泊松过程 poisson
第三章泊松(Poisson)过程.

4. 齐次泊松过程的两个相关随机变量
设{N (t), t 0}是强度为的泊松过程,Wn(n 1)
表示事件第n次出现的等待时间.
W0 0
记 Ti Wi Wi1, i 1,2, 则Ti 表示第n-1次
事件发生到第n次事件发生的时间间隔.
(每小时)的泊松过程 {N(t), t 0}, 若每个人消费 的金额(元)为独立同分布的随机变量 Yn:
f ( y) 0.05e0.05 y ( y 0)
设 X(t) 表示 [0,t) 时间内该超市的总营业额,求3 小时内总营业额的期望和方差.
基础部张守成 2020年2月28日星期五
令 s 0, 根据假设 N (0) 0 可得
均值函数: E[N (t)] t,
方差函数: DN (t) Var[N (t )] t
E[ N (t)].
t
泊松过程的强度等于单位长时间间隔内发生的事件 数目的均值.
基础部张守成 2020年2月28日星期五
(2) 协方差函数:
设{N(t), t0}是强度的泊松过程,{Yk,k=1,2,}是
独立同分布随机变量序列,且与{N(t), t0}独立,令
N (t)
X (t) Yk , t 0 k 1
则称为复合泊松过程. 例 设N(t)是在(0, t]内来到某商店的顾客数,Yk是
N (t)
第k个顾客的花费,则 X (t) 是Yk (0, t]内的营业额. k 1
如果对任意的实数h 和 0 s h t h,
X (t h) X (s h) 和 X (t) X (s) 具有相同的分布, 则称增量具有平稳性.
第三章泊松过程

定理 设是{N (t), t≥0}一个强度为l的泊松过程,则对任 意固定的t, N(t)服从泊松分布,即
P(N (t) = k ) = (lt)k e-l t
k!
k = 0,1, 2,L
二、泊松过程的数字特征与特征函数
1. 泊松过程的均值函数
mN (t) = E[N(t)]= lt
2. 泊松过程的方差函数
DN (t) = D[N(t)]= lt
3. 泊松过程的均方值函数
y
2 N
(t)
=
E[N
2
(t)]
=
DN
(t)
+
mN2
(t)
=
lt
+
(lt)2
4. 泊松过程的自相关函数
E(N (t1)N (t2 ))
令t2 ³ t1E{[N (t1)- N (0)][N (t2 )- N (t1)+ N (t1)]} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]+ [N(t1)- N(0)]N(t1)} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]}+ E{[N(t1)- N (0)]N (t1)} 增量独立E{[N(t1)- N(0)][N(t2 )- N(t1)]}+ E{[N(t1)- N(0)]N(t1)} 增量独立E[N (t1)- N (0)]E[N (t2 )- N (t1)]+ E{[N (t1)- N (0)]N (t1)}
mN (t) = 4t = DN (t)
RN (t1,t2 ) = 4 min(t1,t2 ) + 16t1t2 , t1,t2 Î T
CN (t1,t2 ) = 4 min(t1,t2 )
第三章 泊松过程

第一节、泊松过程的基本概念
证明: (1) 0 N (0) N1 (0) N2 (0) 可得 N1 (0) N2 (0) 0 (2)由N(t)的独立增量性可得,N1 (t ), N2 (t ) 也为独立增量过程; (3)记 N (t s) N (t ) N (t , t s) P[ N1 (t , t s ) k1 ]
泊松过程(Poisson process)最早由法国人Poisson于 1837年引入。
主 要 内 容
第一节 第二节 第三节 第四节 第五节 第六节
泊松过程的基本概念 相邻时间的时间间隔 剩余寿命与年龄 非时齐泊松过程 复合泊松过程 更新过程
第一节、泊松过程的基本概念
