用提公因式法分解因式
《用提公因式法进行因式分解》数学教学PPT课件(2篇)

结论总结
1.找出多项式各项公因式的方法: 定系数:公因式的系数是多项式各项系数的
最大公约数。 定字母:字母取多项式各项中都含有的相同
的字母。 定指数:相同字母的指数取各项中最小的一
个,即字母最低次幂。
结论总结
2.提公因式法分解因式步骤: 第一步,找出公因式; 第二步,提公因式( 把多项式化为两个因式的 乘积);
寻找公因 式的关键: 1、定系数 2、定字母 3、定指数
3
系数:最大
2指数:取最低的 x
字母:
公约数
相同字
所以,公因式母是 3x2
公因式的系数:应该取各项系数的最大公约数。
公因式的字母:要取各项中的相同字母。
公因式的指数:相同字母取最低次数。
下列各多项式的公因式是什么? (1) 3x + 6y (2) ab - 2ac (3) a2 - a3
下列各多项式的公因式是什么?
(4) 9m2n - 6mn
单项式
(5) -6x2y - 8xy2
公因式
(6) 4(m+n)2
+2(m+n)
多项式
例1.把 3a2-9ab分解因式.
解:原式 =3a•a-3a•3b =3a(a-3b)
第一步,找出公因式, 把多项式各项写成公 因式与一个因式的积; 第二步,提取公因式 , 剩余的因式组成另一
式因式与多项式因式的积? 2、结果中每个多项式是不是
例2.把 -4x3 –12x2 +4x 分解因式.
× =-2x(2x2+6x-2)
公因式要提 尽
提公因式法中应注意什么?
(1)公因式要提尽 (2)小心漏掉1 (3)当多项式的第一项为负数时,通常要先 把符号提出来,注意括号内的各项都要变号。
提取公因式法分解因式的步骤

提取公因式法分解因式的步骤公因式法是一种常用的因式分解方法,它通过提取多个代数式的公因式,将其进行合并简化,从而得到原始代数式的因式分解形式。
下面将介绍公因式法分解因式的具体步骤。
1.观察多项式中的各个项,寻找它们之间的公因式。
公因式是指可以同时整除多个项的代数式。
2.将找到的公因式提取出来,并用括号括起来。
提取公因式时,需要将公因式的系数和变量一同提取出来。
3.将原始多项式中的每一项除以提取出来的公因式。
这一步可以通过将每一项的系数与公因式的系数进行除法运算来实现。
4.将提取出来的公因式与上一步得到的商相乘,并将结果写在括号外面。
这一步是将公因式和商相乘,重新得到原始多项式。
5.最后,将括号外面的结果与原始多项式进行比较,确保两者相等。
这一步是为了验证因式分解的正确性。
通过以上步骤,我们可以完成对多项式的因式分解。
下面通过一个具体的例子来说明公因式法的应用。
假设我们要对多项式3x^2 - 6x进行因式分解。
第一步,观察多项式中的各个项,发现它们之间的公因式是3x。
第二步,将公因式3x提取出来,并用括号括起来,得到3x( ).第三步,将原始多项式中的每一项除以公因式3x,得到(3x^2)/(3x) - (6x)/(3x)。
第四步,将提取出来的公因式3x与上一步得到的商相乘,并将结果写在括号外面,得到3x((3x^2)/(3x) - (6x)/(3x))。
第五步,化简括号内的表达式,得到3x(x - 2)。
将括号外面的结果与原始多项式进行比较,发现它们相等,因此得到的因式分解形式为3x(x - 2)。
通过以上步骤,我们成功地将多项式3x^2 - 6x分解为公因式3x和商(x - 2)的乘积形式。
总结起来,提取公因式法分解因式的步骤包括观察多项式中的各个项,寻找公因式,提取公因式并用括号括起来,将每一项除以公因式得到商,将公因式与商相乘得到因式分解形式,最后验证分解结果的正确性。
这一方法简单实用,可以帮助我们快速进行因式分解运算。
《提公因式法》分解因式

对于二元一次方程组,可以分别提取每个方程的公因式,得到一组新的方程,然后求解。
提取三角函数的公因式
01
对于三角函数表达式,可以先将 有相同角或相反角的项组合在一 起,然后提取公因式。
02
对于三角函数恒等式,可以运用 公式进行化简,然后再提取公因 式。
03
提公因式法的步骤
确定多项式的项数
确定多项式的项数
首先需要确定多项式的项数。多 项式的项数是指构成多项式的单 项式的个数。
例如
对于多项式 2x² + 3x - 4,我们 可以看到它有三项,分别是 2x² 、3x 和 -4。
确定各项的系数和指数
