北师大版九年级数学下册第二章 二次函数 中考压轴题练习
北师大版九下数学二次函数压轴题分类训练

二次函数压轴题分类训练类型1二次函数与相似三角形的存在性问题1.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)P为线段BC上的一个动点,过P作PE垂直于x轴与抛物线交于点E,设P点横坐标为m,PE长度为y,请写出y与m的函数关系式,并求出PE的最大值;(3)D为抛物线上一动点,是否存在点D使以A、B、D为顶点的三角形与△COB相似?若存在,试求出点D的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A,B两点,过A,B两点的抛物线为y=-x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=4时,求四边形CAEB的面积;(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求出D点坐标;若不存在,说明理由.3.边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.(1)求抛物线的解析式;(2)点P从点C出发,沿射线CB以每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD 于点F.当t为何值时,以点P,F,D为顶点的三角形与△COD相似?(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.类型2 二次函数与平行四边形的存在性问题1.如图,抛物线y =ax 2+bx +c 与坐标轴分别交于A (-3,0),B (1,0),C (0,3)三点,D 是抛物线顶点,E 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)F 是抛物线对称轴上一点,且tan ∠AFE =12,求点O 到直线AF 的距离; (3)点P 是x 轴上的一个动点,过P 作PQ ∥OF 交抛物线于点Q ,是否存在以点O ,F ,P ,Q 为顶点的平行四边形?若存在,求出P 点坐标;若不存在,请说明理由.2.如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA =4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以点A,D,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.3.如图,抛物线y=x2-2x-3与x轴交于A、B两点(A点在B点左侧),直线l与抛物线交于A、C 两点,其中C点的横坐标为2.(1)求A、B、C三点的坐标;(2)在抛物线的对称轴上找到点P,使得△PBC的周长最小,并求出点P的坐标;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.类型3二次函数与直角三角形的存在性问题1.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B、C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B、C、P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2.如图,已知抛物线y=ax2+bx+c(a≠0) 的对称轴为x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求线段BC所在直线的解析式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出此点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.3.已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△P AA′与△P′BB′的面积之比.类型4 二次函数与等腰三角形的存在性问题1.如图,已知二次函数y 1=-x 2+134x +c 的图象与x 轴的一个交点为A (4,0),与y 轴的交点为B ,过A 、B 的直线为y 2=kx +b .(1)求二次函数y 1的解析式及点B 的坐标;(2)由图象写出满足y 1<y 2的自变量x 的取值范围;(3)在两坐标轴上是否存在点P ,使得△ABP 是以AB 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.2.如图,抛物线与x轴交于A,B两点,直线y=kx-1与抛物线交于A,C两点,其中A(-1,0),B(3,0),点C的纵坐标为-3.(1)求k值;(2)求抛物线的解析式;(3)抛物线上是否存在点P,使得△ACP是以AC为底边的等腰三角形?如果存在,写出所有满足条件的点P的坐标;如果不存在,请说明理由.3.如图,已知抛物线y=ax2+bx+c(a≠0)交于x轴于A(-1,0),B(5,0)两点,与y轴交于点C(0,2).(1)求抛物线的解析式;(2)若点M为抛物线的顶点,连接BC、CM、BM,求△BCM的面积;(3)连接AC,在x轴上是否存在点P,使△ACP为等腰三角形;若存在,请求出点P的坐标;若不存在,请说明理由.类型5二次函数与图形面积问题1.如图,在平面直角坐标系中,抛物线y=ax2+bx-3(a≠0)与x轴交于点A(-2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK∶S△PBQ=5∶2,求K点坐标.2.如图所示,抛物线y =ax 2+bx (a <0)与双曲线y =k x相交于点A 、B ,点A 的坐标为(-2,2),点B 在第四象限内,过点B 作直线BC ∥x 轴,直线BC 与抛物线的另一交点为点C ,已知直线BC 与x 轴之间的距离是点B 到y 轴的距离的4倍,记抛物线的顶点为E .(1)求双曲线和抛物线的解析式;(2)计算△ABC 与△ABE 的面积;(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABE 的面积的8倍?若存在,请求出点D 的坐标;若不存在,请说明理由.类型6二次函数与最值问题1.如图,对称轴为直线x=2的抛物线经过A(-1,0),C(0,5)两点,与x轴另一交点为B,已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求抛物线的解析式;(2)当a=1时,求四边形MEFP的面积最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.2.如图,顶点为A的抛物线y=a(x+2)2-4交x轴于点B(1,0),连接AB,过原点O作射线OM∥AB,过点A作AD∥x轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.(1)求抛物线的解析式(关系式);(2)求点A,B所在的直线的解析式(关系式);(3)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,设点P运动的时间为t秒,问:当t为何值时,四边形ABOP分别为平行四边形?(4)若动点P从点O出发,以每秒1个单位长度的速度沿线段OD向点D运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t秒,连接PQ.问:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.类型7二次函数与根的判别式问题1.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连接AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点?类型8二次函数与圆1.如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于点A,B两点,与y轴交于C点,抛物线y=ax2+bx+c经过A,B,C三点,顶点为F.(1)求A,B,C三点的坐标;(2)求抛物线的解析式及顶点F的坐标;(3)已知M为抛物线上一动点(不与C点重合).试探究:①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.2.如图,在平面直角坐标系xOy中,直线l⊥y轴于点B(0,-2),A为OB的中点,以A为顶点的抛物线y=ax2+c(a≠0)与x轴分别交于C、D两点,且CD=4.点P为抛物线上的一个动点,以P为圆心,PO 为半径画圆.(1)求抛物线的解析式;(2)若⊙P与y轴的另一交点为E,且OE=2,求点P的坐标;(3)判断直线l与⊙P的位置关系,并说明理由.。
北师大版九年级数学下册第二章《二次函数》复习训练题含答案解析 (13)

一、选择题1.抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A.y=(x+1)2+3B.y=(x+1)2−3C.y=(x−1)2−3D.y=(x−1)2+32.把抛物线y=2x2向上平移1个单位,所得抛物线的解析式为( )A.y=2(x−1)2B.y=2(x+1)2C.y=2x2−1D.y=2x2+13.若y=(m+1)x m2+m是关于x的二次函数,则m的值为( )A.−2B.1C.−2或1D.2或14.已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:x...01234...y...41014...点A(x1,y1),B(x2,y2)在函数的图象上,则当1<x1<2,3<x2< 4时,y1与y2的大小关系正确的是( )A.y1>y2B.y1<y2C.y1≥y2D.y1≤y25.已知二次函数y=x2+bx+c,当x≤1时,总有y≥0;当1≤x≤2时,总有y≤0,那么c的取值范围是( )A.0≤c≤2B.c≥2C.1≤c≤2D.c≤26.若二次函数y=x2−4x+3的图象交x轴于A,B两点,交y轴于点C,则△ABC的面积为( )A.6B.4C.3D.17.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能( )A.B.C.D.8.顶点为(−3.0),且开口方向,形状与函数y=−12x2的图象相同的抛物线是( )A.y=−12(x−3)2B.y=−12x2+3C.y=−12(x+3)2D.y=12x2−39.如图,抛物线y=ax2+bx+c与x轴交于点A(−1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:① 3a+b<0;② −1≤a≤−23;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n−1有两个不相等的实数根.