一、定义 一随机过程N (t ), t 0 ,若满足条件: (1)是一计数过程,且N(0)=0; (零初值性) (2)任取 0 t1 t2 tn , (独立增量过程) N (t1 ), N (t2 ) N (t1 ), , N (tn ) N (tn1 ) 相互独立; (3)s, t 0, n 0, P[ N (s t ) N (s) n] P[ N (t ) n] (增量平稳性) (4)对任意 t 0 和充分小的 t 0 ,有 P[ N (t t ) N (t ) 1] t o(t ) P[ N (t t ) N (t ) 2] o(t ) 称N (t ), t 0 是强度 为的时齐泊松过程。 其中 0 称 为强度常数。
即 N (s t ) N ( s) 是参数为 t 的泊松分布。
证明
第一节、泊松过程的基本概念
泊松过程的等价定义: 一计数过程N (t ), t 0 ,若满足条件: (1)N(0)=0; (2)N(t)是独立增量过程; (3)对 s, t 0, N (s t ) N (s) P(t ) ,即
泊松过程poisson

研究如何将泊松过程与其他 随机过程进行更有效的结合,
以更好地描述复杂现象。
探索如何利用机器学习方法改 进泊松过程的参数估计和模型 选择,以提高模型的预测能力
和解释性。
THANKS
泊松分布的性质
泊松分布具有指数衰减的性质, 即随着时间的推移,事件发生的
概率逐渐减小。
泊松分布的期望值和方差都是参 数λ(λ > 0),即E(X)=λ, D(X)=λ。
当λ增加时,泊松分布的概率密 度函数值也增加,表示事件发生
的频率更高。
泊松分布的应用场景
通信网络
泊松分布用于描述在一定 时间内到达的电话呼叫或 数据包的数量。
生物信息学中的泊松过程
在生物信息学中,泊松过程用于描述基因表达、蛋白质相互 作用等生物过程中的随机事件。例如,基因表达数据可以用 泊松过程来分析,以了解基因表达的模式和规律。
通过泊松过程,生物信息学家可以识别出与特定生物学功能 或疾病相关的基因,为药物研发和个性化医疗提供有价值的 线索。
06 泊松过程的扩展与展望
交通流量分析
泊松分布用于描述在一定 时间内经过某个地点的车 辆数量。
生物学和医学研究
泊松分布可以用于描述在 一定时间内发生的事件数 量,例如基因突变或细菌 繁殖。
04 泊松过程的模拟与实现
离散时间的模拟
01
定义时间间隔
首先确定模拟的时间区间,并将其 划分为一系列离散的时间点。
随机抽样
使用随机数生成器,在每个时间间 隔内随机决定是否发生事件。
有限可加性
在有限的时间间隔内,泊松过 程中发生的事件数量服从二项
分布。
与其他随机过程的比较
与马尔可夫链的比较
poisson过程 大数定律

poisson过程大数定律
大数定律(Law of Large Numbers)是概率论中的一个定理,它描述了当独立随机变量的个数很大时,这些随机变量的均值会接近它们的期望值。
对于泊松过程(Poisson Process)来说,它是一种随机过程,用来描述事件在一定时间或空间范围内的随机发生情况。
泊松过程的特点是事件发生的间隔时间服从指数分布。
如果我们在一段时间内观察泊松过程发生的事件次数,根据大数定律,当观察事件次数足够大时,这些事件次数的平均值会接近于其期望值,即泊松分布的参数λ乘以观察的时间长度。
换句话说,当观察时间足够长时,泊松过程的事件发生率的估计值会越来越接近真实的发生率。
用数学符号表示,设N(t)为在时间段[0,t]内发生的事件次数,λ为泊松分布的参数(表示单位时间内事件的平均发生率),则根据大数定律:
lim(t->∞) N(t)/t = λ
即当观察时间t趋向无穷大时,事件次数N(t)除以观察时间t 的比值会接近λ。
总结起来,大数定律表明,当观察时间足够长时,泊松过程的事件发生率的估计值会越来越接近真实的发生率。
这个定律在
众多实际应用中具有重要的意义,尤其在统计学和概率论中扮演着重要的角色。
泊松过程的应用范文

1.无线通信:泊松过程可以用于表示用户的到达时间和数据包的到达时间,研究无线网络中的容量和覆盖范围。
泊松过程在金融领域的应用:
1.期权定价:泊松过程可以用于建立股票价格模型,帮助计算期权的价格和风险价值。
2.保险精算:泊松过程可以用于描述保险事故的发生过程,研究保险公司的风险和储备。
3.稀释性:对于时间区间[0,t]和[0,s](s<t),在时间s内N(t)-N(s)的分布仍然是一个泊松分布。
泊松过程在生物学领域的应用:
1.遗传学:泊松过程可以用于描述染色体上突变点的分布,用于研究基因突变的规律。