当一个多项式的第一项和最后 一项是同类项时,需要将整个 多项式的符号放在公因式的外 面。
如果不注意符号的变化,会导 致分解因式出现错误。
注意一些特殊的项
在提公因式法中,还需要注意一 些特殊的项。
例如,当一个多项式的第一项和 最后一项都是负数时,需要将整 个多项式的符号放在公因式的外
面。
如果不注意这些特殊的项,会导 致分解因式出现错误。
提取公因式
将找出的公因式提取出来 ,得到一个或多个没有公 因式的多项式。
公因式的重要性
简化多项式
通过提取公因式,可以将 多项式简化为更容易处理 的形式。
便于计算
在因式分解或化简时,提 取公因式可以简化计算过 程。
便于约分
提取公因式有助于将一个 多项式约分成若干个简单 分式。
公因式法的定义
公因式法
题目2
三角函数 $\cos(A+B)$ 中,公因式 是 $\cos$。
因式分解———提公因式公式法

因式分解———提公因式公式法因式分解是数学中的一个重要的方法,它可以将一个多项式拆分成更简单的乘积形式。
常用的因式分解方法有提公因式法和公式法。
一、提公因式法提公因式法是一种常用的因式分解方法,它的基本思想是找出多项式中的公因式,并将其提取出来。
下面以一个具体的例子来说明:例题:将多项式3x^2+9x分解因式。
解题步骤:1.观察多项式中的每个项,找出它们的公因式。
在这个例子中,3和9都是3的倍数,所以可以提取出公因式3来,即3x^2+9x=3(x^2+3x)。
2.检查提取出的公因式是否是多项式的最大公因子。
这一步其实是用求最大公因子的方法来验证的。
在这个例子中,公因式3是最大公因子,因为3x^2和3x都可以被3整除,而且没有其他的公因子。
3.将提取出来的公因式和剩下的部分组合在一起。
在这个例子中,可以将公因式3和剩下的部分(x^2+3x)组合在一起,即3(x^2+3x)。
综上所述,多项式3x^2+9x可以分解因式为3(x^2+3x)。
二、公式法公式法是因式分解中的另一种常用方法,它适用于具有特定形式的多项式。
下面以一个具体的例子来说明:例题:将多项式x^2+4x+4分解因式。
解题步骤:1.观察多项式的各个项的系数。
在这个例子中,x^2的系数为1,4x的系数为4,4的系数为42.检查多项式是否具有特定形式。
在这个例子中,多项式的形式为x^2+4x+4,它的形式和公式(a+b)^2非常相似。
3.根据公式(a+b)^2,将多项式进行分解。
根据公式(a+b)^2 = a^2 + 2ab + b^2,可以将多项式x^2 + 4x + 4分解为(x+2)^2综上所述,多项式x^2+4x+4可以分解因式为(x+2)^2综合练习:1.将多项式6x^2+9x+3分解因式。
解:可以观察到,多项式的各个项的系数都是3的倍数,所以可以提取公因式3,即6x^2+9x+3=3(2x^2+3x+1)。
2.将多项式x^3-8分解因式。
用提公因式法进行因式分解“三步曲”

用提公因式法进行因式分解“三步曲”提公因式法是因式分解的基本方法.为了避免出现错误,我们常常采取“三步走”的方法,即:“一定、二提、三看”的方法进行因式分解:1、“一定”就是确定公因式,其方法是:系数取各项整数系数的最大公约数;字母取各项含有的相同字母(有时是多项式);各字母次数取各相同字母的最低次数。
2、“二提”就是将各项的公因式提出,并同时确定各项的另一个因式,这个过程实质上是用原多项式除以公因式的过程。
3、“三看”就是提取公因式后,要对结果认真观察:括号内有同类项时要合并同类项;括号内的多项式化简后如果产生了新的公因式要继续提取;有相同的因式相乘时要写成幂的形式。
例1 把多项式y x y x y x 22236126-+因式分解分析:6、12、6的最大公约数是6,各项都有相同的字母xy ,字母x 最低次数为2,字母y 的最低次数是1,所以多项式y x y x y x 22236126-+的公因式是y x 26解 原式=y x 26()12++y x注意:当一个多项式的各项公因式是其中的单独一项时,提取公因式后该项应用1补上,不能漏掉。
例2 把多项式m mn m 182792-+-分解因式.分析:9、27、18的最大公约数是9,各项都有相同的字母m ,字母m 的最低指数是1,同时由于多项式的首项是负的,所以m mn m 182792-+-可确定提取公因式m 9-解:原式=m 9-()23+-n m注意:如果多项式按一定顺序排列后,首项为负时,一般要连同 “-”号提出,使括号内的第一项的系数为正的,但在提出“-”后括在括号内的各项与原来相比要改变符号。