其中结论正确的个数为( )A.1个B.2个C.3个D.4个10.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(−1,0),顶点坐标(1,n),与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:① 3a+b<0;② −1≤a≤−23;③对于任意实数m,a+b≥am2+bm,总成立;④关于x的方程ax2+bx+c=n+1有两个不相等的实数根.其中结论正确的个数为( )A.4个B.3个C.2个D.1个二、填空题11.抛物线的顶点是C(2,√3),它与x轴交于A,B两点,它们的横坐标是方程x2−4x+3=0的两个根,则AB=,S△ABC=.12.已知a是常数.(1)如果抛物线y=(2a+1)x2的最低点是原点,那么a的取值范围是;(2)如果抛物线y=−2(x−a)2+3a−1的对称轴是直线x=3,那么它的顶点坐标是;(3)若抛物线y=a(x−2)2+a−1的顶点坐标是(2,−4),则它的开口.13.抛物线y=−2(x−1)2+4可以看作是由抛物线y=−2x2先向平移个单位,再向平移个单位得到的.14.乒乓球竖直落到光滑水平的地面后会竖直弹起,假设每次弹起的最高高度会比上一次降低20%,而且乒乓球每次弹起到落地过程中,其弹起高度ℎ是时间t的二次函数,都可以用ℎ=−5(t−m)2+n表示.如果乒乓球第一次弹起到落地的时间间隔为0.8s,则该乒乓球从第1次最高点到第2次最高点的时间间隔是s.15.将抛物线C:y=x2先向左平移2个单位长度,然后再向上平移1个单位长度后,所得抛物线Cʹ的解析式为.16.若函数y=(a−1)x2−4x+2a的图象与x轴有且只有一个交点,则a的值为.17.抛物线C1:y=x2−1(−1≤x≤1)与x轴交于A,B两点,抛物线C2与抛物线C1关于点A成中心对称,抛物线C3与抛物线C1关于点B成中心对称.若直线y=−x+b与由C1,C2,C3组成的图形恰有2个公共点,则b的取值或取值范围是.三、解答题18.如图,已知抛物线y=−12x2−32x+2与x轴交于A,B两点,交y轴于点C.(1) 判断△ABC的形状,并说明理由.(2) 在抛物线对称轴上是否存在一点P,使得以A,C,P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.x2+bx+c与x轴交于点A,B,交y轴于点C(0,−2√3),且抛物线对19.如图,抛物线y1=12称轴x=−2交x轴于点D,E是抛物线在第3象限内一动点.(1) 求抛物线y1的解析式;(2) 将△OCD沿CD翻折后,O点对称点Oʹ是否在抛物线y1上?请说明理由.(3) 若点E关于直线CD的对称点Eʹ恰好落在x轴上,过Eʹ作x轴的垂线交抛物线y1于点F,①求点F的坐标;②直线CD上是否存在点P,使|PE−PF|最大?若存在,试写出|PE−PF|最大值.20.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分.如图,甲在点O正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y= a(x−4)2+ℎ,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1) 当a=−124时,①求ℎ的值;②通过计算判断此球能否过网.(2) 若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为125m的Q处时,乙扣球成功,求a的值.21.在平面直角坐标系中,顶点为(−4,−1)的抛物线交y轴于点A(0,3),交x轴于B,C两点,求此抛物线的解析式.22.我们已经知道二次函数y=ax2+bx+c(a≠0)的图象是一条抛物线.研究二次函数的图象与性质,我们主要关注抛物线的对称轴、抛物线的开口方向、抛物线的最高点(或最低点)的坐标、抛物线与坐标轴的交点坐标、抛物线的上升或下降情况(沿x轴的正方向看).已知一个二次函数y=ax2+bx+c(a≠0)的大致图象如图所示.(1) 你可以获得该二次函数的哪些信息?(写出四条信息即可)(2) 依据目前的信息,你可以求出这个二次函数的解析式吗?如果可以,请求出这个二次函数的解析式;如果不可以,请补充一个条件,并求出这个二次函数的解析式.23.某体育用品商场购进一批“乐骑”牌自行车,每辆成本价300元,每辆自行车销售单价x(元)与每月的销售量y(辆)的关系如下表所示:x(元)⋯600550500450⋯y(辆)⋯100110120130⋯若每月的销售量y(辆)是销售单价x(元)的一次函数.(1) 求y与x之间的函数关系式;(2) 设该商场销售“乐骑”牌自行车每月获得的利润为W(元),当销售单价x为何值时,每月可获得最大利润?最大利润是多少元?24.在平面直角坐标系中,将抛物线C1:y=x2−2x向左平移2个单位,向下平移3个单位得到新抛物线C2.(1) 求新抛物线C2的表达式;(2) 如图,将△OAB沿x轴向左平移得到△OʹAʹBʹ,点A(0,5)的对应点Aʹ落在平移后的新抛物线C2上,求点B与其对应点Bʹ的距离.25.如图,抛物线y=ax2+bx−4经过A(−3,0),B(5,−4)两点,与y轴交于点C,连接AB,AC,BC.(1) 求抛物线的表达式.(2) 求△ABC的面积.(3) 抛物线的对称轴上是否存在点M,使得△ABM是直角三角形?若存在,求出点M的坐标,若不存在,请说明理由.答案一、选择题 1. 【答案】D2. 【答案】D3. 【答案】C【解析】 ∵y =(m +1)x m 2+m是关于 x 的二次函数,∴{m +1≠0,m 2+m =2,解得:{m ≠−1,m =−2或1,∴m =−2或1.4. 【答案】B【解析】 ∵ 当 1<x <2 时,函数值 y 小于 1,当 3<x <4 时,函数值 y 大于 1, ∴y 1<y 2. 故选B .5. 【答案】B【解析】 y =x 2+bx +c 函数图象开口向上, 当 x ≤1 时,总有 y ≥0,∴x 2+bx +c =y =0 的较小根 x 1=1, ∴1+b +c =0.当 1≤x ≤2 时,总有 y ≤0,∴x 2+bx +c =y =0 的较大根 x 2≥2. ∵x 1+x 2=−b ,∴x 2=−b −x 1=−b −1≥2, ∴−b ≥3. ∵−b =c +1,∴c +1≥3,即 c ≥2.6. 【答案】C7. 【答案】C8. 【答案】C【解析】 y =−12(x −3)2 的顶点为 (3,0),故选项A 不符合题意;y=−12x2+3的顶点为(0,3),故选项B不符合题意;y=−12(x+3)2的顶点为(−3,0),开口方向,形状与函数y=−12x2的图象相同,故选项C符合题意;y=12x2−3的顶点为(0,−3),故选项D不符合题意.9. 【答案】D【解析】∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=−b2a=1,即b=−2a,∴3a+b=3a−2a=a<0,∴①正确;∵2≤c≤3,而c=−3a,∴2≤−3a≤3,∴−1≤a≤−23,∴②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,∴③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n−1有两个交点,∴关于x的方程ax2+bx+c=n−1有两个不相等的实数根,∴④正确.故选D.10. 【答案】B【解析】因为抛物线开口向下,所以a<0,而抛物线的对称轴为直线x=−b2a=1,即b=−2a,所以3a+b=3a−2a=a<0,所以①正确.因为2≤c≤3,而c=−3a,所以2≤−3a≤3,所以 −1≤a ≤−23,所以②正确. 因为抛物线的顶点坐标 (1,n ),所以 x =1 时,二次函数值有最大值 n , 所以 a +b +c ≥am 2+bm +c , 即 a +b ≥am 2+bm ,所以③正确. 因为抛物线的顶点坐标 (1,n ),所以抛物线 y =ax 2+bx +c 与直线 y =n −1 有两个交点,与 y =n +1 无交点, 所以关于 x 的方程 ax 2+bx +c =n +1 有两个不相等的实数根错误, 所以④错误, 所以①②③正确.二、填空题11. 【答案】 2 ; √312. 【答案】 a >−12 ; (3,8) ;向下13. 【答案】右; 1 ;上; 414. 【答案】10+4√525【解析】 ∵ 乒乓球第一次弹起到落地的时间为 0.8,ℎ=−5(t −m )2+n , ∴m =0.4,此时 ℎ 取得最大值 n , ∴ℎ=−5(t −0.4)2+n , ∵ 该函数过点 (0,0), ∴0=−5(0−0.4)2+n , 解得,n =0.8,∵ 每次弹起的最高高度会比上一次降低 20%,∴ 第二次弹起的最大高度是 0.8×(1−20%)=0.64, 令 0.2×0.8=−5(t −0.4)2+0.8, 解得,t 1=10+4√525,t 2=10−4√525, ∴ 该乒乓球从第 1 次最高点到第 2 次最高点的时间间隔是: (0.8−0.4)+(0.4−10+4√525)=10+4√525s , 故答案为:10+4√525.15. 【答案】 y =(x +2)2+1【解析】原抛物线的顶点为 (0,0),向左平移 2 个单位长度,然后再向上平移 1 个单位长度, 那么抛物线 Cʹ 的顶点为 (−2,1),可得抛物线 Cʹ 的解析式为:y =(x +2)2+1.16. 【答案】 −1 或 2 或 1【解析】 ∵ 函数 y =(a −1)x 2−4x +2a 的图象与 x 轴有且只有一个交点, 当函数为二次函数时,b 2−4ac =16−4(a −1)×2a =0,解得:a 1=−1,a 2=2, 当函数为一次函数时,a −1=0,解得:a =1.17. 【答案】b =−54 或 b =−34 或 3≤b <134三、解答题 18. 【答案】(1) 直角三角形,理由如下: 当 y =0 时,−12x 2−32x +2=0,解得 x 1=−4,x 2=1,即 B (−4,0),A (1,0). 当 x =0 时,y =2,即 C (0,2). AB =1−(−4)=5,AB 2=25, AC 2=(1−0)2+(0−2)2=5, BC 2=(−4−0)2+(0−2)2=20, ∵AC 2+BC 2=AB 2, ∴△ABC 是直角三角形. (2) 存在,理由如下:y =−12x 2−32x +2 的对称轴是 x =−32,设 P (−32,n), PA 2=(1+32)2+n 2=254+n 2,PC 2=94+(2−n )2,AC 2=5.分类讨论:①当 AP =AC 时,AP 2=AC 2,254+n 2=5,方程无解;不存在.