2.分子生物学:泊松过程可以用于描述酶催化反应的进程,研究酶的活性和速率。
3.神经科学:泊松过程可以用于描述神经元的放电模式,研究神经元的兴奋过程。
2.事件发生的概率分布:在时间区间[0,t]上,事件发生的数目服从泊松分布,即P(N(t)=n)=(λt)^n*e^(-λt)/n!,其中λ是事件发生的平均速率。
1.独立增量:对于不相交的时间区间,N(t1)和N(t2)-N(t1)是独立的随机变量。
2.无记忆性:已知在时间t1已经发生n个事件,那么在时间t2>t1时,N(t2)-N(t1)的分布与N(t2)的分布相同。
3.高频交易:泊松过程可以用于建模市场价格的波动和交易活动的发生,研究高频交易策略和风险控制。
综上所述,泊松过程是一种重要的随机过程,具有独立增量、无记忆性和稀释性等性质。在生物学、计算机科学、通信工程和金融等领域中,泊松过程被广泛应用于描述事件的发生过程和研究随机现象的规律。通过对泊松过程的研究,可以深入理解各个领域中的问题,并提供有益的解决方案和决策支持。
泊松过程在计算机科学领域的应用:
泊松过程的定义

泊松过程的定义泊松过程(Poisson Process)是一种随机过程,它表示了在固定时间段内发生的不同类型事件的概率分布。
泊松过程由泊松分布发展而来,它是一种概率分布,其中包含一个无限的平均特征。
泊松过程是一种重要的概率过程,在许多领域都有应用,例如通讯、生物学、信号处理等等。
泊松过程的定义是描述一个不断发生的随机事件的概率分布,即它是一种持续的随机过程,表示在给定的时间段内,某种类型的事件在某个时间段内会发生多少次。
这种过程的性质是:在一个给定的时间段内,随机事件的发生次数是一个服从泊松分布的随机变量。
泊松过程的定义一般可以描述为:设定一个时间段Δt,若在Δt内某种类型的事件发生m次,则该事件的发生概率满足泊松分布:P(m) = (λΔt)^me-λΔt/ m!,其中λ 是发生次数的平均数,Δt 是时间段,m 是发生次数。
泊松过程的定义还包括“独立性”的要求,即在一定的时间段内,发生的每一次事件都是相互独立的。
此外,泊松过程还有一个重要的性质——“不确定性”,即在一定时间段内,发生的每一次事件是不确定的,也就是说,我们不能准确预测每次发生的次数。
泊松过程是一种重要的概率过程,在一定的时间段内,对某种事件的发生次数的预测,可以使用泊松分布来实现。
泊松过程的应用可以追溯到19世纪,由法国数学家和物理学家泊松(Simeon Denis Poisson)发现,并且受到广泛的应用。
泊松过程的定义和性质是概率论中的重要概念,它主要用于描述在一定的时间段内,某种类型的事件发生的概率分布。
它可以用来描述不同类型事件发生的概率,从而可以模拟不同类型事件的发生情况。
同时,它可以用来研究一定时间段内,某种类型事件发生的概率,从而帮助我们更好地预测未来事件的发生情况。
空间泊松过程

空间泊松过程1. 简介空间泊松过程(Spatial Poisson Process)是一种常用于描述随机事件在空间中分布的数学模型。
它是一种二维或三维的随机过程,用来描述在给定空间中随机事件(例如点、线、面)的出现情况。
空间泊松过程在很多领域都有广泛的应用,如地理学、物理学、生态学和通信工程等。
2. 定义空间泊松过程是一个随机点过程,其定义如下:•在给定的空间区域中,随机点的数量是随机的。
•任意两个点之间的距离是独立同分布的。
•在不同的子区域中,点的数量是独立的。
3. 性质空间泊松过程具有以下性质:3.1. 点的数量分布给定一个空间区域,假设该区域的面积(或体积)为A。
如果单位面积(或单位体积)内的平均点数为λ,则空间泊松过程的点的数量N服从泊松分布,其概率质量函数为:P(N=k) = (λA)^k * exp(-λA) / k!3.2. 点的分布密度函数空间泊松过程的点是随机分布的,其分布密度函数可以用核密度估计方法来估计。
核密度估计是一种非参数估计方法,通过在每个点处放置一个核函数,然后将所有核函数叠加起来,得到点的分布密度函数。
3.3. 点的强度函数空间泊松过程的强度函数描述了点的密度在空间中的变化情况。
强度函数可以是常数,也可以是空间的函数。
在一维空间中,强度函数表示单位长度内的点的平均数量;在二维空间中,强度函数表示单位面积内的点的平均数量;在三维空间中,强度函数表示单位体积内的点的平均数量。