例3 把多项式()()()b a b b a b a +-++32分解因式分析:在确定公因式时,要充分关注“多项式”公因式,本题中()b a -可作为一个整体,作为公因式提出。
解:原式=()()b b a b a -++32=()()b a b a 22++=()22b a + 注意:提取公因式后要对括号内的项进行适当的化简,有同类项时要合并同类项;又产生了新的公因式时要再次提取,相同的多项式要写成幂的形式。
分解因式的几种常用方法

分解因式的几种常用方法因式分解的主要方法有: 1. 十字相乘法 2. 提取公因式法 3. 公式法 4. 分组分解法 5. 求根法 6. 待定系数法高中必备知识点1:十字相乘法要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式2x bx c ++,若存在pq c p q b=⎧⎨+=⎩ ,则()()2x bx c x p x q ++=++.要点诠释:(1)在对2x bx c ++分解因式时,要先从常数项c 的正、负入手,若0c >,则p q 、同号(若0c <,则p q 、异号),然后依据一次项系数b 的正负再确定p q 、的符号; (2)若2x bx c ++中的b c 、为整数时,要先将c 分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b ,直到凑对为止. 要点二、首项系数不为1的十字相乘法在二次三项式2ax bx c ++(a ≠0)中,如果二次项系数a 可以分解成两个因数之积,即21a a a =,常数项c 可以分解成两个因数之积,即21c c c =,把2121c c a a ,,,排列如下:按斜线交叉相乘,再相加,得到1221a c a c +,若它正好等于二次三项式2ax bx c ++的一次项系数b ,即1221a c a c b +=,那么二次三项式就可以分解为两个因式11a x c +与22a x c +之积,即()()21122ax bx c a x c a x c ++=++.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数a 一般都化为正数,如果是负数,则提出负号,分解括号 里面的二次三项式,最后结果不要忘记把提出的负号添上.典型考题【典型例题】阅读与思考:将式子分解因式.法一:整式乘法与因式分解是方向相反的变形. 由,; 分析:这个式子的常数项,一次项系数,所以.解:.法二:配方的思想..请仿照上面的方法,解答下列问题: (1)用两种方法分解因式:;(2)任选一种方法分解因式:.【答案】(1);(2)【解析】(1)法一:,法二:,(2).或.【变式训练】阅读材料题:在因式分解中,有一类形如x2+(m+n)x+mn的多项式,其常数项是两个因数的积,而它的一次项系数恰是这两个因数的和,则我们可以把它分解成x2+(m+n)x+mn=(x+m)(x+n).例如:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).运用上述方法分解因式:(1)x2+6x+8;(2)x2﹣x﹣6;(3)x 2﹣5xy+6y 2;(4)请你结合上述的方法,对多项式x 3﹣2x 2﹣3x 进行分解因式. 【答案】(1)(2);(3)(4).【解析】 解:; ;; .故答案为:(1)(2);(3)(4).【能力提升】由多项式的乘法:(x +a)(x +b)=x 2+(a +b)x +ab ,将该式从右到左使用,即可得到用“十字相乘法”进行因式分解的公式:x 2+(a +b)x +ab =(x +a)(x +b).实例 分解因式:x 2+5x +6=x 2+(2+3)x +2×3=(x +2)(x +3). (1)尝试 分解因式:x 2+6x +8;(2)应用 请用上述方法解方程:x 2-3x -4=0. 【答案】(1) (x+2)(x +4);(2) x =4或x =-1. 【解析】(1)原式=(x+2)(x +4);(2)x 2-3x -4=(x -4)(x +1)=0,所以x -4=0或x +1=0,即x =4或x =-1.高中必备知识点2:提取公因式法与分组分解法1.提取公因式法:如果多项式的各项含有公因式,那么就可以把这个公因式提到括号外面,把多项式转化成公因式与另一个多项式的积的形,这种因式分解的方法叫做提公因式法。