②当 PA =PC 时,PA 2=PC 2,254+n 2=94+(2−n )2,解得 n =0,即 P 1(−32,0);③当 CA =CP 时,CA 2=CP 2,94+(2−n )2=5,解得 n 1=2+√112,n 2=2−√112, 故 P 2(−32,2+√112),P 3(−32,2−√112). 综上所述:使得以 A ,C ,P 为顶点的三角形是等腰三角形,点 P 的坐标 (−32,0),(−32,2+√112),(−32,2−√112).19. 【答案】(1) ∵ 抛物线对称轴 x =−2,∴ −b2×12=−2,解得 b =2,∵ 点 C(0,−2√3) 在抛物线 y 1=12x 2+bx +c 上,∴ c =−2√3,∴ 抛物线解析式为 y 1=12x 2+2x −2√3.(2) O 点对称点 Oʹ 不在抛物线 y 1 上.理由如下:过 Oʹ 点作 OʹH ⊥x 轴于 H ,如图,由(1)得 D (−2,0),C(0,−2√3),在 Rt △OCD 中,∵ OD =2,OC =2√3,∴ tan∠ODC =2√32=√3,∴ ∠ODC =60∘,∵ △OCD 沿 CD 翻折后,O 点对称点 Oʹ,∴ OʹD =OD =2,∠OʹDC =∠ODC =60∘,∴ ∠OʹDH =60∘,在 Rt △OʹDH 中,sin∠OʹDH =OʹH OʹD , ∴ OʹH =2sin60∘=√3,∴ DH =√22−(√3)2=1,∴ Oʹ(−3,−√3),∵ 当 x =−3 时,y 1=12x 2+2x −2√3=12×9+2×(−3)−2√3≠−√3,∴Oʹ点不在抛物线y1上.(3) ①设E(m,12m2+2m−2√3)(m<0),过E作EH⊥x轴于H,连接DE,如图,则DH=−2−m,EH=−(12m2+2m−2√3)=−12m2−2m+2√3,由(2)得∠ODC=60∘,∵点E关于直线CD的对称点Eʹ恰好落在x轴上,∴DC垂直平分EEʹ,∴DC平分∠EDEʹ,DE=DEʹ,∴∠EDEʹ=120∘,∴∠EDH=60∘,在Rt△EDH中,∵tan∠EDH=EHHD,∴EH=HDtan60∘,即−12m2−2m+2√3=(−2−m)√3,整理得m2+(4−2√3)m−8√3=0,解得m1=2√3(舍去),m2=−4,∴E(−4,−2√3),∴HD=2,EH=2√3,∴DE=√22+(2√3)2=4,∴DEʹ=4,∴Eʹ(2,0),而EʹF⊥x轴,∴F点的横坐标为2,当x=2时,y1=12x2+2x−2√3=6−2√3,∴F(2,6−2√3).② ∵点E关于直线CD的对称点Eʹ恰好落在x轴,∴PE=PEʹ,∴|PEʹ−PF|≤EʹF(当点P,Eʹ,F共线时,取等号),∴直线CD上存在点P,使|PE−PF|最大,最大值为6−2√3.20. 【答案】(1) ① ∵a=−124,P(0,1),∴−124×(0−4)2+ℎ=1,解得ℎ=53.②把 x =5 代入 y =−124(x −4)2+53,得 y =−124×(5−4)2+53=1.625. ∵1.625>1.55,∴ 此球能过网.(2) 把 (0,1),(7,125) 代入 y =a (x −4)2+ℎ,得 {16a +ℎ=1,9a +ℎ=125,解得 {a =−15,ℎ=215. ∴a =−15.21. 【答案】根据题意,可设抛物线的解析式为 y =a (x +4)2−1,把点 A (0,3) 代入,得 3=16a −1,解得 a =14,∴ 此抛物线的解析式为 y =14(x +4)2−1.22. 【答案】(1) ①抛物线的开口向下(或者 a <0 ),②抛物线的顶点坐标为 (2,7),③抛物线的对称轴为直线 x =2,④沿 x 轴的正方向看:直线 x =2 的左侧,图象是上升的(或 y 的值随着 x 的值的增大而增大);在直线 x =2 的右侧,图象是下降的(或 y 的值随着 x 的值的增大而减小),⑤ b >0,⑥ c >0,⑦ a +b +c >0,⑧ a −b +c >0,⑨ 4a +b =0 等信息.(2) 补充条件:C (0,3),由题意得,该抛物线的顶点坐标为 D (2,7),故而可设该抛物线的表达式为 y =a (x −2)2+7因为 C (0,3) 在该抛物线上,所以 3=a (0−2)2+7,解得 a =−1故所求的二次函数的解析式为 y =−(x −2)2+7 或 y =−x 2+4x +3.23. 【答案】(1) 设该函数关系式为 y =kx +b ,由已知得 {600k +b =100,550k +b =110. 解得:{k =−0.2,b =220.∴ 所求的所求的函数关系式为 y =−0.2x +220.(2) 由题意得:W=(x −300)y =(x −300)(−0.2x +220)=−0.2x 2+280x −66000=−0.2(x −700)2+32000.又 ∵−0.2<0,∴ 当 x =700 时,W 取得最大值,最大值为 32000,故销售单价 x 为 700 元/辆时,每月可获得最大利润,最大利润为 32000 元.24. 【答案】(1) 由抛物线 C 1:y =x 2−2x =(x −1)2−1 知,将其向左平移 2 个单位,向下平移 3 个单位得到新抛物线 C 2 的表达式是:y =(x −1+2)2−1−3,即 y =(x +1)2−4.(2) 由平移的性质知,点 A 与点 Aʹ 的纵坐标相等,所以将 y =5 代入抛物线 C 2,得 (x +1)2−4=5,则 x =−4 或 x =2(舍去),所以 AAʹ=4,根据平移的性质知:BBʹ=AAʹ=4,即点 B 与其对应点 Bʹ 的距离为 4 个单位.25. 【答案】(1) 将点 A (−3,0),B (5,−4) 代入 y =ax 2+bx −4,得,{9a −3b −4=0,25a +5b −4=4,解得,{a =16,b =−56. ∴ 抛物线的解析式为:y =16x 2−56x −4. (2) 在抛物线 y =16x 2−56x −4 中,当 x =0 时,y =−4,∴C (0,−4),∵B (5,−4),∴BC ∥x 轴,S △ABC=12BC ⋅OC =12×5×4=10,∴△ABC 的面积为 10.(3) 设点 M (52,m),①如图 1,当 ∠AMB =90∘ 时,设 x 轴与对称轴交于点 H ,过点 B 作 BN ⊥x 轴 于点 N ,则 HM =m ,AH =112,AN =8,BN =4,∵∠MAH +∠MAN =90∘,∠MAN +∠ABN =90∘,∴∠MAH =∠ABN ,又 ∵∠AHM =∠BNA =90∘,∴△AHM ∽△BNA ,∴AH BN =HM NA ,即 1124=m 8,解得,m =11, ∴M 1(52,11).②如图 2,当 ∠ABM =90∘ 时,设 x 轴与对称轴交于点 H ,BC 与对称轴交于点 N ,由抛物线的对称性可知,对称轴垂直平分 BC ,∴MC =MB ,∴∠BMN =∠AMN ,又 ∵∠AHM =∠BMM =90∘,∴△AHM ∽△BNM ,∴AH BN =HM NM ,∵HM =−m ,AH =112,BN =52,MN =−4−m , ∴11252=−m −4−m ,解得,m =−223,∴M 2(52,−223);③如图 3,当 ∠AMB =90∘ 时,设 x 轴与对称轴交于点 H ,BC 与对称轴交于点 N ,则 AM 2+BM 2=AB 2,∵AM 2=AH 2+MH 2,BM 2=BN 2+MN 2,∴AH 2+MH 2+BN 2+MN 2=AB 2,∵HM =−m ,AH =112,BN =52,MN =−4−m , 即 (112)2+m 2+(52)2+(−4−m )2=42+82,解得,m 1=√712−2,m 2=−√712−2,∴M3(52,√712−2),M4(52,−√712−2);综上所述,存在点M的坐标,其坐标为M1(52,11),M2(52,−223),M3(52,√712−2),M4(52,−√712−2).。
北师大版九年级数学下册第二章 二次函数 压轴题综合复习练习题

(1)求这条抛物线的解析式;并写出顶点坐标;
(2)当D为抛物线的顶点时,求△ACD的面积;
(3)连接OD交线段AC于点E.当△AOE与△ABC相似时,求点D的坐标;
(1)求该抛物线的解析式和点D坐标;
(2)在该抛物线的对称轴上是否存在点P,且在该抛物线上是否存在点Q,使得以A、C、P、Q为顶点的四边形是平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.
4.将抛物线C1:y=﹣x2+3沿x轴翻折,得抛物线C2.
(1)请求出抛物线C2的表达式;
(2)现将抛物线C1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D、E.在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.
7.如图1,抛物线y= x2+2x﹣6 交x轴于A、B两点(点A在点B的左侧),交y轴于C点,D点是该抛物线的顶点,连接AC、AD、CD.
(1)求△ACD的面积;
(2)如图1,点P是线段AD下方的抛物线上的一点,过P作PE∥y轴分别交AC于点E,交AD于点F,过P作PG⊥AD于点G,求EF+ FG的最大值,以及此时P点的坐标;
10.如图,已知二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.
(1)请直接写出二次函数的表达式;
北师大版九年级数学下册第二章 二次函数 压轴题综合复习练习题

(1)求抛物线L1的解析式;
(2)如图2,点P为x轴上一动点,连接AD,AC,CP,当∠PCA=∠ADB时,求点P的坐标;
(3)如图3,将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,点M( ,0),点N是L2上且位于第一象限内一动点,MN交L2于Q点,QR∥x轴分别交OF,ON于S,R,试说明:QS与SR存在一个确定的数量关系.
5.已知抛物线L:y=x2+bx+c经过点A(﹣1,0)和(1,﹣2)两点,抛物线L关于原点O的对称的为抛物线L′,点A的对应点为点A′.
(1)求抛物线L和L′的表达式;
(2)是否在抛物线L上存在一点P,抛物线L′上存在一点Q,使得以AA′为边,且以A、A′、P、Q为顶点的四边形是平行四边形?若存在,求出P点坐标;若不存在,请说明理由.
∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,
则点C是RQ的中点,
在△BOC中,tan∠OBC= = =tan∠ROC= ,
则设RC=x=QB,则BC=2x,则RB= = x=BQ,
在△QRB中,S△RQB= ×QR•BC= BR•QK,即 2x•2x= KQ• x,解得:KQ= ,
11.如图,抛物线与x轴相交于点A(﹣3,0)、点B(1,0),与y轴交于点C(0,3),点D是第二象限内抛物线上一动点.F点坐标为(﹣4,0).