3.4. 点的空间关联性空间泊松过程的点之间是独立的,即一个点的出现不会影响其他点的出现。
这种独立性可以通过点的间距分布来描述。
常见的间距分布有指数分布、高斯分布和均匀分布等。
4. 应用空间泊松过程在各个领域都有广泛的应用。
4.1. 地理学地理学中常用空间泊松过程来描述地理现象的分布,如城市的人口分布、道路网的分布和地震的发生等。
通过对空间泊松过程的研究,可以更好地理解地理现象的规律性和随机性。
4.2. 物理学物理学中的粒子分布、原子核的排列和宇宙中星系的分布等现象都可以用空间泊松过程来描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泊松过程的几个例子
考虑某一电话交换台在某段时间接到的呼叫。令X(t) 表示电话交换台在 [0, t] 时间内收到的呼叫次数, 则{ X(t), t 0 } 是一个泊松过程。 考虑来到某火车站售票窗口购买车票的旅客。若记 X(t) 为时间 [0, t] 内到达售票窗口的旅客数,则 { X(t), t 0 } 是一个泊松过程。 X(t) 为某网站在时间 [0, t] 内的被访问次数。
分布函数:
s0 0, FW1 X ( t ) 1 ( s ) s / t , 0 s t 1, st
分布密度:
se s e (t s ) s t te t
1 / t , 0 s t fW1 X (t )1 (s) 其它 0,
例6
设{ X (t) , t 0 }是具有跳跃强度
(t ) 0.5(1 cost )
的非齐次泊松过程。求 E[X(t)] 和 D[X(t)]。
E[ X (t )] D[ X (t )] 0.5(1 coss)ds
0 t
1 0.5 t sin t
t 0 t0
E[ wn ] n 2 D [ w ] n n
[例1] 已知仪器在 [ 0 , t ] 内发生振动的次数 X(t) 是具有参
数的泊松过程。若仪器振动k (k 1)次就会出现故障, 求仪器在时刻 t0 正常工作的概率。
[解]
仪器发生第k振动的时刻Wk 就是故障时刻T , 则T 的概率分布为 分布:
(3) 到达时间的条件分布
假设在[0 , t ]内事件A已经发生一次,确定这一事件到
达时间W1的分布 ——均匀分布
P{W1 s, X (t ) 1} P{W1 s X (t ) 1} P{ X (t ) 1} P{ X ( s ) 1, X (t ) X ( s ) 0} P{ X (t ) 1} P{ X ( s ) 1} P{ X (t ) X ( s) 0} P{ X (t ) 1}
0t 3 200 400t , (t ) 1400, 3 t 13 1400 400(t 13) , 13 t 16
mX (9) mX (7) (t )dt 1400d t 2800
7 7
9
9
28002000 2800 P[ X (9) X (7) 2000 ] e 2000 !
等待时间(到达时间)Wn
[定理] 设 {X (t), t 0 }是具有参数的泊松过程,{Wn , n1}
是对应的等待时间序列,则随机变量Wn 服从参数为n与 的 分布(又称为爱尔兰分布),其概率密度为
t (t ) n 1 e , fWn (t ) (n 1)! 0,
s C t
k n
k
s 1 t
nk
参数为 n 和 s/t 的 二项分布
泊松过程的另一个定义
[定义] 称计数过程{ X (t) , t 0 }为具有参数 >0 的泊松 过程,若它满足下列条件: (1) X (0) = 0 ; (2) X (t) 是独立、平稳增量过程; (3) X (t) 满足下列两式:
ΦX ( ) E[e
jX (t )
]e
t ( e j 1)
(1) 泊松过程的数字特征
均值函数 方差函数 相关函数 协方差函数
mX (t ) E[ X (t )] t
2 X (t ) DX (t ) t
RX (s, t ) E[ X (s) X (t )] s(t 1) , (s t )
0
t
则X(t)服从参数为 mX (t ) 的poisson分布 [定理] 设{ X (t) , t 0 }为具有跳跃强度函数为 (t ) 的非齐次泊松过程,则有
[mX (t )]n P{ X (t ) n} exp{ mX (t )}, (n 0) n!