因式分解-提公因式法

提公因式法的应用场景
• 可提取公因式简化 多项式
• 需要进一步分解剩 余部分
配方法
• 适用于二次方程式 • 通过转化为平方完
成因式分解 • 适用范围有限
根式法
• 适用于含有平方根 的多项式
• 通过提取平方根进 行因式分解
• 限制较多
提公因式法的优点
简单易用
提公因式法是一种较为简单的因式分解方法,易于掌握和应用。
通用性强
因式分解-提公因式法
因式分解是一种重要的数学概念,提公因式法是常用的因式分解方法之一。
提公因式法的定义
提公因式法是一种通过找出多项式中的公因式,将其进行提取,从而达到进 行因式分解的目的的方法。
提公因式法的步骤
1. 找出多项式中的公因式 2. 提取公因式 3. 将剩余部分进行因式分解
示例:使用提公因式法进行因式分解
提公因减少计算量
通过提取公因式,可以简化多项式,减少计算的复杂度。
结论
提公因式法是一种重要的因式分解方法,能够帮助我们简化复杂的代数表达 式,解决方程,以及进行数学建模。
1 简化表达式
提公因式法可以帮助我们简化复杂的代数表达式,使计算更加简便。
2 解方程
提公因式法可以用于解决一些复杂方程,帮助我们找到方程的根。
3 数学建模
提公因式法是数学建模中常用的一种方法,可以帮助我们更好地理解和描述实际问题。
因式分解常用的六种方法详解

一、提公因式法这种方法是最简单的,如果看到多项式中有公因子,不管三七二十一,先提取一个公因子再说,因为这样整个问题就被简化了,有点类似我们刚提到的利用因子定理进行因式分解。
例题:因式分解下列多项式:(1)x3y−xy3=xy(x2−y2)=xy(x+y)(x−y) ;(2) 3x3−18x2+27x=3x(x2−6x+9)=3x(x−3)2 ;(3) 3a3+6a2b−3a2c−6abc=3a(a2+2ab−ac−2bc)=3a[a(a−c)+2b(a−c)]=3a(a+2b)(a−c).二、公式法因式分解是把一个多项式化为几个最简整式的乘积的形式,是整式乘积的逆运算,所以如果我们熟悉整式乘积的公式,那么解决因式分解也会很快。
常用的公式如下:(x+a)(x+b)=x2+(a+b)x+ab(a±b)2=a2±2ab+b2(a±b)3=a3±3a2b+3ab2±b3a2−b2=(a−b)(a+b)a3−b3=(a−b)(a2+ab+b2)a3+b3=(a+b)(a2−ab+b2)(a+b+c)2=a2+b2+c2+2ab+2bc+2caa3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)还有两个常考的n次方展开的公式:an−bn=(a−b)(an−1+an−2b+an−3b2+⋯+abn−2+bn−1)(n∈Z+)an+bn=(a+b)(an−1−an−2b+an−3b2−⋯−abn−2+bn−1)(n is odd)例题:因式分解:(a2+b2−1)2−4a2b2=(a2+b2−1+2ab)(a2+b2−1−2ab)=[(a+b)2−1][(a−b)2−1]=(a+b+1)(a+b−1)(a−b+1)(a−b−1)三、十字相乘法(双十字相乘法)简单的十字相乘其实就是公式(x+a)(x+b)=x2+(a+b)x+ab的运用,这个大家都很熟悉,还有一句口诀:首尾分解,交叉相乘,求和凑中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公因式的系数:应取各项系数的最大公约数。
字母及其指数
公因式中的字母取各项相同的字母,而且各 项相同字母的指数取其次数最低的。
例: 找 3x2y2– 6xy3 的公因式。
因为 系数:最大公约数:3
字母:相同字母 指数:最低次幂
例1 将下列各式分解因式:
(1) 3a2-9ab
解:原式 =3a•a-3a•3b
=3a(a-3b)
3a2 3a a 9ab 3a 3b
用提公因式法分解因式的步骤: 第一步,找出公因式; 第二步,提取公因式 ;
第三步, 将多项式化成两个 因式 乘积的形式。
例2 把9x2-6xy+3xz分解因式.