(1)求这条抛物线的解析式;并写出顶点坐标;
(2)当D为抛物线的顶点时,求△ACD的面积;
北师大版九年级数学下册第二章 二次函数 压轴题强化训练试题(1)

北师大版九年级数学下册第二章二次函数压轴题强化训练试题1.如图,点A在x轴正半轴上,点B在y轴正半轴上,OA=OB,点C的坐标为(﹣1,0),OA:OC=3:1,抛物线y=ax2+bx+c经过点A、B、C,顶点为D.(1)求a、b、c的值;(2)若直线y=x+n与x轴交于点E,与y轴交于点F.①当n=﹣1时,求∠BAF﹣∠BAD的值;②若直线EF上有点H,使∠AHC=90°,求n的取值范围.2.已知二次函数y=﹣2x2+bx+c(b,c为常数)的图象经过点(2,﹣1),其对称轴为直线x=1.(1)求该二次函数的表达式;(2)点P(0,n)在y轴上,若n<1,过点P作x轴的平行线与该二次函数的图象交于E,F两点,当n取某一范围内的任意实数时,|FP﹣EP|的值始终是一个定值d,求此时n的范围及定值d.(3)是否存在两个不等实数s,t(s<t),当s≤x≤t时,恰好有11﹣6t≤y≤11﹣6s.若存在,求出这样的实数s,t;若不存在,请说明理由.3.定义:在平面直角坐标系xOy中,点P的坐标为(x,y),当x>m时,Q点坐标为(﹣x,﹣y);当x≤m时,Q点坐标为(﹣x,﹣y+2),则称点Q为点P的m分变换点(其中m为常数).例如:(﹣2,3)的0分变换点坐标为(2,﹣1).(1)点(5,7)的1分变换点坐标为;点(1,6)的1分变换点在反比例函数y=图象上,则k=;若点(a﹣1,5)的1分变换点在直线y=x+2上,则a=(2)若点P在二次函数y=x2﹣2x﹣3的图象上,点Q为点P的3分变换点.①直接写出点Q所在函数的解析式;②求点Q所在函数的图象与直线y=﹣5交点坐标;③当﹣4≤x≤t时,点Q所在函数的函数值﹣5≤y≤6,直接写出t的取值范围.(3)点A(﹣3,﹣1),B(2,﹣1),若点P在二次函数y=x2﹣mx+﹣2的图象上,点Q为点P的m分变换点.当点Q所在的函数图象与线段AB有两个公共点时,直接写出m的取值范围.4.如图,已知二次函数y=﹣+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0),对称轴是直线x=.(1)求该二次函数的表达式;(2)如图1,连接AC,若点P是该抛物线上一点,且∠P AB=∠ACO,求点P的坐标;(3)如图2,点P是该抛物线上一点,点Q为射线CB上一点,且P、Q两点均在第四象限内,线段AQ与BP交于点M,当∠PBQ=∠AQB,且△ABM与△PQM的面积相等时,请问线段PQ的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.5.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于A(﹣1,0)、B(3,0)两点,点C为抛物线的顶点.点M(0,m)为y轴上的动点,将抛物线绕点M旋转180°,得到新的抛物线,其中B、C旋转后的对应点分别记为B′、C′.(1)若a=1,求原抛物线的函数表达式;(2)在(1)条件下,当四边形BCB'C'的面积为40时,求m的值;(3)探究a满足什么条件时,存在点M,使得四边形BCB'C'为菱形?请说明理由.6.如图,一次函数y=kx+b的图象与x轴交于点B(6,0),与y轴交于点A,与二次函数y=ax2的图象在第一象限内交于点C(3,3).(1)求此一次函数与二次函数的表达式;(2)若点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠ADO =∠OED,求点D坐标.7.如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x 轴交于点C,直线DM、DN分别与x轴相交于A、B两点.(1)当a=﹣1时,求点N的坐标及的值;(2)随着a的变化,的值是否发生变化?请说明理由;(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.8.如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△P AB面积最大时,求点P的坐标及△P AB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.9.二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E..(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标..10.如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x 轴交于点C(﹣2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt △OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为,顶点坐标为;(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.11.已知抛物线y=a(x﹣2)2+c经过点A(﹣2,0)和点C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.12.如图,已知抛物线y=﹣x2+bx+c经过点A(﹣3,0),C(0,3),交x轴于另一点B,其顶点为D.(1)求抛物线的解析式;(2)点P为抛物线上一点,直线CP交x轴于点E,若△CAE与△OCD相似,求P点坐标;(3)如果点F在y轴上,点M在直线AC上,那么在抛物线上是否存在点N,使得以C,F,M,N为顶点的四边形是菱形?若存在,请求出菱形的周长;若不存在,请说明理由.13.已知点A(1,0)是抛物线y=ax2+bx+m(a,b,m为常数,a≠0,m<0)与x轴的一个交点.(Ⅰ)当a=1,m=﹣3时,求该抛物线的顶点坐标;(Ⅱ)若抛物线与x轴的另一个交点为M(m,0),与y轴的交点为C,过点C作直线l 平行于x轴,E是直线l上的动点,F是y轴上的动点,EF=2.①当点E落在抛物线上(不与点C重合),且AE=EF时,求点F的坐标;②取EF的中点N,当m为何值时,MN的最小值是?14.若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).(1)求二次函数的表达式;(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.①当m=时,求点P的坐标;②求m的最大值.15.如图,抛物线y=a(x2﹣2mx﹣3m2)(a,m为正的常数)与x轴交于点A,B,与y轴交于点C(0,﹣3),顶点为F,CD∥AB交抛物线于点D.(1)当a=1时,求点D的坐标.(2)若点E是第一象限抛物线上的点,过点E作EM⊥x轴于点M,当OM=2CD时,求证:∠EAB=∠ADC.(3)在(2)的条件下,试探究:在x轴上是否存在点P,使得以PF,AD,AE为边长构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.16.如图,在平面直角坐标系中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过点M 作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,试求出点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当△P AB面积最大时,试求出点P 的坐标,并求出△P AB面积的最大值.17.如图,二次函数y=ax2+x+c的图象交x轴于A,B(4,0)两点,交y轴于点C(0,2).(1)求二次函数的解析式;(2)点P为第一象限抛物线上一个动点,PM⊥x轴于点M.交直线BC于点Q,过点C 作CN⊥PM于点N.连接PC;①若△PCQ为以CQ为腰的等腰三角形,求点P的横坐标;②点G为点N关于PC的对称点,当点G落在坐标轴上时,直接写出点P的坐标.18.在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(4,0)两点,与y轴交于点C(0,﹣2).(1)求抛物线的函数表达式;(2)如图1,点D为第四象限抛物线上一点,连接AD,BC交于点E,连接BD,记△BDE的面积为S1,△ABE的面积为S2,求的最大值;(3)如图2,连接AC,BC,过点O作直线l∥BC,点P,Q分别为直线l和抛物线上的点.试探究:在第一象限是否存在这样的点P,Q,使△PQB∽△CAB.若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.19.已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD=,如图所示.(1)求抛物线的解析式;(2)设P是抛物线的对称轴上的一个动点.①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;②连结PB,求PC+PB的最小值.20.如图,经过(1,0)和(2,3)两点的抛物线y=ax2+c交x轴于A、B两点,P是抛物线上一动点,平行于x轴的直线l经过点(0,﹣2).(1)求抛物线的解析式;(2)如图1,y轴上有点C(0,),连接PC,设点P到直线l的距离为d,PC=t.童威在探究d﹣t的值的过程中,是这样思考的:当P是抛物线的顶点时,计算d﹣t的值;当P不是抛物线的顶点时,猜想d﹣t是一个定值.请你直接写出这个定值,并证明;(3)如图2,点P在第二象限,分别连接P A、PB,并延长交直线l于M、N两点.若M、N两点的横坐标分别为m、n,试探究m、n之间的数量关系.参考答案1.如图,点A在x轴正半轴上,点B在y轴正半轴上,OA=OB,点C的坐标为(﹣1,0),OA:OC=3:1,抛物线y=ax2+bx+c经过点A、B、C,顶点为D.(1)求a、b、c的值;(2)若直线y=x+n与x轴交于点E,与y轴交于点F.①当n=﹣1时,求∠BAF﹣∠BAD的值;②若直线EF上有点H,使∠AHC=90°,求n的取值范围.【解答】解:(1)∵点C的坐标为(﹣1,0),OA:OC=3:1,∴A((3,0),∵OA=OB,∴B(0,3),把A、B、C三点都代入二次函数的解析式得,,解得,;(2)∵n=﹣1,∴y=x+n=x﹣1,∴F(0,﹣1)∴OF=1,由(1)知,抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),∵A(3,0),B(0,3),∴OA=3,AB=3,BD=,AD=2,∴BD2+AB2=AD2,∴∠ABD=∠AOF=90°,∵,,∴,∴△OAF∽△BAD,∴∠OAF=∠BAD,∵OA=OB=3,∠AOB=90°,∴∠OAB=45°,∴∠BAF﹣∠BAD=∠OAB+∠OAF﹣∠BAD=45°;②直线EF上有点H,使∠AHC=90°,则以AC为直径的圆⊙G与直线EF有公共点,如图,当直线EF在x下方与⊙G相切时,则△EGK∽△EFO,∴,∵A(3,0),C(﹣1,0),∴GK=AC=2,G(1,0),∵直线y=x+n与x轴交于点E,与y轴交于点F.∴E(﹣3n,0),F(0,﹣n),n<0,∴OF=﹣n,EF=﹣n,∴,解得,n=;如图,当直线EF在x下方与⊙G相切时,则△EGK∽△EFO,∴,∵A(3,0),C(﹣1,0),∴GK=AC=2,G(1,0),∵直线y=x+n与x轴交于点E,与y轴交于点F.∴E(﹣3n,0),F(0,n),n<0,∴OF=n,EF=n,,解得,n=;∴若直线EF上有点H,使∠AHC=90°,则n的取值范围≤n≤.2.