P{ X (t s) X (t ) n} [mX (t s) mX (t )]n exp{[m X (t s) mX (t )]}, (n 0) n!
fWk X (t ) (s n)
lim
h0
n! s s 1 k (k 1)!(n k )! t t
h
k 1
n k
Beta分布
P{s Wk s h X (t ) n}
fWk (s) P{ X (t ) X (s) n k} P{ X (t ) n}
的非齐次泊松过程,若它满足下列条件: (1) X (0) = 0 ; (2) X (t) 是独立增量过程; (3) P{ X (t h) X (t ) 1} (t )h o(h)
P{ X (t h) X (t ) 2} o(h)
非齐次泊松过程的分布
令
mX (t ) (s) d s
[例] 设在 [ 0 , t ] 内事件A已经发生 n 次,且0 < s < t,对
于0 < k < n ,求在 [ 0 , s ] 内事件A发生 k 次的概率。
P{X (s) k X (t ) n}
P{ X ( s) k , X (t ) n} P{ X (t ) n}
[例3] 设在 [ 0 , t ] 内事件A已经发生 n 次,求第k次(k < n)
事件A发生的时间Wk 的条件概率密度函数。
P{s Wk s h X (t ) n}
P{s Wk s h, X (t ) n} P{ X (t ) n} P{s Wk s h, X (t ) X ( s h) n k} P{ X (t ) n} P{s Wk s h} P{ X (t ) X ( s h) n k} P{ X (t ) n}
到达时间的条件分布
[定理] 设 {X (t), t 0 }是泊松过程,已知在[0, t]内事件A
发生n次,则这n次到达时间W1< W2< …< Wn可看成n 个[0, t]上均匀分布的独立随机变量的顺序统计量
n! n , 0 t1 t n t f (t1 , , t n X (t ) n) t 其它 0,
P{ X (t h) X (t ) 1} h o(h) P{ X (t h) X (t ) 2} o(h)
6.2 泊松过程的基本性质
Hale Waihona Puke 泊松分布:(t ) n t P{ X (t s) X ( s) n} e , n! n 0, 1,
(t ) n t P{ X (t ) n} e , n 0, 1, 2, n!
6.6 复合泊松过程
[定义] 设{ N (t) , t 0 }是强度为 的泊松过程,{ Yk , k =1, 2, … }是一列独立同分布随机变量,且与{ N (t) , t
0 }独立,令
X (t ) Yk , t 0
k 1
N (t )
则称{ X (t) , t 0 }为复合泊松过程。
泊松过程
[定义] 称计数过程{ X (t) , t 0 }为具有参数 的泊松过程,
若它满足下列条件: (1) X (0) = 0 ; (2) X (t) 是独立增量过程; (3) (平稳性)在任一长度为 t 的区间中,事件A发生的
次数服从参数t 的泊松分布,即对任意 s , t ,有
(t ) n t P{ X (t s) X ( s) n} e , n! n 0, 1,
3 泊松过程
内容提要
泊松过程的定义 泊松过程的基本性质
非齐次泊松过程
复合泊松过程
泊松分布
[泊松分布] 随机变量X 的所有可能取值为0, 1, 2, … ,而
取各个值的概率为
P{ X k}
k e
k!
, k 0, 1, 2, ( 0为常数)
则随机变量X 服从参数为 的泊松分布,简记为 ()。
[例4] 设{X1(t), t 0 }和{X2(t), t 0 }是两个相互独立的泊松
过程,它们在单位时间内平均出现的事件数分别为 1和
2。记Wk(1)为过程X1(t)的第k次事件到达时间, W1(2)为过
程X2(t)的第1次事件到达时间,求 P{Wk(1)<W1(2)},即第一 个泊松过程的第k次事件发生早于第二个泊松过程的第1 次事件发生 的概率。
C X ( s, t ) RX ( s, t ) mX ( s)mX (t ) min(s, t ) s , ( s t )
(2) 时间间隔与等待时间
设 {X (t), t 0 }是泊松过程,令X (t)表示 (0,t] 时间内
事件A发生的次数, T1 0 W1 T2 T3 W2 W3 Tn Wn-1 Wn
P{ X ( s) k , X (t ) X ( s) n k} P{ X (t ) n}
(s ) k e s [ (t s )]n k e ( t s ) k! (n k )! n! s k (t s) nk n t ( t ) e k!(n k )! tn n!
[例7] 设某路公共汽车从早上 5时到晚上9时有车发出。
乘客流量如下: 5时平均乘客为 200人/时;5时至8时乘 客线性增加,8时达到 1400人/时;8时至18时保持平均 到达率不变; 18 时至 21 时到达率线性下降,到 21 时为 200人/时。假定乘客数在不相重叠的时间间隔内是相互 独立的。求 12 时至 14 时有 2000 人来站乘车的概率,并 求出这两小时内乘客人数的数学期望。