解:9x2 – 6 x y + 3x z = 3x·3x - 3x·2y + 3x·z = 3x (3x-2y+z)
小颖解的有误吗? 例3 把8a3b2 –12ab 3 c + ab分解因式.
解: 8 a3b2 –12ab3c + ab = ab·8a2b - ab·12b2 c +ab·1 = ab(8a2b - 12b2c)
xy2
所以, 3x2y2– 6xy3的公因式是 3xy2
牛刀小试
写出下列多项式各项的公因式:
(1) 8x 72
8
(2) a2 x2 y axy2
axy
(3) 4x2 2x 2x3
2x
(4)6a2b 4a3b3 2ab 2ab
例: 找 2 x2+ 6 x3 的公因式。
2
定系数
2 定指数 x
定字母
所以,公因式是 2 x2
2 x2 +6x3= 2x2+ 2x2 .3x = 2x2 (1+3x)
2
X2+
6
x3
=
2
2
X
(1
+3
X)
如果一个多项式的各项含有公因式,那么
பைடு நூலகம்
就可以把这个公因式提出来,从而将多项式
化成两个因式乘积的形式,这种因式分解的
方法叫做提公因式法。
把公因式提出来,从而将多项 式化成两个因式乘积的形式
第一步,找出公因式; 第二步,提公因式; 第三步,把多项式化成两个因式乘积的形式。
4、用提公因式法分解因式应注意的问题: (1)公因式要提尽(;2)小心漏项; (3)首项为负与众不同。
应用拓展 已知a+b=5,ab=3,求a2b+ab2的值.
(3) 4x(6x2 3x 7) 24 x 3 12 x 2 28 x
(4) ab(8a2b 12b2c 1) 8a3b2 12ab3c ab
观察下列各式的结构有什么共同 特点?
① ax -ay
② ma + mb + mc
③ 2πr + 2πr
多项式中各项都含有的相同因式,叫做 这个多项式各项的公因式.
因式分解
提公因式法
温故知新
完成教材“回忆”与“试一试” 一、因式分解的概念
把一个多项式化为几个整式的积的形 式,这种变形叫做把这个多项式因式分解.
二、整式乘法与分解因式之间的关系。 互为逆运算
三、分析下列计算是整式乘法中的哪一种 并求出结果: (口答)
(1) 3(x 2) 3 x 6
(2) 7x(x 3) 7 x 2 21x
你认为他们的解法正确吗?试说明理由。
提公因式法分解因式与单项式 乘多项式有什么关系?
1. 把下列各式分解因式:
1 8x 2xy
2 4m36m2 2m
(3) a2b 5ab 9b
(4) 2x3 4x2 2x
小结与反思
1、什么叫公因式、提公因式法? 2、确定公因式的方法:
1)定系数 2)定字母 3)定指数 3、用提公因式法分解因式的步骤:
小组探究过关武器:
(1)确定下列各多项式中的公因式?
1) a c+ b c
c
2)3 x2 +9xy
3x
3) a2 b – 2a b2 + ab
ab
4) 4xy2-6xy+8x3y
2xy
(2)多项式中的公因式是如何确定的? (交流探索)
探索新知
观察上述举例,分析并猜想: 确定一个多项式的公因式时,要
错误
当多项式的某一项和 公因式相同时,提公因
式后剩余的项是1。
例4: – 24x3 –12x2 +28x
解:原式= (24x3 12x228x ) ( 4x • 6x2 4x •3x 4x• 7) = 4x ( 6x23x7)
当多项式第一项系数是负
数,通常先提出“ ”号,
使括号内第一项系数变为 正数,注意括号内各项都
要变号。
找错误
把下列多项式分解因式:
(1)12x2y+18xy2; (2)-x2+xy-xz;
(3)2x3+6x2+2x
现有甲、乙、丙三位同学各做一题,他们的解法如下:
甲同学:
乙同学:
丙同学:
解:12x2y+18xy2 解:-x2+xy-xz
=3xy(4x+6y)
=-x(x+y-z)
解:2x3+6x2+2x =2x(x2+3x)