已知二次函数y=﹣2x2+bx+c(b,c为常数)的图象经过点(2,﹣1),其对称轴为直线x=1.(1)求该二次函数的表达式;(2)点P(0,n)在y轴上,若n<1,过点P作x轴的平行线与该二次函数的图象交于E,F两点,当n取某一范围内的任意实数时,|FP﹣EP|的值始终是一个定值d,求此时n的范围及定值d.(3)是否存在两个不等实数s,t(s<t),当s≤x≤t时,恰好有11﹣6t≤y≤11﹣6s.若存在,求出这样的实数s,t;若不存在,请说明理由.【解答】解:(1)由题意:,解得,∴y=﹣2x2+4x﹣1.(2)如图,观察图象可知n≤﹣1,|FP﹣EP|的值始终是一个定值d,d=2.(3)由(1)知y=﹣2x2+4x﹣1,对称轴为x=1,①当s≤x≤t≤1时,y随x的增大而增大,当x=s时,y取最小值=﹣2s2+4s﹣1,x=t时,y取最大值=﹣2t2+4t﹣1,当s≤x≤t时,恰好有11﹣6t≤y≤11﹣6s,∴﹣2s2+4s﹣1=11﹣6t,﹣2t2+4t﹣1=11﹣6s,s+t=﹣1,将s=﹣t﹣1代入﹣2t2+4t﹣1=11﹣6s中,﹣2t2+4t﹣1=11﹣6(﹣t﹣1),即t2+t+9=0,△=12﹣4×1×9=﹣35<0,方程无解,∴当s≤x≤t≤1,不满足s≤x≤t时,恰好有:11﹣6t≤y≤11﹣6s.②当s≤1≤t时,当x=1时,y取最大值=﹣2+4﹣1=1,当s≤x≤t时,恰好有11﹣6t≤y≤11﹣6s,1=11﹣6s,s=>1与s≤1矛盾,∴当s≤1≤t,不满足s≤x≤t时,恰好有11﹣6t≤y≤11﹣6s.③当1≤s≤x≤t时,y随x的增大而减小,当x=s时,y取最大值=﹣2s2+4s﹣1,x=t时,y取最小值=﹣2t2+4t﹣1,当s≤x≤t时,恰好有11﹣6t≤y≤11﹣6s,∴,解得s=2或3,t=2或3,∵s<t,∴s=2,t=3.综上所述,满足条件的s,t的值为s=2,t=3.3.定义:在平面直角坐标系xOy中,点P的坐标为(x,y),当x>m时,Q点坐标为(﹣x,﹣y);当x≤m时,Q点坐标为(﹣x,﹣y+2),则称点Q为点P的m分变换点(其中m为常数).例如:(﹣2,3)的0分变换点坐标为(2,﹣1).(1)点(5,7)的1分变换点坐标为(﹣5,﹣7);点(1,6)的1分变换点在反比例函数y=图象上,则k=4;若点(a﹣1,5)的1分变换点在直线y=x+2上,则a=8或6(2)若点P在二次函数y=x2﹣2x﹣3的图象上,点Q为点P的3分变换点.①直接写出点Q所在函数的解析式;②求点Q所在函数的图象与直线y=﹣5交点坐标;③当﹣4≤x≤t时,点Q所在函数的函数值﹣5≤y≤6,直接写出t的取值范围.(3)点A(﹣3,﹣1),B(2,﹣1),若点P在二次函数y=x2﹣mx+﹣2的图象上,点Q为点P的m分变换点.当点Q所在的函数图象与线段AB有两个公共点时,直接写出m的取值范围.【解答】解:(1)∵5>1,∴点(5,7)的1分变换点坐标为(﹣5,﹣7);∵1=1,∴点(1,6)的1分变换点为(﹣1,﹣4),∵点(1,6)的1分变换点在反比例函数y=图象上,∴k=﹣1×(﹣4)=4;当a﹣1>1,即a>2时,点(a﹣1,5)的1分变换点为(1﹣a,﹣5),∵点(a﹣1,5)的1分变换点在直线y=x+2上,∴﹣5=1﹣a+2,∴a=8,当a﹣1≤1,即a≤2时,点(a﹣1,5)的1分变换点为(1﹣a,﹣3),∵点(a﹣1,5)的1分变换点在直线y=x+2上,∴﹣3=1﹣a+2,∴a=6,故答案为:(﹣5,﹣7);4;8或6;(2)①设P(x,x2﹣2x﹣3),∵点Q为点P的3分变换点,∴当x>3时,Q(﹣x,﹣x2+2x+3),∴点Q所在函数的解析式为y=﹣x2+2x+3(x>3);当x≤3时,Q(﹣x,﹣x2+2x+5),∴点Q所在函数的解析式为y=﹣x2+2x+5(x≤3);故点Q所在函数的解析式为y=﹣x2+2x+3(x>3)或y=﹣x2+2x+5(x≤3);②把y=﹣5代入y=﹣x2+2x+3(x>3)得﹣x2+2x+3=﹣5,解得,x=﹣2(舍去),或x=4;把y=﹣5代入y=﹣x2+2x+5(x≤3)得,﹣x2+2x+5=﹣5,解得,x=1﹣,或x=1+(舍),综上,点Q所在函数的图象与直线y=﹣5交点坐标为(4,﹣5)或(1﹣,﹣5);③∵y=﹣x2+2x+3=﹣(x﹣1)2+4(x>3),∴y的最大值为4<6,且当x>3时,y随x的增大而减小,令y=﹣5,得y=﹣x2+2x+3=﹣5(x>3),解得,x=﹣2(舍),x=4,∴当3<t≤4时,点Q所在函数的函数值﹣5≤y≤6;∵y=﹣x2+2x+5=﹣(x﹣1)2+6(x≤3),∴y的最大值为6,当1<x≤3时,y随x的增大而减小,当x<1时,y随x的增大而增大,令y=﹣5时,得﹣x2+2x+5=﹣5,解得,x=1+(舍),x=1﹣,而x=3时,y=﹣4+6=2,∴当1﹣≤t≤3时,点Q所在函数的函数值﹣5≤y≤6;综上,当﹣4≤x≤t时,点Q所在函数的函数值﹣5≤y≤6,其t的取值范围是1﹣≤t≤4;(3)设P(x,x2﹣mx+﹣2),当x>m时,则Q(﹣x,﹣x2+mx﹣+2),∴点Q所在的函数的解析式为:y=﹣x2+mx﹣+2=,∴顶点坐标为(,+2),∵点A(﹣3,﹣1),B(2,﹣1),点Q所在的函数图象与线段AB有两个公共点,∴,解得,﹣2<m≤2﹣,或2+≤m<2.4.如图,已知二次函数y=﹣+bx+c的图象与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0),对称轴是直线x=.(1)求该二次函数的表达式;(2)如图1,连接AC,若点P是该抛物线上一点,且∠P AB=∠ACO,求点P的坐标;(3)如图2,点P是该抛物线上一点,点Q为射线CB上一点,且P、Q两点均在第四象限内,线段AQ与BP交于点M,当∠PBQ=∠AQB,且△ABM与△PQM的面积相等时,请问线段PQ的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.【解答】解:(1)由题意可得:,解得:,∴抛物线的解析式为:;(2)设P(x,),∵已知二次函数的图象与x轴交于A、B两点,与y轴交于点C,∴点B的坐标为(4,0),点C的坐标为(0,4),∴OC=4,∵点A的坐标为(﹣3,0),∴OA=3,∴AC===5,如图,在y轴上取点D,使CD=CA,连接AD,∴∠CAD=∠ADC,DO=9,∴∠ACO=∠CAD+∠ADC=2∠ADO,∵∠P AB=∠ACO,∴∠ADO=∠P AB,∴tan∠ADO=tan∠P AB,∴,∴x1=3,x2=5∴P(3,2)或(5,);(3)线段PQ的长是定值,PQ=7.如图2,过点A作AE⊥BC于E,过点P作PF⊥BC于F,∵点B的坐标为(4,0),点A的坐标为(﹣3,0),∴AB=7,∵△ABM与△PQM的面积相等,∴△ABQ与△PQB的面积相等,∴×BQ×AE=×BQ×PF,∴AE=PF,又∵∠PBQ=∠AQB,∠AEQ=∠PFB=90°,∴△AEQ≌△PFB(AAS),∴EQ=BF,∴BE=QF,∵AE=PF,∠AEB=∠PFQ=90°,BE=QF,∴△AEB≌△PFQ(SAS),∴AB=PQ=7.5.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)与x轴相交于A(﹣1,0)、B(3,0)两点,点C为抛物线的顶点.点M(0,m)为y轴上的动点,将抛物线绕点M旋转180°,得到新的抛物线,其中B、C旋转后的对应点分别记为B′、C′.(1)若a=1,求原抛物线的函数表达式;(2)在(1)条件下,当四边形BCB'C'的面积为40时,求m的值;(3)探究a满足什么条件时,存在点M,使得四边形BCB'C'为菱形?请说明理由.【解答】解:(1)由题意得:,解得,∴原抛物线的函数表达式为:y=x2﹣2x﹣3;(2)连接CC′、BB′,延长BC,与y轴交于点E,∵二次函数y=x2﹣2x﹣3的顶点为(1,﹣4),∴C(1,﹣4),∵B(3,0),∴直线BC的解析式为:y=2x﹣6.∴E(0,﹣6),∵抛物线绕点M旋转180°,∴MB=MB′,MC=MC′,∴四边形BCB′C′是平行四边形,∴S△BCM=×40=10,∵S△BCM=S△MBE﹣S△MCE=×(3﹣1)×ME=ME,∴ME=10,∴m=4或m=﹣16;(3)如图,过点C作CD⊥y轴于点D,当平行四边形BCB'C′为菱形时,应有MB⊥MC,故点M在O、D之间,当MB⊥MC时,△MOB∽△CDM,∴=,即MO•MD=BO•CD.∵二次函数y=a(x+1)(x﹣3)的顶点为(1,﹣4a),M(0,m),B(3,0),∴CD=1,MO=﹣m,MD=m+4a,OB=3,∴﹣m(m+4a)=3,∴m2+4am+3=0,∵△=16a2﹣12≥0,a>0,∴a≥.所以a≥时,存在点M,使得四边形BCB'C′为菱形.6.如图,一次函数y=kx+b的图象与x轴交于点B(6,0),与y轴交于点A,与二次函数y=ax2的图象在第一象限内交于点C(3,3).(1)求此一次函数与二次函数的表达式;(2)若点D在线段AC上,与y轴平行的直线DE与二次函数图象相交于点E,∠ADO =∠OED,求点D坐标.【解答】解:(1)∵二次函数y=ax2的图象过点C(3,3),∴3=9a,∴a=,∴二次函数的表达式为y=x2,∵一次函数y=kx+b的图象经过点B(6,0)点C(3,3),∴,解得:,∴一次函数的表达式为y=﹣x+6;(2)∵一次函数的表达式为y=﹣x+6与y轴交于点A;∴点A(0,6),∴OA=6,设点D(m,﹣m+6),则点E(m,m2),∴DE=﹣m+6﹣m2,∵DE∥y轴.∴∠AOD=∠ODE,又∵∠ADO=∠OED,∴△ODA∽△DEO,∴,∴OD2=OA•DE,∴m2+(﹣m+6)2=6×(﹣m+6﹣m2)∴m=0(不合题意)或m=,∴点D坐标为(,).7.如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x 轴交于点C,直线DM、DN分别与x轴相交于A、B两点.(1)当a=﹣1时,求点N的坐标及的值;(2)随着a的变化,的值是否发生变化?请说明理由;(3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.【解答】解:(1)分别过点M、N作ME⊥CD于点E,NF⊥DC于点F,∵ME∥FN∥x轴,∴△DME∽△DAC,△DCB∽△DFN,∴,,∵a=﹣1,则y=﹣x2+2x+c,将M(﹣1,1)代入上式并解得:c=4,∴抛物线的表达式为:y=﹣x2+2x+4,则点D(1,5),N(4,﹣4),则ME=2,DE=4,DC=5,FN=3,DF=9,∴,解得:AC=,BC=,∴=;(2)不变,理由:∵y=ax2﹣2ax+c过点M(﹣1,1),则a+2a+c=1,解得:c=1﹣3a,∴y=ax2﹣2ax+(1﹣3a),∴点D(1,1﹣4a),N(4,1+5a),∴ME=2,DE=﹣4a,由(1)的结论得:AC=,BC=,∴=;(3)过点F作FH⊥x轴于点H,则FH∥l,则△FHE∽△DCE,∵FB=FE,FH⊥BE,∴BH=HE,∵BC=2BE,则CE=6HE,∵CD=1﹣4a,∴FH=,∵BC=,∴CH=×=,∴F(﹣+1,﹣a),将点F的坐标代入y=ax2﹣2ax+(1﹣3a)=a(x+1)(x﹣3)+1得:﹣a=a(﹣+1+1)(﹣+1﹣3)+1,解得:a=﹣或(舍弃),经检验a=﹣,故y=﹣x2+x+.8.如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△P AB面积最大时,求点P的坐标及△P AB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(0,1),B(,0),设直线AB的解析式为y=kx+m,∴,解得,∴直线AB的解析式为y=﹣x+1,∵点F的横坐标为,∴F点纵坐标为﹣+1=﹣,∴F点的坐标为(,﹣),又∵点A在抛物线上,∴c=1,对称轴为:x=﹣,∴b=﹣2a,∴解析式化为:y=ax2﹣2ax+1,∵四边形DBFE为平行四边形.