)7OUTPUT FORMAT输出划分方案总数,如果不存在则输出0。

SAMPLE OUTPUT (file subset.out)4参考程序如下:#include <fstream>using namespace std;const unsigned int MAX_SUM = 1024;int n;unsigned long long int dyn[MAX_SUM];ifstream fin ("subset.in");ofstream fout ("subset.out");int main() {fin >> n;fin.close();int s = n*(n+1);if (s % 4) {fout << 0 << endl;fout.close ();return ;}s /= 4;int i, j;dyn [0] = 1;for (i = 1; i <= n; i++)for (j = s; j >= i; j--)dyn[j] += dyn[j-i];fout << (dyn[s]/2) << endl;fout.close();return 0;}USACO 2.3 Longest Prefix题目如下:在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。

生物学家对于把长的序列分解成较短的(称之为元素的)序列很感兴趣。

如果一个集合P 中的元素可以通过串联(允许重复;串联,相当于Pascal 中的“+” 运算符)组成一个序列S ,那么我们认为序列S 可以分解为P 中的元素。

并不是所有的元素都必须出现。

举个例子,序列ABABACABAAB 可以分解为下面集合中的元素:{A, AB, BA, CA, BBC}序列S 的前面K 个字符称作S 中长度为K 的前缀。

设计一个程序,输入一个元素集合以及一个大写字母序列,计算这个序列最长的前缀的长度。

PROGRAM NAME: prefixINPUT FORMAT输入数据的开头包括 1..200 个元素(长度为 1..10 )组成的集合,用连续的以空格分开的字符串表示。

字母全部是大写,数据可能不止一行。

元素集合结束的标志是一个只包含一个“.” 的行。

集合中的元素没有重复。

接着是大写字母序列S ,长度为 1..200,000 ,用一行或者多行的字符串来表示,每行不超过76 个字符。

换行符并不是序列S 的一部分。

SAMPLE INPUT (file prefix.in)A AB BA CA BBC.ABABACABAABCOUTPUT FORMAT只有一行,输出一个整数,表示S 能够分解成P 中元素的最长前缀的长度。

SAMPLE OUTPUT (file prefix.out)11示例程序如下:#include <stdio.h>#define MAXP 200#define MAXL 10char prim[MAXP+1][MAXL+1];int nump;int start[200001];char data[200000];int ndata;int main(int argc, char **argv){FILE *fout, *fin;int best;int lv, lv2, lv3;if ((fin = fopen("prim.in", "r")) == NULL){perror ("fopen fin");exit(1);}if ((fout = fopen("prim.out", "w")) == NULL){perror ("fopen fout");exit(1);}while (1){fscanf (fin, "%s", prim[nump]);if (prim[nump][0] != '.') nump++;else break;}ndata = 0;while (fscanf (fin, "%s", data+ndata) == 1)ndata += strlen(data+ndata);start[0] = 1;best = 0;for (lv = 0; lv < ndata; lv++)if (start[lv]){best = lv;for (lv2 = 0; lv2 < nump; lv2++){for (lv3 = 0; lv + lv3 < ndata && prim[lv2][lv3] &&prim[lv2][lv3] == data[lv+lv3]; lv3++);if (!prim[lv2][lv3])start[lv + lv3] = 1;}}if (start[ndata]) best = ndata;fprintf (fout, "%i\n", best);return 0;}USACO 3.1 Score Inflation题目如下:我们试着设计我们的竞赛以便人们能尽可能的多得分,这需要你的帮助。

相关文档
最新文档