∴BD=EF,∴﹣3a+1=a﹣8a+1﹣(﹣),解得a=﹣1,∴抛物线的解析式为y=﹣x2+2x+1;(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),∴PP'=﹣n2+n,S△ABP=OB•PP'=﹣n=﹣+,∴当n=时,△ABP的面积最大为,此时P(,).(3)∵,∴x=0或x=,∴C(,﹣),设Q(,m),①当AQ为对角线时,∴R(﹣),∵R在抛物线y=+4上,∴m+=﹣+4,解得m=﹣,∴Q,R;②当AR为对角线时,∴R(),∵R在抛物线y=+4上,∴m﹣+4,解得m=﹣10,∴Q(,﹣10),R().综上所述,Q,R;或Q(,﹣10),R().9.二次函数y=ax2+bx+3的图象与x轴交于A(2,0),B(6,0)两点,与y轴交于点C,顶点为E..(1)求这个二次函数的表达式,并写出点E的坐标;(2)如图①,D是该二次函数图象的对称轴上一个动点,当BD的垂直平分线恰好经过点C时,求点D的坐标;(3)如图②,P是该二次函数图象上的一个动点,连接OP,取OP中点Q,连接QC,QE,CE,当△CEQ的面积为12时,求点P的坐标.【解答】解:(1)将A(2,0),B(6,0)代入y=ax2+bx+3,得,解得∴二次函数的解析式为y=﹣2x+3.∵y=﹣1,∴E(4,﹣1).(2)如图1,图2,连接CB,CD,由点C在线段BD的垂直平分线CN上,得CB=CD.设D(4,m),∵C(0,3),由勾股定理可得:42+(m﹣3)2=62+32.解得m=3±.∴满足条件的点D的坐标为(4,3+)或.(3)如图3,设CQ交抛物线的对称轴于点M,设P(n,﹣2n+3),则Q(),设直线CQ的解析式为y=kx+3,则nk+3.解得k=,于是CQ:y=()x+3,当x=4时,y=4()+3=n﹣5﹣,∴M(4,n﹣5﹣),ME=n﹣4﹣.∵S△CQE=S△CEM+S△QEM=.∴n2﹣4n﹣60=0,解得n=10或n=﹣6,当n=10时,P(10,8),当n=﹣6时,P(﹣6,24).综合以上可得,满足条件的点P的坐标为(10,8)或(﹣6,24).10.如图(1),在平面直角坐标系中,抛物线y=ax2+bx+4(a≠0)与y轴交于点A,与x 轴交于点C(﹣2,0),且经过点B(8,4),连接AB,BO,作AM⊥OB于点M,将Rt △OMA沿y轴翻折,点M的对应点为点N.解答下列问题:(1)抛物线的解析式为y=﹣x2+x+4,顶点坐标为(4,);(2)判断点N是否在直线AC上,并说明理由;(3)如图(2),将图(1)中Rt△OMA沿着OB平移后,得到Rt△DEF.若DE边在线段OB上,点F在抛物线上,连接AF,求四边形AMEF的面积.【解答】解:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴交于点C(﹣2,0),且经过点B(8,4),∴,解得:,∴抛物线解析式为:y=﹣x2+x+4,∵:y=﹣x2+x+4=﹣(x﹣4)2+,∴顶点坐标为(4,)故答案为:y=﹣x2+x+4,(4,);(2)点N在直线AC上,理由如下:∵抛物线y=﹣x2+x+4与y轴交于点A,∴点A(0,4),即OA=4,∵点B(8,4),∴AB∥x轴,AB=8,∴AB⊥AO,∴∠OAB=90°,∴∠OAM+∠BAM=90°,∵AM⊥OB,∴∠BAM+∠B=90°,∴∠B=∠OAM,∴tan∠B=tan∠OAM===,∵将Rt△OMA沿y轴翻折,∴∠NAO=∠OAM,∴tan∠NAO=tan∠OAM=,∵OC=2,OA=4,∴tan∠CAO==,∴tan∠CAO=tan∠NAO,∴∠CAO=∠NAO,∴AN,AC共线,∴点N在直线AC上;(3)∵点B(8,4),点O(0,0),∴直线OB解析式为y=x,∵Rt△OMA沿着OB平移后,得到Rt△DEF,∴AF∥OB,∴直线AF的解析式为:y=x+4,联立方程组:解得:或∴点F(,),∵Rt△OMA沿着OB平移后,得到Rt△DEF,∴Rt△OMA≌Rt△DEF,OA=DF,OA∥DF∴S△OMA=S△DEF,四边形OAFD是平行四边形,∵四边形AMEF的面积=S四边形AMDF+S△DEF=S四边形AMDF+S△OAM=S四边形OAFD,∴四边形AMEF的面积=S四边形OAFD=4×=22.11.已知抛物线y=a(x﹣2)2+c经过点A(﹣2,0)和点C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.【解答】解:(1)将点A(﹣2,0),C(0,)代入y=a(x﹣2)2 +c,得:,解得:,∴抛物线的解析式为y=﹣(x﹣2)2+3,即y=﹣x2+x+;∴顶点D的坐标为(2,3);(2)当y=0时,﹣(x﹣2)2+3=0,解得:x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),∵∠DEB=∠DEF+∠BEF=∠DAB+∠ADE,∠DEF=∠DAB,∴∠ADE=∠BEF,∵AD==5,BD==5,∴AD=BD,∴∠DAE=∠EBF,∵DE=EF,∴△ADE≌△BEF(AAS),∴BE=AD=5.12.如图,已知抛物线y=﹣x2+bx+c经过点A(﹣3,0),C(0,3),交x轴于另一点B,其顶点为D.(1)求抛物线的解析式;(2)点P为抛物线上一点,直线CP交x轴于点E,若△CAE与△OCD相似,求P点坐标;(3)如果点F在y轴上,点M在直线AC上,那么在抛物线上是否存在点N,使得以C,F,M,N为顶点的四边形是菱形?若存在,请求出菱形的周长;若不存在,请说明理由.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(﹣3,0),C(0,3),∴,解得.故此抛物线解析式为:y=﹣x2﹣2x+3;(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点D(﹣1,4).∵A(﹣3,0),C(0,3),D(﹣1,4),∴AC=,OA=OC=3,CD=,∠OCD=∠CAE=135°,∴点E只能在A点左边.①若△CAE∽△DCO,则,∴AE=9,∴OE=12,∴E(﹣12,0).∵C(0,3),。
北师大版九年级下册数学第二章《二次函数应用》压轴题整理试题以及答案

二次函数压轴题练习试题1、抛物线y=﹣x2+bx+3与x轴交于A(﹣3,0)和B(1,0)两点,与y轴交于点C,点D 是抛物线的顶点。
(1)求抛物线的表达式以及顶点D的坐标;S△ACD,求点P的坐标;(2)在直线AC上方的抛物线上找一点P,使S△ACP=12(3)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M 的坐标;2、如图,已知抛物线y=ax2+bx-3经过点A(1,﹣1)和B(﹣3,3),与y轴交于点C。
(1)求抛物线的表达式;(2)若点P为抛物线上位于直线AB下方的一点,且点P的横坐标为m,过点P作PQ∥y 轴,交线段AB于点Q。
①当△APQ为直角三角形时,求m的值;②当﹣3<m<0,若∠PCA=3∠ACO,求m的值;(备用图)3、如图1,已知抛物线y=x2+bx+c与x轴交于点A(﹣3,0),B两点,与y轴交于点C(0,﹣3).(1)求抛物线的表达式;(2)如图2,点F是该抛物线的对称轴(x轴上方部分)上的一个动点,连接AF,将△ABF 沿直线AF翻折,得到△AB’F,当点B’落在该抛物线的对称轴上,求点F的坐标;(3)如图3,点D是该抛物线的顶点,点P(m,n)是第一象限内该抛物线上的一个点,分别连接AD、AC、AP,当∠PAB=2∠CAD时,求m的值;4、如图,抛物线y=﹣1x2+bx+c经过A(4,0)和C(0,4)两点,点B是抛物线与x轴的另2一个交点,点E是OC的中点,作直线AC,点M在抛物线上,过点M作MD⊥x轴,垂足为点D,交直线AC于点N,设点M的横坐标为m,MN的长度为d。
(1)直接写出直线AC的表达式;(2)求抛物线的表达式;(3)求d关于m的函数关系式;(4)当以点M、N、E、O为顶点的四边形为平行四边形时,直接写出m的值;(备用图)5、二次函数y=ax2+bx-3的图象交x轴于点A(﹣1,0)和B(3,0),交y轴于点C,抛物线的顶点为点M。
北师大版九年级下册数学第二章《二次函数应用》压轴题整理试题以及答案

二次函数压轴题练习试题1、如图,二次函数y=ax2+bx+2的图象与x轴交于点B(﹣1,0)和C(4,0)两点,与y轴交于点A。
(1)求二次函数表达式;(2)连接AC、AB,若点N在线段BC上运动(不与点B、C重合),过点N作MN∥AC,交AB于点M,当△AMN的面积最大时,求点N的坐标;(3)在(2)的结论下,若点Q在第一象限,且tan∠CQN=2,线段BQ是否存在最值?如果存在,请直接写出最值,若不存在,说明理由;(备用图)2、如图,抛物线y=﹣1x2+bx+c的图象经过点C(0,2)交x轴于点A(﹣1,0)和B,连接2BC,直线y=kx+1与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F。
(1)求抛物线的表达式及点B的坐标;的最大值及点E的坐标;(2)求EFDF(3)在(2)的条件下,若点M为直线DE上一点,点N为平面直角坐标系内一点,是否存在这样的点M和N,使得四点B、D、M、N为顶点的四边形是菱形,若存在,直接写出点M 的坐标,若不存在,说明理由;3、如图,抛物线y=x2+bx+c经过A(1,0)和C(0,3)两点,点B是抛物线与x轴的另一个交点,作直线BC,点P是抛物线上的一个动点,过点P作PQ⊥x轴,交直线BC于点Q,设点P的横坐标为m(m>0),PQ的长为d。
(1)求抛物线的表达式以及顶点坐标;(2)求d和m之间的函数关系式;(3)当点P在直线BC下方,且线段PQ被x轴分成两部分之比是1:2时,求m的值;(4)连接AC,作直线AP,直线AP交直线BC于点M,当△PCM、△ACM的面积相等时,直接写出m的值;(备用图)4、如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过点A(﹣1,0)和B(3,0)该抛物线对称轴上的点P在x轴上方,线段PB绕点P逆时针旋转90°至PC(点B对应点C),点C 恰好落在抛物线上。
(1)求抛物线的表达式并写出抛物线的对称轴;(2)求点P的坐标;(3)点Q在x轴下方抛物线上,连接AC,如果∠QAB=∠ABC,求点Q的坐标;(备用图)5、如图,在平面直角坐标系中,抛物线l1:y=x2+bx+c过点C(0,﹣3),以抛物线l2:y=﹣1x22-3x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线l1、l2上的动点。
北师大版九年级数学下册第二章 二次函数 压轴题专题复习(无答案)

北师大版九年级数学下册第二章 二次函数 压轴题专题复习1、已知二次函数c bx x y ++-=2的图象如图所示,它与x 轴的一个交点坐标为(-1,0),与y 轴的交点坐标为(0,3)。
(1)求出b ,c 的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y 为正数时,自变量x 的取值范围。
2、已知抛物线y =41x 2 + 1(如图所示). (1)填空:抛物线的顶点坐标是(______,______),对称轴是_____;(2)已知y 轴上一点A (0,2),点P 在抛物线上,过点P 作PB ⊥x 轴,垂足为B .若△PAB 是等边三角形,求点P 的坐标;(3)在(2)的条件下,点M 在直线..AP 上.在平面内是否存在点N ,使四边形OAMN 为菱形?若存在,直接写出所有..满足条件的点N 的坐标;若不存在,请说明理由.3、如图,抛物线25y ax bx =+-(0a ≠)经过点(4,5)A -,与x 轴的负半轴交于点B ,与y 轴交于点C ,且5OC OB =,抛物线的顶点为D ;(1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且BEO ABC ∠=∠,求点E 的坐标;4、如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)联结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.5、如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.x=-+与x 轴交于两点A、B,其顶点为C.6、如图,已知抛物线243y x(1)对于任意实数m,点M(m,-2)是否在该抛物线上?请说明理由;(2)求证:△ABC是等腰直角三角形;(3)已知点D在x轴上,那么在抛物线上是否存在点P,使得以B、C、D、P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.7、在平面直角坐标系xOy 中,O 是坐标原点,等边三角形OAB 的一个顶点为A (2,0),另一个顶点B 在第一象限内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版九年级数学下册第二章二次函数中考压轴题练习1、抛物线y=x2+bx+c经过A(0,2),B(3,2)两点,若两动点D、E同时从原点O分别沿着x轴、y轴正方向运动,点E的速度是每秒1个单位长度,点D的速度是每秒2个单位长度.(1)求抛物线与x轴的交点坐标;(2)若点C为抛物线与x轴的交点,是否存在点D,使A、B、C、D四点围成的四边形是平行四边形?若存在,求点D的坐标;若不存在,说明理由;(3)问几秒钟时,B、D、E在同一条直线上?2、如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a 的取值范围.3、如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A,B两点.(1)则点A,B,C的坐标分别是A(,),B(,),C(,);(2)设经过A,B两点的抛物线解析式为y=(x﹣5)2+k,它的顶点为E,求证:直线EA与⊙M相切;(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.4、如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=5,且=,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:y=﹣x2+x+c经过点E,且与AB边相交于点F.(1)求证:△ABD∽△ODE;(2)若M是BE的中点,连接MF,求证:MF⊥BD;(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.5、如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.6、已知在平面直角坐标系xOy中(如图),抛物线y=ax2﹣4与x轴的负半轴(XRS)相交于点A,与y轴相交于点B,AB=2,点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D,设点P的横坐标为m.(1)求这条抛物线的解析式;(2)用含m的代数式表示线段CO的长;(3)当tan∠ODC=时,求∠PAD的正弦值.7、如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为(,),点C的坐标为(,),点D的坐标为(,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R 不与点A、C重合),请直接写出△PQR周长的最小值.8、如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.9、已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于点A(x1、y1)、B(x2、y2)两点.①当m=时(图①),求证:△AOB为直角三角形;②试判断当m≠时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)10、如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B 两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.11、如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.12、如图,已知图①中抛物线y=ax2+bx+c经过点D(﹣1,0),C(0,﹣1),E(1,0).(1)求图①中抛物线的函数表达式.(2)将图①中的抛物线向上平移一个单位,得到图②中的抛物线,点D与点D1是平移前后的对应点,求该抛物线的函数表达式.(3)将图②中的抛物线绕原点O顺时针旋转90°后得到图③中的抛物线,所得到抛物线表达式为y2=2px,点D1与D2是旋转前后的对应点,求图③中抛物线的函数表达式.(4)将图③中的抛物线绕原点O顺时针旋转90°后与直线y=﹣x﹣1相交于A、B两点,D2与D3是旋转前后如图④,求线段AB的长.13、如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.14、已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.15、如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.参考答案1、【解答】解:(1)抛物线y=x2+bx+c经过A(0,2),B(3,2)两点,∴,解得,∴抛物线的解析式为:y=x2﹣3x+2,令y=0,则x2﹣3x+2=0,解得:x1=1,x2=2,∴抛物线与x轴的交点坐标是(1,0),(2,0);(2)存在,由已知条件得AB∥x轴,∴AB∥CD,∴当AB=CD时,以A、B、C、D四点围成的四边形是平行四边形,设D(m,0),当C(1,0)时,则CD=m﹣1,∴m﹣1=3,∴m=4,当C(2,0)时,则CD=m﹣2,∴m﹣2=3,∴m=5,∴D(5,0),综上所述:当D(4,0)或(5,0)时,使A、B、C、D四点围成的四边形是平行四边形;(3)设t秒钟时,B、D、E在同一条直线上,则OE=t,OD=2t,∴E(0,t),D(2t,0),设直线BD的解析式为:y=kx+b,∴,解得k=﹣或k=(不合题意舍去),∴当k=﹣,t=,∴点D、E运动秒钟时,B、D、E在同一条直线上.2、【解答】解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为:45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为y=a(x﹣m)2﹣m,∵抛物线过点E(0,n),∴n=a(0﹣m)2﹣m,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①当点E与点O重合时,E(0,0),∵抛物线y=ax2+bx+c过点E,A,∴,整理得:am+b=﹣1,即b=﹣1﹣am;②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为y=x2﹣x,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为≤a≤1.3、【解答】(1)解:连接MC、MA,如图1所示:∵⊙M与y轴相切于点C,∴MC⊥y轴,∵M(5,4),∴MC=MA=5,OC=MD=4,∴C(0,4),∵MD⊥AB,∴DA=DB,∠MDA=90°,∴AD==3,∴BD=3,∴OA=5﹣3=2,OB=5+3=8,∴A(2,0),B(8,0),故答案为2,0;8,0;0,4;(2)证明:把点A(2,0)代入抛物线y=(x﹣5)2+k,得:k=﹣,∴E(5,﹣),∴DE=,∴ME=MD+DE=4+=,EA2=32+()2=,∵MA2+EA2=52+=,ME2=,∴MA2+EA2=ME2,∴∠MAE=90°,即EA⊥MA,∴EA与⊙M相切;(3)解:存在;点P坐标为(5,4),或(5,),或(5,4+);理由如下:由勾股定理得:BC===4,分三种情况:①当PB=PC时,点P在BC的垂直平分线上,点P与M重合,∴P(5,4);②当BP=BC=4时,如图2所示:∵PD===,∴P(5,);③当PC=BC=4时,连接MC,如图3所示:则∠PMC=90°,根据勾股定理得:PM===,∴PD=4+,∴P(5,4+);综上所述:存在点P,且点P在x轴的上方,使△PBC是等腰三角形,点P的坐标为(5,4),或(5,),或(5,4+).4、【解答】(1)证明:∵四边形ABCO为矩形,且由折叠的性质可知△BCE≌△BDE,∴∠BDE=∠BCE=90°,∵∠BAD=90°,∴∠EDO+∠BDA=∠BDA+∠DAB=90°,∴∠EDO=∠DBA,且∠EOD=∠BAD=90°,∴△ABD∽△ODE;(2)证明:∵=,∴设OD=4x,OE=3x,则DE=5x,∴CE=DE=5x,∴AB=OC=CE+OE=8x,又∵△ABD∽△ODE,∴==,∴DA=6x,∴BC=OA=10x,在Rt△BCE中,由勾股定理可得BE2=BC2+CE2,即(5)2=(10x)2+(5x)2,解得x=1,∴OE=3,OD=4,DA=6,AB=8,OA=10,∴抛物线解析式为y=﹣x2+x+3,当x=10时,代入可得y=,∴AF=,BF=AB﹣AF=8﹣=,在Rt△AFD中,由勾股定理可得DF===,∴BF=DF,又M为Rt△BDE斜边上的中点,∴MD=MB,∴MF为线段BD的垂直平分线,∴MF⊥BD;(3)解:由(2)可知抛物线解析式为y=﹣x2+x+3,设抛物线与x轴的两个交点为H、G,令y=0,可得0=﹣x2+x+3,解得x=﹣4或x=12,∴H(﹣4,0),G(12,0),①当PD⊥x轴时,由于PD=8,DM=DN=8,故点Q的坐标为(﹣4,0)或(12,0)时,△PDQ是以P为直角顶点的等腰直角三角形;②当PD不垂直与x轴时,分别过P,Q作x轴的垂线,垂足分别为N,I,则Q不与G重合,从而I不与G重合,即DI≠8.∵PD⊥DQ,∴∠QDI=90°﹣∠PDN=∠DPN,∴Rt△PDN∽Rt△DQI,∵PN=8,∴PN≠DI,∴Rt△PDN与Rt△DQI不全等,∴PD≠DQ,另一侧同理PD≠DQ.综合①,②所有满足题设条件的点Q的坐标为(﹣4,0)或(12,0).5、【解答】解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由解得:∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:①当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,=S△APF+S△CPF∴S△APC===,此时最大值为:,②当6<t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,=S△APM﹣S△CPM=∴S△APC==,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t<8时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>8时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=14,∴t=或t=或t=14.6、【解答】解:(1)∵抛物线y=ax2﹣4与y轴相交于点B,∴点B的坐标是(0,﹣4),∴OB=4,∵AB=2,∴OA==2,∴点A的坐标为(﹣2,0),把(﹣2,0)代入y=ax2﹣4得:0=4a﹣4,解得:a=1,则抛物线的解析式是:y=x2﹣4;(2)∵点P的横坐标为m,∴点P的坐标为(m,m2﹣4),过点P作PE⊥x轴于点E,∴OE=m,PE=m2﹣4,∴AE=2+m,∵=,∴=,∴CO=2m﹣4;(3)∵tan∠ODC=,∴=,∴OD=OC=×(2m﹣4)=,∵△ODB∽△EDP,∴=,∴=,∴m1=﹣1(舍去),m2=3,∴OC=2×3﹣4=2,∵OA=2,∴OA=OC,∴∠PAD=45°,∴sin∠PAD=sin45°=.7、【解答】解:(1)令x=0,则y=2,∴A(0,2),令y=0,则﹣x2﹣x+2=0,解得x1=﹣3,x2=1(舍去),∴B(﹣3,0),C(1,0),由y=﹣x2﹣x+2=﹣(x+1)2+可知D(﹣1,),故答案为:0、2,﹣3、0,1、0,﹣1、;(2)①设P(n,0),则E(n,﹣n2﹣n+2),∵PE=PC,∴﹣n2﹣n+2=1﹣n,解得n1=﹣,n2=1(舍去),∴当n=﹣时,1﹣n=,∴E(﹣,),②如图1,设直线DE与x轴交于M,与y轴交于N,直线EA与x轴交于K,根据E、D的坐标求得直线ED的斜率为,根据E、A的坐标求得直线EA的斜率为﹣,∴△MEK是以MK为底边的等腰三角形,△AEN是以AN为底边的等腰三角形,∵到EA和ED的距离相等的点F在顶角的平分线上,根据等腰三角形的性质可知,EF是E点到坐标轴的距离,∴EF=或;(3)根据题意得:当△PQR为△ABC垂足三角形时,周长最小,所以P与O重合时,周长最小,如图2,作O关于AB的对称点E,作O关于AC的对称点F,连接EF交AB于Q,交AC 于R,此时△PQR的周长PQ+QR+PR=EF,∵A(0,2),B(﹣3,0),C(1,0),∴AB==,AC==,=×OE×AB=OA•OB,∵S△AOB∴OE=,∵△OEM∽△ABO,∴==,即==,∴OM=,EM=∴E(﹣,),同理求得F(,),即△PQR周长的最小值为EF==.8、【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),=S△ABN﹣S△BMN∵S△AMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,∴当△AMN面积最大时,N点坐标为(3,0).9、【解答】(1)解:∵y=ax2过点(2,1),∴1=4a,解得a=,∴抛物线解析式为y=x2;(2)①证明:当m=时,联立直线和抛物线解析式可得,解得或,∴A(﹣2,1),B(8,16),分别过A、B作AC⊥x轴,BD⊥x轴,垂足分别为C、D,如图1,∴AC=1,OC=2,OD=8,BD=16,∴==,且∠ACO=∠ODB,∴△ACO∽△ODB,∴∠AOC=∠OBD,又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,即∠AOB=90°,∴△AOB为直角三角形;②解:△AOB为直角三角形.证明如下:当m≠时,联立直线和抛物线解析式可得,解得或,∴A(2m﹣2,(m﹣)2),B(2m+2,(m+)2),分别过A、B作AC⊥x轴,BD⊥x轴,如图2,∴AC=(m﹣)2,OC=﹣(2m﹣2),BD=(m+)2,OD=2m+2,∴==,且∠ACO=∠ODB,∴△ACO∽△OBD,∴∠AOC=∠OBD,又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,即∠AOB=90°,∴△AOB为直角三角形;(3)解:由(2)可知,一次函数y=mx+4的图象与二次函数y=ax2的交点为A、B,则△AOB恒为直角三角形.(答案不唯一).10、【解答】解:(1)令y=0,则ax2﹣2ax﹣3a=0,解得x1=﹣1,x2=3∵点A在点B的左侧,∴A(﹣1,0),如图1,作DF⊥x轴于F,∴DF∥OC,∴=,∵CD=4AC,∴==4,∵OA=1,∴OF=4,∴D点的横坐标为4,代入y=ax2﹣2ax﹣3a得,y=5a,∴D(4,5a),把A、D坐标代入y=kx+b得,解得,∴直线l的函数表达式为y=ax+a.(2)设点E(m,a(m+1)(m﹣3)),y AE=k1x+b1,则,解得:,∴y AE=a(m﹣3)x+a(m﹣3),=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,∴S△ACE∴有最大值﹣a=,∴a=﹣;(3)令ax2﹣2ax﹣3a=ax+a,即ax2﹣3ax﹣4a=0,解得x1=﹣1,x2=4,∴D(4,5a),∵y=ax2﹣2ax﹣3a,∴抛物线的对称轴为x=1,设P1(1,m),①若AD是矩形的一条边,由AQ∥DP知x D﹣x P=x A﹣x Q,可知Q点横坐标为﹣4,将x=﹣4带入抛物线方程得Q(﹣4,21a),m=y D+y Q=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∵AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,PD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴[4﹣(﹣1)]2+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=,∵a<0,∴a=﹣,∴P1(1,﹣).②若AD是矩形的一条对角线,则线段AD的中点坐标为(,),Q(2,﹣3a),m=5a﹣(﹣3a)=8a,则P(1,8a),∵四边形ADPQ为矩形,∴∠APD=90°,∴AP2+PD2=AD2,∵AP2=[1﹣(﹣1)]2+(8a)2=22+(8a)2,PD2=(4﹣1)2+(8a﹣5a)2=32+(3a)2,AD2=[4﹣(﹣1)]2+(5a)2=52+(5a)2,∴22+(8a)2+32+(3a)2=52+(5a)2,解得a2=,∵a<0,∴a=﹣,∴P2(1,﹣4).综上可得,P点的坐标为P1(1,﹣4),P2(1,﹣).11、【解答】解:(1)由已知得解得.所以,抛物线的解析式为y=x2﹣x+3.(2)∵A、B关于对称轴对称,如图1,连接BC,∴BC与对称轴的交点即为所求的点P,此时PA+PC=BC,∴四边形PAOC的周长最小值为:OC+OA+BC,∵A(1,0)、B(4,0)、C(0,3),∴OA=1,OC=3,BC==5,∴OC+OA+BC=1+3+5=9;∴在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9.(3)∵B(4,0)、C(0,3),∴直线BC的解析式为y=﹣x+3,①当∠BQM=90°时,如图2,设M(a,b),∵∠CMQ>90°,∴只能CM=MQ=b,∵MQ∥y轴,∴△MQB∽△COB,∴=,即=,解得b=,代入y=﹣x+3得,=﹣a+3,解得a=,∴M(,);②当∠QMB=90°时,如图3,∵∠CMQ=90°,∴只能CM=MQ,设CM=MQ=m,∴BM=5﹣m,∵∠BMQ=∠COB=90°,∠MBQ=∠OBC,∴△BMQ∽△BOC,∴=,解得m=,作MN∥OB,∴==,即==,∴MN=,CN=,∴ON=OC﹣CN=3﹣=,∴M(,),综上,在线段BC上存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形,点M的坐标为(,)或(,).12、【解答】解:(1)将D、C、E的坐标代入函数解析式,得,解得.图①中抛物线的函数表达式y=x2﹣1;(2)将抛物线的函数表达式y=x2﹣1向上平移1个单位,得y=x2,该抛物线的函数表达式y=x2;(3)将抛物线的函数表达式y=x2绕原点O顺时针旋转90°,得x=y2,图③中抛物线的函数表达式x=y2;(4)将图③中抛物线的函数表达式x=y2绕原点O顺时针旋转90°,得y=﹣x2,联立,解得,.A(,),B(,).AB==.13、【解答】解:(1)∵抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),∴把A、B两点坐标代入可得,解得,∴抛物线解析式为y=﹣x2+2x﹣;(2)过A作AD⊥BC于点D,如图1,∵⊙A与BC相切,∴AD为⊙A的半径,由(1)可知C(0,﹣),且A(1,0),B(5,0),∴OB=5,AB=OB﹣OA=4,OC=,在Rt△OBC中,由勾股定理可得BC===,∵∠ADB=∠BOC=90°,∠ABD=∠CBO,∴△ABD∽△CBO,∴=,即=,解得AD=,即⊙A的半径为;(3)∵C(0,﹣),∴可设直线BC解析式为y=kx﹣,把B点坐标代入可求得k=,∴直线BC的解析式为y=x﹣,过P作PQ∥y轴,交直线BC于点Q,交x轴于点E,如图2,设P(x,﹣x2+2x﹣),则Q(x,x﹣),∴PQ=(﹣x2+2x﹣)﹣(x﹣)=﹣x2+x=﹣(x﹣)2+,=S△PCQ+S△PBQ=PQ•OE+PQ•BE=PQ(OE+BE)=PQ•OB=PQ=﹣(x﹣)∴S△PBC2+,有最大值,此时P点坐标为(,),∴当x=时,S△PBC∴当P点坐标为(,)时,△PBC的面积有最大值.14、【解答】解:(1)∵抛物线l1:y=﹣x2+bx+3的对称轴为x=1,∴﹣=1,解得b=2,∴抛物线l1的解析式为y=﹣x2+2x+3,令y=0,可得﹣x2+2x+3=0,解得x=﹣1或x=3,∴A点坐标为(﹣1,0),∵抛物线l2经过点A、E两点,∴可设抛物线l2解析式为y=a(x+1)(x﹣5),又∵抛物线l2交y轴于点D(0,﹣),∴﹣=﹣5a,解得a=,∴y=(x+1)(x﹣5)=x2﹣2x﹣,∴抛物线l2的函数表达式为y=x2﹣2x﹣;(2)设P点坐标为(1,y),由(1)可得C点坐标为(0,3),∴PC2=12+(y﹣3)2=y2﹣6y+10,PA2=[1﹣(﹣1)]2+y2=y2+4,∵PC=PA,∴y2﹣6y+10=y2+4,解得y=1,∴P点坐标为(1,1);(3)由题意可设M(x,x2﹣2x﹣),∵MN∥y轴,∴N(x,﹣x2+2x+3),x2﹣2x﹣令﹣x2+2x+3=x2﹣2x﹣,可解得x=﹣1或x=,①当﹣1<x≤时,MN=(﹣x2+2x+3)﹣(x2﹣2x﹣)=﹣x2+4x+=﹣(x﹣)2+,显然﹣1<≤,∴当x=时,MN有最大值;②当<x≤5时,MN=(x2﹣2x﹣)﹣(﹣x2+2x+3)=x2﹣4x﹣=(x﹣)2﹣,显然当x>时,MN随x的增大而增大,∴当x=5时,MN有最大值,×(5﹣)2﹣=12;综上可知在点M自点A运动至点E的过程中,线段MN长度的最大值为12.15、【解答】解:(1)把点B的坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l的对称轴为x=2,顶点坐标是(2,1);(2)点C的横坐标为0,则y C=﹣h2+1.当h=0时,y C=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x的增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分的比是1:4,且O(0,0),A(﹣5,0),∴把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h的值是0或﹣5.。